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Abstract
The assessment of sprint velocity is useful for evaluating performance and guiding training interventions. In this paper, we 
describe an adaptive filtering algorithm to estimate sprint velocity using a single, sacrum-worn magneto-inertial measure-
ment unit. Estimated instantaneous velocity, average 10 m interval velocity, and peak velocity during 40 m sprints from 
the proposed method were compared to a reference method using photocell position-time data. Concurrent validity of the 
proposed method was assessed using mean absolute error and mean absolute percent error for all velocity estimates. The 
significance of the mean error was assessed using a factorial ANOVA for average interval velocity and a paired-samples t 
test for peak velocity. Reliability was assessed using Bland–Altman 95% limits of agreement for repeated measures. Average 
interval velocity was underestimated early in the sprint (− 0.25 to − 0.05 m/s) and overestimated later (0.13 m/s) with mean 
absolute error between 0.20 m/s (3.95%) and 0.62 m/s (7.78%). The average mean absolute error was 0.45 m/s (7.02%) for 
instantaneous velocity and 0.63 m/s (7.84%) for peak velocity. The limits of agreement grew progressively wider at greater 
distances (− 0.59 to 0.34 m/s for 0–10 m and − 1.32 to 1.59 m/s for 30–40 m). The estimation error from the proposed 
method is comparable to other wearable sensor-based methods and suggests its potential use to assess sprint performance.

1  Introduction

An important part of a sprint performance assessment is esti-
mating sprint velocity, which may be used by itself or with 
other metrics to evaluate performance [1]. Available tech-
niques to assess sprint velocity include the use of photocells 

[2, 3], lasers [4], radar [3], treadmills [5], global positioning 
systems (GPS) [6–9], smartphone video [10], and magneto-
inertial measurement units (MIMUs) [11, 12]. Of these 
technologies, the wearable devices (MIMUs and GPS) are 
advantageous in terms of cost and ease of use. More studies 
have used GPS than MIMUs to estimate sprint velocity, but 
these show varying results [6–8] and suggest limited use 
indoors [13], for short distances [7], and for higher sprint 
velocities [9].

MIMUs present further advantages for their potential to 
provide a more comprehensive assessment. Their general use 
in biomechanics includes estimating joint angles [14], iden-
tifying fatigue [15], assessing jumping [16] and change-of-
direction [17] performance, and estimating walking [18] and 
running speed [19]. Specific to sprinting, methods have been 
developed to identify foot-strike and foot-off events to estimate 
stance and stride duration [20, 21] and for estimating trunk 
lean [22] and ground reaction force [23] during the sprint start. 
Setuain et al. [11] proposed a MIMU-based method to estimate 
kinetic determinants of sprint performance using velocity and 
ground reaction force estimates [11]. Their system, however, 
requires photocell-based position-time data to correct for drift 
error in the MIMU velocity estimate. Thus, a need still exists 
for a MIMU-only approach to estimating sprint velocity.
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Perhaps the simplest estimation of sprint velocity using 
MIMU data would be to first estimate the initial orientation of 
the MIMU in the track frame and then the instantaneous orien-
tation by strapdown integration. Then the MIMU estimate of 
the acceleration vector could be expressed in the track frame 
and the forward component time-integrated yielding veloc-
ity. This approach would introduce error from various sources 
(e.g. integration drift [14] or ferromagnetic disturbances [24]), 
but could be compensated for using measurements from an 
additional instrument and data fusion techniques [25]. Unless 
the additional instrument can be incorporated into a wear-
able device, this addition removes some of the advantages of 
wearable sensor-based systems. A GPS unit combined with 
a MIMU on a single sensor could allow error compensation 
while maintaining these advantages but would limit the system 
to outdoor use. A single MIMU provides the means to fuse 
orientation estimates from the on-board accelerometer and/
or magnetometer with that obtained using the gyroscope via 
strapdown integration [14, 26]. Data fusion in this way is only 
valid when the net acceleration is mostly gravity and when 
there are no ferromagnetic disturbances. The dynamic nature 
of sprinting prevents the former and the latter limits the use of 
magnetometer updates, especially indoors [24]. Thus, the use 
of some other reference information is needed to provide error 
compensation, especially as the sprint progresses in time [14].

