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Abstract
In long-distance competitive cycling, efforts to mitigate the effects of air resistance can significantly reduce the energy 
expended by the cyclist. A common method to achieve such reductions is for the riders to cycle in one large group, known 
as the peloton. However, to win a race a cyclist must break away from the peloton, losing the advantage of drag reduction 
and riding solo to cross the finish line ahead of the other riders. If the rider breaks away too soon then fatigue effects due to 
the extra pedal force required to overcome the additional drag will result in them being caught by the peloton. On the other 
hand, if the rider breaks away too late then they will not maximize their time advantage over the main field. In this paper, 
we derive a mathematical model for the motion of the peloton and breakaway rider and use asymptotic analysis techniques 
to derive analytical solutions for their behaviour. The results are used to predict the optimum time for a rider to break away 
that maximizes the finish time ahead of the peloton for a given course profile and rider statistics.
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1  Introduction

Cycling science is a lucrative and competitive industry, in 
which small advantages are often the difference between 
winning and losing. For example, the 2018 Tour de France 
was won by a margin of less than one minute for a total race 
time of more than 86 h [10]. Improvements in performance 
typically require the combined expertise of a wide range of 
specialists, including sports scientists, engineers, and dieti-
cians. In addition, mathematics can provide a fundamental 
underpinning for the race dynamics and strategy, to com-
plement the results of more sophisticated analyses such as 
computational fluid dynamics simulations.

Long-distance cycle races, such as a stage of the Tour de 
France, typically follow a prescribed pattern: riders cycle 
together as a main group, or peloton, for the majority of the 
race before a solo rider or small group of riders makes a 
break from the peloton, usually relatively close to the finish 

line. The main reason for this behaviour is that cycling in 
a group reduces the air resistance that is experienced by a 
cyclist. With energy savings of up to around a third when 
cycling in the peloton compared with riding solo [8], it is 
energetically favourable to stick with the main field for the 
majority of the race. However, if a cyclist wishes to win a 
race or a Tour stage then they must decide on when to make 
a break. In doing so, the rider must provide an additional 
pedal force to offset the effects of air resistance that would 
otherwise be mitigated by riding in the peloton. However, 
the cyclist will not be able to sustain this extra force indefi-
nitely, with fatigue effects coming into play. As a result, a 
conflict emerges: if the cyclist breaks away too soon then 
they risk fatigue effects kicking in before the finish line and 
being caught by the peloton. On the other hand, if the cyclist 
breaks too late then they reduce their chance of a large win-
ning margin.

The mathematics of drag and air resistance in the context 
of cycling science is well known and has led to many studies 
considering strategies for minimizing this drag reduction, 
ranging from cycling behind a rider (see, for example, [3] for 
a summary) to the foot positioning on downhill sections [6]. 
Strategies for short-distance races have been examined (see, 
for example, [9]) in which minute changes in tactics can be 
the difference between winning and losing. In long-distance 
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races, many more tactics come into play, such as pacing [5, 
18]. In such races, while drag reduction plays a much more 
important role, the combination of the knowledge of drag 
with strategies for winning a long-distance race are much 
less common, at least in the public literature.

In this paper we consider, for a given course profile and 
rider statistics, the optimum time to break away, which maxi-
mizes the time difference between the rider finishing and the 
peloton crossing the finish line. To answer this question we 
derive a mathematical model for cycling that captures the 
advantage of riding in the peloton to reduce aerodynamic 
drag and the physical limitations (due to fatigue) on the force 
that can be provided by the leg muscles.

We begin in Sect. 2 by forming a mathematical model 
for the motion of a single rider, which is extended in Sect. 3 
to describe a group of cyclists and a breakaway rider, as 
seen in professional cycle races. The model for a single rider 
is derived by considering the forces acting on a cyclist by 
appealing to Newton’s Second Law. To make analytical pro-
gress, we use an asymptotic expansion that exploits the fact 
that variations from a mean course gradient are typically 
small. We then examine the validity of these solutions by 
comparing them to numerical calculations of the full math-
ematical model that do not rely on the assumption of small 
undulations. The asymptotic solutions also provide a method 
to draw direct relationships between the values of physical 
parameters and the time taken to cover a set distance.