To the authors’ knowledge, the study by [12] is the only 
one to quantify the error in estimating sprint velocity from 
only a sacrum-worn MIMU. Their method, however, was 
based on proprietary algorithms and unspecified constraints. 
Yang et al. [19] proposed a method incorporating task-con-
straints for error compensation to estimate constant veloci-
ties of relatively low magnitude (≤ 3.5 m/s) and thus it may 
not be appropriate for sprint running. Similarly, we thought 
to use characteristics of sprint running as natural constraints 
to correct MIMU estimates. Namely, we made the following 
two assumptions about sprint running in a straight line:

	 I.	 the heading of a sacrum-worn MIMU during the 
sprint is expected to be zero-mean

	 II.	 the velocity–time relationship is expected to resemble 
model sprint data.

Regarding assumption (II.), such a model was first pro-
posed by Furusawa et al. [2] describing the motion of a 
sprinter. The model involves two constants ( vm and � ) related 
to the position (p) at time t by [2, 3],

Then, velocity ( v ) is given by differentiation,

(1)p(t) = vm(t + �e
−

t

� ) − vm�.

(2)v(t) = vm

(

1 − e
−

t

�

)

.

The constants vm and � in Eq. (2) correspond to, respec-
tively, the horizontal asymptote of the velocity–time curve 
(velocity one would reach should they sprint indefinitely 
and never fatigue) and the time it takes to reach 63.21% of 
vm . Position-time data (from photocells [1, 2] or smartphone 
video [10]) has been used to estimate vm and � in Eq. (1) to 
estimate velocity using Eq. (2).

In this paper, we describe a filtering algorithm incorporat-
ing constraints based on assumptions (I) and (II) to estimate 
sprint velocity from a single MIMU during a 40-m sprint. 
An experimental protocol was designed to determine the 
concurrent validity of the proposed method by comparing 
the velocity estimates to those obtained using photocells.

2 � Methods

2.1 � Algorithm design

The algorithm developed in this study consists of three basic 
steps. In the first step, we determine a first estimate of the 
MIMU orientation during the sprint. In the second step, 
we employ the orientation correction given by assumption 
(I.) and in the third step, we employ the velocity correction 
given by assumption (II.). See Fig. 1 for a summary of the 
proposed algorithm.

2.1.1 � MIMU orientation and vector rotations 
during the sprint

The quaternion is used to describe the orientation of the 
sensor frame {FS} relative to the track frame {FT} according 
to the single rotation through an angle γ about some axis U , 
of unit length, that would align {FT} with {FS} (Fig. 2) [27]. 
The instantaneous orientation during the sprint is estimated 
using a Kalman filter similar to that described in [14] (see 
Appendix in the Online Supplementary Material for details). 

Step 1: Initial Estimate of MIMU Orientation
-Kalman filter estimate of orientation

Step 2: Orientation Correction
-Decompose composite quaternion

-Linearly detrend first heading estimate (force to be zero-mean)

-Propagate correction to determine new estimate of composite quaternion

Step 3: Velocity Correction
-Determine foot contacts

-Estimate model velocity curves based on raw velocity at each step

-Determine step at which raw velocity best resembles expected relationship

-Apply correction to next step and generate new model velocity for next iteration

Fig. 1   Description of proposed algorithm
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The orientation is initialized using sensor referenced meas-
urements of the world frame gravity and local magnetic field 
vectors [23, 26]. To construct this composite quaternion, we 
consider two rotations that would align the frames instead of 
one composite rotation [26, 27]: first about the {FT} vertical 
axis through an angle α (Q�) , called the sensor’s heading, 
and second about an axis ( H ) of unit length in the {FT} 
horizontal plane through an angle �(Q�) , called the sensor’s 
attitude. First, the accelerometer measurement of the {FT} 
vertical axis (i.e. the gravity vector) expressed in {FS} deter-
mines the MIMU attitude angle β and rotation axis H to 
estimate Q� [26]. Second, the magnetometer measurement of 
the local magnetic field vector expressed in {FS} is rotated to 
the {FT} horizontal plane using Q� . The x and y components 
of the rotated vector determine the MIMU heading angle α 
to construct Q� [23]. Then, because Q� and Q� are known, Q� 
(the sensor’s initial orientation) is given by their quaternion 
product (Q𝛾 = Q𝛼 ⊗ Q𝛽) [27]. With this initial orientation, 
the Kalman filter provides a first estimate of sensor orienta-
tion (Q� )

− throughout the remainder of stance and the sprint.