The physiological factors that limit the force that muscles 
are able to provide are then explored in Sect. 4. We assume 
that the concentration of potassium ions in the muscle cells 
is a strong factor in the fatigue of the muscles after a period 
of exertion, and we form equations to model the evolution of 
force output over time. This is applied to a breakaway situ-
ation to understand how the muscles respond after a rider 
exerts a force above their sustainable level.

Finally, in Sect. 5, we seek an optimal breakaway strat-
egy using the framework derived. We model a race situation 
with the main field of riders benefiting from a drag reduc-
tion and a breakaway rider applying a higher pedal force 
which decays with time and find the optimal position along a 
course to break away from the peloton, using the asymptotic 
solutions for both a constant breakaway force and accounting 
for fatigue effects.

2 � Mathematical model for a single rider

2.1 � Governing equation for the rider motion

We begin by forming a mathematical model for the one-
dimensional motion of a single rider. We characterize the 
rider’s motion by the distance travelled along the course, 
x̂ , at time t̂ , and the course undulations by the angle of 

incline, 𝜃 = 𝜃(x̂) (see Fig. 1). Note we use hats to denote 
dimensional quantities and, for future reference, variables 
without hats will be dimensionless.

Newton’s Second Law, F̂tot = m̂d2x̂∕dt̂2 , describes the 
rider’s motion in the direction of travel, where m̂ denotes 
the mass of the rider. The force F̂tot is the total compo-
nent of force acting in the direction of travel. Since we 
are considering one-dimensional motion we ignore any 
forces that would arise when turning a corner such as the 
centripetal force. The role of corners is more important in 
track cycling and the advantages of leaning into corners 
is considered in [19]. The forces acting on a rider that we 
will consider are as follows:

•	 The force due to gravity, m̂ĝ sin 𝜃(x̂) , where ĝ denotes 
acceleration due to gravity.

•	 The frictional force, F̂f , capturing the resistance of the 
tyres with the road and the sum of all mechanical resist-
ances including from the chain and wheel bearings. Here 
we assume that F̂f is constant, as is also assumed by Mar-
tin [13] and Pivit [15].

•	 The phenomenological drag force F̂D =
1

2
𝜌̂cDÂ(dx̂∕dt̂)

2 , 
where 𝜌̂ is the density of air, cD is a drag coefficient, and 
Â is the frontal area of the bike and rider. This form of 
the drag law assumes that the air is stationary, but read-
ily generalizes to allow for wind by replacing (dx̂∕dt̂)2 
with (dx̂∕dt̂ − v̂w)

2 , where v̂w is the air velocity in the 
positive x̂ direction ( ̂vw > 0 corresponds to a tailwind and 
v̂w < 0 corresponds to a headwind). In what follows we 
will assume that v̂w ≡ 0 . While the effects of crosswinds 
can be important, with riders forming echelons to shield 
each other from crosswinds, we will neglect this effect 
here as this plays a small role on the forward motion of 
riders

•	 The pedalling force, F̂p , which could depend in general 
on x̂ , dx̂∕dt̂ and t̂ to reflect a varying power output. We 
will begin by assuming F̂p to be constant, which provides 
a good approximation for relatively constant speeds. In 
this case the power output, F̂pdx̂∕dt̂ , is constant when 
travelling at constant speed and increases linearly with 
speed. We relax the assumption of constant pedal force 
in Sect. 4.