2.1.2 � Filtering algorithm: orientation correction

The second step is to correct the orientation according to 
assumption (I.): the heading of the runner throughout the 
entire sprint is expected to be zero-mean. First, Q−

�
 is decom-

posed into attitude and heading quaternions, Q� and Q−
�
 

respectively, and the a priori heading estimate ( �− ) extracted. 
The derivation of the general decomposition is found in [27] 
(a detailed description is provided in the Appendix in the 
Online Supplementary Material). We then linearly detrend 
�− , enforcing the zero-mean constraint, and use the cor-
rected heading to construct the heading quaternion Q� to 
better estimate the composite quaternion ( Q� ). Then, Q� is 
used to rotate the MIMU referenced acceleration vector to 
{FT} and the forward component is time-integrated to yield 
an a priori estimate of forward velocity (v−) . The time of the 
sprint start is defined as the first instant at which v− exceeds 
one standard deviation above the average velocity during the 
interval between the beginning of stance and the first estimate 
of the sprint start. The latter is a first estimate found by visual 
inspection of v− and the former is defined as the end of the 
1-s interval of minimal movement (interval during which the 
sum of the variance of each axis of the accelerometer is a 
minimum) during the sprint start stance. Similar methods, 
using a standard deviation threshold measure to detect onset 
from biological and biomechanical data, have been employed 
elsewhere (e.g., EMG data [28], acceleration data [29]).

2.1.3 � Filtering algorithm: velocity correction

Next, we seek to estimate vm and � and the associated model 
sprint velocity which best characterize the sprint to correct v− 
enforcing the constraint allowed by assumption (II.). The only 
information available to estimate these constants is v− and 
while any subset of v− could be used, the choice may affect 
the accuracy of the estimates. For example, a larger subset may 
introduce more drift error, but a smaller subset contains less 
information to estimate vm and � . To solve this problem, we 
first seek to determine which subset of v− best resembles the 
expected relationship in Eq. (2). We consider the subsets of v− 
each beginning with the start of the sprint and each ending with 
a different foot contact (identified using the method described in 
[21]). The first subset ended with the third foot contact because 
the first foot contact is not expected to well represent the sprint 
capabilities throughout the entire sprint [3] and the second may 
introduce bias in the first model estimate due to bilateral asym-
metries. Each subset is low-pass filtered at 1 Hz and fit to Eq. (2) 
using non-linear least squares curve fitting to determine vm and 
� (Fig. 3). Low-pass filtering at 1 Hz was shown from pilot data 
to sufficiently remove the sinusoidal nature of sprint velocity not 
expressed in Eq. (2). Lower and upper bounds were placed on 
estimates of the constants vm and � in Eq. (2) determined using 
previously published data (three standard deviations above and 

Fig. 2   Description of frame orientations. The track frame axes are 
the thick solid black lines and the sensor frame axes are the thick 
dashed black lines. The orientation may be described by a single rota-
tion through an angle γ ( ≈ 50◦ in the figure) about the axis labeled 
U (curved black lines labeled γ) or by two successive rotations: first 
through an angle α (20° in the figure) about ẑT (curved black lines 
labeled α) and then a second rotation through β (45° in the figure) 
about the axis labeled H (curved black lines labeled β)
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below the means in [2, 3]). For each subset, the normalized 
error (E) associated with the curve fitting (squared norm of the 
residual expressed relative to the number of samples used to 
generate the curve) indicates how well the data from that sub-
set resembles the expected relationship (see [30] for a similar 
application) (Fig. 3). Finally, the subset of v− for which E was 
a minimum is identified and assumed best representative of the 
expected model in Eq. (2) (Fig. 4).

The modeled velocity (vmod) based on this subset is then 
used to provide a correction at the next step, and an iterative 
correction process for each step is used thereafter. To apply 
this correction, we find the difference (dv) between the linear 
trend of v−(lraw) and the linear trend of vmod(lmod) from the 
sample at foot contact k − 1 (sk−1) to the sample at foot contact 
k(sk) according to (Fig. 5),

(3)lraw =
v−
sk

− v−
sk−1

sk − sk−1
(s) + v−

sk−1

where s is the sample expressed relative to sk−1 . The trust 
given to the correction dv is dependent on the error associ-
ated with v mod generated from the subset ending with foot 
contact k − 1 (Ek−1) relative to that for foot contact k (Ek) . 
This way the subset more closely resembling the expected 
relationship in Eq. (2) has a greater contribution to the final 
estimate. This relative error determines the gain (G) that 
scales the correction dv to provide a corrected estimate of 
the sprint velocity (v) from foot contact k−1 to foot contact 
k according to

(4)lmod =
vmod,sk

− v−
sk−1

sk − sk−1
(s) + v−

sk−1

(5)dv = lmod − lraw,

(6)G =
Ek

Ek + Ek−1

Fig. 3   The a priori velocity ( v− ) estimates (thick black line) were 
used to estimate the model constants vm and � in Eq. (2) and the asso-
ciated model velocity curve (thin gray line) for the subsets of v− each 
beginning at the sprint start and ending with a different foot contact 

(foot contacts 3 through 6 shown here). The error associated with the 
curve fitting indicates how well the raw velocity estimate resembled 
the expected model curve
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The corrected velocity is used to generate a new model 
velocity and associated error to be used for the correction at 

(7)v = v− + G(dv).

the next foot contact. The position (p) of the sprinter (dis-
tance from the start line) is estimated by time-integrating v. 
We estimate the MIMU initial location behind the start line 
(p0) using the trunk lean angle during stance (�s) , the sprint-
er’s torso length (Lt, distance between the MIMU and the C7 
vertebra), and assuming the location of C7 during stance is 
directly above the start line. The trunk lean angle �s is cal-
culated given the MIMU attitude relative to the anatomical 
frame (β0) and the MIMU attitude during stance (�s) by

Then p0 and p are given by

The corrections continue for each foot contact as long as 
the condition p < 40 m is satisfied.

2.2 � Experimental validation

2.2.1 � Procedures

An experiment was designed to test the concurrent validity 
of the proposed method to estimate sprint velocity by com-
parison to the photocell-based method described by Samoz-
ino et al. [3]. To estimate sprint velocity as proposed in [3], 
five pairs of photocells (Brower Timing Systems, Draper, 
UT) were positioned along a 40-m straight of an indoor track 
to collect position-time data at 10 m, 15 m, 20 m, 30 m, and 
40 m splits. The timer starts when the sprinter’s hand is 
lifted off a touch sensor. A high-speed video camera (Sensor 
Technologies America, Carrollton, TX, 200 fps) recorded 
each subject’s sprint start using MaxTRAQ software (Inno-
vision Systems, Columbiaville, MI). The camera was posi-
tioned such that the MIMU and hand (on the touch sensor) 
were within the camera’s field of view (Fig. 6). The frames 
associated with the initial forward movement of the MIMU 
and of the hand coming off the touch sensor were used to 
synchronize the two systems.

2.2.2 � Subjects

Twenty-eight subjects (12 females, 16 males, age: 
20.9 ± 2.3 years, height: 1.73 ± 0.09 m, mass: 71.1 ± 11.7 kg) 
volunteered to participate in this study. Subjects included 
collegiate level sprinters and others from the general student 
population and were included if they were between the ages 
of 18 and 35 years, reported no musculoskeletal injuries 
within the 6 months prior to testing, regularly participated 

(8)�s = �s − �0

(9)p0 = Lt sin(�s)

(10)p =

tk

∫
0

vdt − p0.

Fig. 4   The error from the curve fitting for each subset of v− is used 
to determine which subset best resembles the expected relationship in 
Eq.  (2). Each data point in the figure represents the error associated 
with the curve fitting of the subset of v− from the sprint start to step 
k. The step at which the minimum occurred (step 11 in the figure) 
represents the subset which best resembles the expected relationship 
in Eq. (2) and the starting point at which the filter will begin making 
corrections

Fig. 5   The difference between the linear trend of the raw velocity 
estimate (black dotted line labeled lraw ) and that of the modeled veloc-
ity (gray dotted line labeled lm ) between one foot contact ( sk ) and the 
previous (sk−1) is used to correct the raw velocity estimate. The raw 
velocity estimate is the solid black line and the modeled velocity is 
the dashed black line
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in physical activity, and were able to perform maximal effort 
sprints pain free. All subjects provided written consent to 
participate. The Appalachian State University Institutional 
Review Board approved this study.