Fig. 1   Schematic illustrating the coordinate set-up and forces acting 
on the rider
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In summary, Newton’s Second Law then provides us 
with the second-order differential equation for the rider’s 
displacement:

We solve the model (1) for t̂ ≥ 0 , where t̂ = 0 corresponds 
to the time at which we are interested in modelling the race 
behaviour. For instance, this may be the point in the course 
at which the peloton has settled into a steady pace and riders 
are beginning to think about making a break. Without loss 
of generality we impose the initial conditions 

which corresponds to specifying the origin of x̂ , and the 
rider velocity at that time, v̂i.

2.2 � Non‑dimensionalization

We non-dimensionalize Eq. (1) to elucidate the depend-
ence of the model on the physical parameters. Specifi-
cally, we make the following choices:

where L̂ , T̂  and M̂ are characteristic scales that will be deter-
mined. Using (3) we find that (1) then becomes

where 𝜃(x) = 𝜃(x̂∕L̂).
We choose to balance the final term with the accelera-

tion to allow us to later take advantage of the final term 
being small, which gives T̂ =

√
L̂∕ĝ . We choose M̂ to be 

the average mass of the riders (in a race, for example) and 
choose L̂ = 2M̂∕𝜌̂cDÂ to balance the drag term. In this 
section we set Fp = Fs , where Fs is a constant pedal force 
that can be sustained indefinitely. In later sections we 
consider a more complex form for the pedal force. We 
also simplify by defining the dimensionless constant force 
F0 = Fs − Ff  to obtain the dimensionless governing 
equation

where a dot denotes differentiation with respect to time.

(1)m̂
d2x̂

dt̂2
= F̂p − F̂f −

1

2
𝜌̂cDÂ

(
dx̂

dt̂

)2

− m̂ĝ sin 𝜃(x̂).

(2a)x̂(0) = 0,

(2b)
dx̂(0)

dt̂
= v̂i,

(3)
x̂ = L̂x, t̂ = T̂t, m̂ = M̂m, v̂i =

L̂

T̂
vi,

F̂f = M̂ĝFf, F̂D = M̂ĝFD, F̂p = M̂ĝFp,

(4)
m
d2x

dt2
=

T̂2ĝ

L̂
(Fp − Ff) −

𝜌̂cDÂL̂

2M̂

(
dx

dt

)2

−
mĝT̂2

L̂
sin 𝜃(x),

(5)mẍ = F0 − ẋ2 − m sin 𝜃(x),

2.3 � Solution for a flat course

Equation (5) can be solved for a flat course ( �(x) = 0 ) by sub-
stituting v = ẋ and rearranging to give the integral equation

Solving equation (6) gives two forms of solution, depending 
on the sign of F0 − v2

i
 : 

 where

Here we have assumed that F0 > 0 , meaning the pedalling 
force provided is at least high enough to overcome the fric-
tion force, otherwise our model would predict that the rider 
would eventually come to a stop, which is a case that we are 
not concerned with here.

2.4 � Approximation for a weakly undulating course

We now seek a solution for a course where � varies by a small 
amount about a mean value, � . We expect this to apply for 
real courses since they can be divided into sections that have 
an approximately constant slope, and within these sections 
the variation of the angle � about this slope will generally be 
small. We therefore write

where 0 < 𝜀 ≪ 1 and f = O(1) , and expand the displacement 
as a power series in �,

Substituting (8) and (9) into (5) and the initial conditions 
(2), and then equating orders of � provides the differential 
equations and initial conditions 

(6)∫
v

vi

m

F0 − ṽ2
dṽ = t.

(7a)ẋ(t) =

�√
F0 tanh

�
𝜉0(t)

�
for vi <

√
F0,√

F0 coth
�
𝜉0(t)

�
for vi >

√
F0,

(7b)x(t) =

�
m log cosh

�
𝜉0(t)

�
+ 𝜎0 for vi <

√
F0,

m log sinh
�
𝜉0(t)

�
+ 𝜎0 for vi >

√
F0,

𝜉0(t) =
√
F0t∕m + artanh

�
vi∕

√
F0

�
,

𝜉0(t) =
√
F0t∕m + artanh

�√
F0∕vi

�
,

and 𝜎0 = m∕2 log
���v

2
i
∕F0 − 1

���.