2.2.3 � Inertial measurement units

Yost Data Logger 3-Space Sensors (YEI Technology, Ports-
mouth, OH) were the MIMUs used in this study. These units 
have an onboard three-axis accelerometer (range ± 24 g, 
noise density: 650 µg/Hz1/2, 12-bit resolution), three-axis 
gyroscope (range ± 2000°/s, noise density: 0.009°/s/Hz1/2, 
16-bit resolution), and three-axis magnetometer (range 
± 1.3 Ga, 12-bit resolution). Sampled data from each sen-
sor and the associated timestamp were written to a MicroSD 
card and downloaded to a computer after data collection 
for analysis. The sensors were set to sample at 450 Hz; 
however, the recorded timestamp differences varied (mean 
445.72 ± 0.55 Hz). Thus, for all time-integration computa-
tions, the recorded time differences were used and not a 
constant 0.0022 s.

2.2.4 � Procedures

Subjects’ standing height, mass, and torso length (defined 
previously) were recorded before undergoing a general and 
sprint specific warm-up ending with sprint starts from a four-
point stance (two hands and two feet). A MIMU was attached 
to the sacrum using an elastic strap and double-sided tape 

(Fig. 6) and a calibration trial was performed while stand-
ing straight up with hips aligned with the track. Subjects 
assumed a four-point stance with one hand on the touch sen-
sor (Fig. 6) and were instructed to be as still as possible. 
A 3-s countdown was given before the start of a maximal 
effort 40 m sprint. This sequence was repeated twice more 
for three total sprints per subject. Three minutes rest was 
given between sprints or until they felt fully recovered.

2.2.5 � Data reduction

All data were processed in MATLAB (MathWorks, Natick, 
MA). The photocell split-times were fit to Eq. (1) to obtain 
vm and � and used to estimate each subject’s instantaneous 
velocity according to Eq. (2) [3]. MIMU data were used 
to estimate sprint velocity using the proposed algorithm. 
Accelerometer and magnetometer data during the stand-
ing calibration trial determine �0 and sensor heading ( �0 ), 
respectively [23, 26]. The MIMU initial location is given 
using �0 and Eqs. (8) and (9). Because the hips were aligned 
with {FT} during the calibration trial, �0 represents the head-
ing of {FT} relative to the local magnetic field vector. Thus, 
the heading of the MIMU relative to the local magnetic field 
vector during the sprint stance ( �s ) allows an initial estimate 
of the MIMU heading α relative to {FT},

2.2.6 � Statistical analysis

The peak velocity (maximal average velocity between foot 
contacts), average interval velocity (average velocity over 
the 0–10 m, 10–20 m, 20–30 m, and 30–40 m intervals), 
and instantaneous velocity for each sprint was compared 
between methods. A two-way factorial ANOVA with two 
within-subjects factors (interval, 4 levels; method, 2 levels) 
was used to compare the average interval velocities for each 
10 m interval. The significance of the differences in peak 
velocity between the methods was assessed using a paired-
samples t test. The error in the MIMU estimates relative 
to the photocell method was further assessed using mean 
absolute error (MAE), mean absolute percent error (MAPE), 
and using Bland–Altman analysis for repeated measures. 
The latter quantifies the bias (mean error) and 95% limits 
of agreement (LOA) (compensating for repeated measures 
within subject) to assess the reliability of the method [31]. 
Statistical significance for all statistical tests was set a priori 
at a level of 0.05, with values above this threshold confirma-
tory of the hypothesis that the estimates obtained between 
both methods are the same.

(11)� = �s − �0.

Fig. 6   A high speed video camera was positioned such that the 
MIMU and the thumb on the touch sensor were visible. The time dif-
ference between the lift off of the thumb from the touch sensor and 
the initial forward movement of the MIMU were used to time-syn-
chronize MIMU and photocell data
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3 � Results

Ten trials were removed because the 40-m time did not 
register, leaving 74 available for analysis. The average 
interval velocities and peak velocity across all subjects 
determined by the proposed MIMU method and the ref-
erence photocell method are shown in Table 1 and the 
associated error statistics. The factorial ANOVA for the 
average interval velocity revealed no main effect between 
methods, (F(1,74) = 1.667, P = 0.201). A significant inter-
val-by-method interaction effect was observed between 
distance and method, (F(3,222) = 17.3, P < 0.001). Pairwise 
comparisons revealed significant differences between 

methods for the average velocity estimate during the 
0–10 m (P < 0.001) and 10–20 m (P < 0.001) intervals, 
but not the 20–30 m (P = 0.491) or 30–40 m (P = 0.128) 
intervals. The paired samples t test revealed a significant 
difference (P = 0.02) between the MIMU estimate of 
peak velocity (8.5 ± 1.24 m/s) and the photocell estimate 
(8.3 ± 1.09 m/s). The MAE of the MIMU peak and average 
interval velocity estimates ranged from 0.20 to 0.63 m/s 
(3.95–7.84%). The Bland–Altman bias (range − 0.25 to 
0.20 m/s) and LOA (range − 0.59 to 0.34 m/s to − 1.32 to 
1.59 m/s) are given in Table 1 as well as Bland–Altman 
plots in Figs. 7 and 8. All measurement differences were 
normally distributed according to the Shapiro–Wilk test 
and showed no linear trend with the measurement means 

Table 1   Error in the estimate 
of average interval velocities 
and peak velocity determined 
by the proposed MIMU method 
compared to the reference 
photocell method (all units m/s)

MAE mean absolute error, MAPE mean absolute percent error, Bias mean error, LOA Bland–Altman 95% 
limits of agreement for repeated measures

MIMU mean (SD) Photocell mean (SD) MAE (MAPE) Bias LOA

Average interval velocity
 0 to − 10 m 4.71 (0.41) 4.83 (0.46) 0.20 (3.95%) − 0.12 − 0.59, 0.34
 10 to − 20 m 7.49 (0.86) 7.73 (0.89) 0.42 (5.55%) − 0.25 − 1.18, 0.68
 20 to − 30 m 8.11 (1.09) 8.16 (1.02) 0.50 (6.44%) − 0.05 − 1.30, 1.20
 30 to − 40 m 8.42 (1.24) 8.29 (1.08) 0.62 (7.78%) 0.13 − 1.32, 1.59

Peak velocity 8.50 (1.24) 8.30 (1.09) 0.63 (7.84%) 0.20 − 1.25, 1.64
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Fig. 7   Bland–Altman plots of average interval velocity. a 0–10 m, b 10–20 m, c 20–30 m, and d 30–40 m. Bias: thick solid black line, bias 95% 
confidence interval: thin solid black line, 95% limits of agreement: dashed black line, line of equality (0): dotted black line
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and thus no data were log transformed [32]. The aver-
age MAE and MAPE for the instantaneous velocity esti-
mate was 0.45 ± 0.27 m/s and 7.02 ± 4.02%, respectively. 
Example velocity–time curves comparing the methods are 
shown in Fig. 9. Figure 10 compares velocity and posi-
tion versus time data averaged across all subjects between 
MIMU and photocell methods.

4 � Discussion

The Bland–Altman plots show a small bias from the MIMU 
estimates of velocity (− 0.25 to 0.20 m/s) and LOA increas-
ing with sprint velocity. This suggests the velocity estimates 
from the MIMU method were more consistent early in the 
sprint compared to later (narrower LOA), but with a slightly 
greater bias. MAE and MAPE also slightly increased later 
in the sprint with the greatest error in the peak velocity 
estimate (MAE = 0.63 m/s, MAPE = 7.84%). The factorial 
ANOVA revealed no systematic differences between the 
MIMU and photocell estimates of average interval velocity 
for the final two 10 m splits (Table 1), whereas, despite a 
lesser MAE, the average interval velocity for the first two 
10 m splits was significantly different. This may reflect (1) 
the MIMU method provides a consistent underestimation 
early in the sprint, but with greater reliability, (2) the lesser 
reliability of the MIMU method later in the sprint, and (3) 
the larger variation in sprint velocity across the subject sam-
ple in this study (which becomes more prevalent at greater 
sprint velocities). The average MAE of the instantaneous 
sprint velocity (0.45 m/s) is nearly equal to the average MAE 
across the four average interval velocities (0.44 m/s). This 
observation further reflects the increasing trend in estimation 

error seen in the average interval velocities. Research sug-
gests the actual instantaneous velocity of a sprinter is sinu-
soidal in nature [5], which agrees with the MIMU estimates 
(Fig. 9), but is not expressed in the model of Eq. (2). This 
may explain some of the error in the instantaneous velocity 
estimate and the reason it was slightly greater than the aver-
age MAE of the interval velocities.