(8)�(x) = � + �f (x),

(9)x = x0 + �x1 + �2x2 +⋯ .

(10a)O(1) ∶

{
mẍ0 = F0 − ẋ2

0
− m sin 𝛼,

x0(0) = 0, ẋ0(0) = vi,
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 Equation (10a) is of the same form as the flat-course Eq. 
(5), with F0 replaced by F� ∶= F0 − m sin � , which we again 
assume to be positive so that the pedal force is sufficient 
to overcome the friction and gravitational forces. The form 
of the solution depends on the sign of F� − v2

i
 . Here we 

will suppose that F𝛼 > v2
i
 so that the driving force gener-

ates acceleration at t = 0 , but acknowledge that analogous 
solutions to that shown in Sect. 2.3 exist for F𝛼 < v2

i
 . The 

leading-order solution is then 

 where

At O(�) , equation (10b) yields a linear second-order differ-
ential equation in ẋ1 , with x0(t) , f(x) and � known, and so 
can be solved by finding an integrating factor. This provides 
the correction to the velocity and displacement due to the 
undulations, 

2.5 � Results and comparison to numerical solutions

We consider four sample course profiles:

The corresponding course height profiles are given by

(10b)O(𝜀) ∶

{
mẍ1 = −2ẋ0ẋ1 − mf (x0) cos 𝛼,

x1(0) = 0, ẋ1(0) = 0.

(11a)ẋ0(t) =
√
F𝛼 tanh

�
𝜉𝛼(t)

�
,

(11b)x0(t) = m log cosh
(
��(t)

)
+ �� ,

��(t) =
√
F�t∕m + artanh

�
vi∕

√
F�

�

and �� = m∕2 log
���v

2
i
∕F� − 1

���.

(12a)
ẋ1(t) = − cos 𝛼 sech2

(
𝜉𝛼(t)

) ∫ t

0
cosh2

(
𝜉𝛼(s)

)
f (x0(s))ds,

(12b)

x1(t) = − cos � ∫
t

0

sech2
(
��(r)

)
∫

r

0

cosh2
(
��(s)

)
f (x0(s))dsdr.

(13)
�1(x) =

3x

100(x+3)
, �2(x) =

−3x

100(x+3)
,

�3(x) = −
sin(30x)

50
, �4(x) = −

sin(2x)

50
.

(14)h = ∫
x

0

sin �(s) ds,

and are illustrated in Fig. 2a.
We take the system parameters to be values we would typi-

cally expect in a race [1, 3, 16],

and assume that the solo rider has the same mass as the 
mean, M̂ . This gives the dimensionless parameters and 
scaling factors to be m = 1 , F0 ≈ 0.028 , L̂ ≈ 510 m, and 
T̂ ≈ 7.2 s. We also take the initial velocity to be vi = 0.16 
(corresponding to about 40km/h or 11m/s, a typical cycling 
speed). We choose � by taking the average of � over the 
domain, giving the values displayed in Table 1.

The function ode45 in MATLAB is used to solve the full 
system (5) numerically without making any approximations 
on the course gradient. This can be used to check that the 
asymptotic solution derived in Sect. 2.4 is close to the actual 
solution by plotting solutions for the choices of � given above. 
The asymptotic solutions are compared with the numerical 
solutions to the full system and shown in Fig. 2b, c.

For smooth inclines and declines ( �1 and �2 ) the asymptotic 
approximation captures the behaviour well. The rapidly oscil-
lating function �3 in (13) corresponds to a road that has many 
small hills and the asymptotic prediction also provides a good 
approximation, even though � is never close to being constant. 
This suggests that the asymptotic solution should be a good 
approximation if there are small undulations in the course. 
We do, however, see that issues can arise when the variations 
become too large, as seen for �4 , and cumulative errors can 
arise. However, as discussed earlier, we are able to accom-
modate courses like this by separating them into sections of 
almost constant slope and approximating with different � for 
each segment.