The photocell method was the standard of comparison 
for velocity estimates in this study and thus also for iden-
tifying the true constants vm and � describing the sprint. 
Since the proposed method estimates these constants to 
correct for integration drift, it is informative to compare 
the constants derived from both methods. The estimate 
of vm was not significantly different between methods 
(MIMU: 8.41 ± 1.32  m/s, photocell: 8.36 ± 1.13  m/s, 
p = 0.61), but the MIMU estimate of � (1.11 ± 0.20 s) was 
significantly greater (p < 0.01) than the photocell estimate 
(1.00 ± 0.17 s). Analytically, a larger � results in a delayed 
progression to vm in Eq. (2). Thus, the overestimate of � 
from the proposed method may underlie the underestimate 
of velocity observed early in the sprint (Fig. 10). It may 
seem contradictory that the MIMU estimate of average 
vm was less than the average peak velocity, but this may 
reflect inaccurate foot contact estimates and/or characteris-
tics of the true sprint velocity not expressed in Eq. (2) (e.g. 
a sinusoidal nature and bilateral asymmetries).

Although the algorithm used in [12] to estimate sprint 
velocity is not given in detail, it is the only other study to 
compare our results to for MIMU-only methods. Thus, we 
performed post hoc analyses to determine Pearson’s corre-
lation coefficients between the MIMU and photocell-deter-
mined estimates of velocity. Results between studies show 
similar bias for peak velocity, MAPE < 10%, and strong 
relationships (r ≥ 0.75) between MIMU estimates and 

Fig. 8   Bland–Altman plot com-
paring the IMU and photocell 
estimates of maximal sprint 
velocity. Bias: thick solid black 
line, bias 95% confidence inter-
val: thin solid black line, 95% 
limits of agreement: dashed 
black line, line of equality (0): 
dotted black line
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reference measurements for both average interval and peak 
velocity (except for the 0–10 m average interval veloc-
ity in [12] where r = 0.32). We also compared our results 
to that obtained using wearable GPS units as presented 
in [6] and found comparable reliability and less overall 
error for the MIMU method in estimating both velocity 
and distance (distance error at 30 m: GPS = − 2.02 m, 
MIMU = − 0.77 m).

4.1 � Limitations

The results of this study only apply to maximal effort 40 m 
sprints in a straight line undertaken in a non-fatigued state. 
The initial heading estimates are based on an assumed neg-
ligible difference between the local magnetic field vector 
at the location of the sensor during the standing calibration 

trial and during the sprint start stance. Ferromagnetic dis-
turbances may invalidate these assumptions and indeed we 
found an average difference in the magnetic field magnitude 
between these two locations (0.06 Gauss, 7.18%) which may 
have introduced an initial heading error. However, the cor-
rection in the proposed algorithm forcing the heading-time 
series during the sprint to be zero-mean also adjusts the 
initial heading and thus may compensate for this potential 
error. Finally, the proposed method is not fully automated 
and does require minimal user input to identify the static 
intervals prior to the sprint.

5 � Conclusion

The low MAE, low MAPE, and low bias between veloc-
ity estimates from the proposed MIMU method and refer-
ence photocell measurements support the potential use of 

Fig. 9   Comparing raw velocity 
obtained from direct integra-
tion (solid gray line), filtered 
velocity from the proposed 
algorithm (solid black line), and 
model velocity obtained from 
the reference photocell method 
(dashed black line). Each curve 
represents a single subject. 
a An example where direct 
integration overestimated the 
true velocity and b an example 
where direct integration under-
estimated the true velocity
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MIMUs for evaluating sprint performance. The estimation 
error of velocity and reliability of the method are com-
parable to that reported for other wearable sensor-based 
methods [6, 12]. The proposed method should only be used 
for maximal effort, 40-m, straight line sprints when the 
sprinter is fully recovered until the method is validated for 
use in other applications.
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