2.6 � Time to complete a course

We wish to find the time taken, Tend , to travel the total course 
distance X. To do this we can use a series expansion, writing 
Tend = T0 + �T1 + O(�2) , to see

where we recall that x0 and x1 are known functions given by 
(11b) and (12b). Equating orders of � gives

M̂ = 80 kg, F̂p = 25N, F̂f = 3N,

𝜌̂ = 1.3 kg∕m3, cD = 0.8, Â = 0.3m2,

X = x(Tend) = x0(T0) + 𝜀
[
T1ẋ0(T0) + x1(T0)

]
+ O(𝜀2),

x0(T0) = X, T1 =
−x1(T0)

ẋ0(T0)
.

Table 1   Course profiles given 
by (13) and used in Fig. 2

course �
1

�
2

�
3

�
4

� 0.0123 −0.0123 0 −0.0037

� 0.0123 0.0123 0.02 0.0237
f(x) −1 + 2.44x∕(x + 3) 1 − 2.44x∕(x + 3) − sin(30x) 0.156 − 0.844 sin(30x)
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We are able to invert x0(T0) and thus obtain the complete 
explicit solution up to O(�) , 

 where �� = artanh
√
F�∕vi.

Again we use MATLAB to obtain numerical solutions 
as shown in Fig. 2d, and find good agreement with the 

(15a)T0(X) =
m√
F�

�
arcosh exp

�
X − ��

m

�
− ��

�
,

(15b)

T1(T0) =

cos � ∫
T0

0

�
sech2��(r)∫

r

0

cosh2 ��(s)f (x0(s))ds

�
dr

√
F� tanh ��(T0)

,

asymptotic solution (15), with slight discrepancies arising 
for course �4 in the same way as seen in Fig. 2b, c.

Now that we have confidence in our asymptotic solutions 
we will use these results to compare the course completion 
time for a breakaway rider and the main field of riders. The 
explicit nature of the asymptotic solutions enable us to per-
form efficient parameter sweeps.

3 � Modelling a group of riders 
and a breakaway

We now use the equations found in the previous section to 
seek an optimal strategy for a rider to break away from the 
main field of riders and finish in the shortest possible time. 

(a) (b)

(c) (d)

Fig. 2   a  Model course profiles as given in (13). The height, h, is 
given by (14). b  Numerical solutions for velocity and c  numerical 
solutions for distance travelled for course profiles as given in (13) and 
shown in a. The asymptotic solutions are illustrated by the dashed 
lines, showing excellent agreement for courses �1 , �2 and �3 . The 
agreement for �4 is not so close due to the large variations in �4 for 

which the assumptions of the asymptotic analysis breaks down. The 
agreement can be improved by dividing the course into smaller sec-
tions in which the angle deviates less from the mean. d Time taken 
to complete a course of length X with profiles as given in (13). The 
asymptotic predictions given by (15) are shown by the dashed lines
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For simplicity we restrict our attention to the case of a single 
breakaway rider, who loses the benefit of drag reduction from 
being in the peloton. However, we note that the methods we 
use readily generalize for a small group of breakaway riders 
who benefit from drag reduction themselves.

We consider a course of length X and find the time it takes 
the main field to complete the course, Tend . We then suppose a 
breakaway rider travels with the peloton up to some distance 
along the course, Xb , before breaking away and travelling alone 
until the end of the course. Using this formulation we will find 
the time for the breakaway rider to complete the course, Tb,end . 
We will seek the maximum difference in completion times, 
ΔTend = Tend − Tb,end , by varying the breakaway position, Xb.

3.1 � Governing equations

We model the main field by considering the average of each 
of the forces that act on the riders under the drag reduction. It 
is shown in the work of Kyle [8] that a rider cycling directly 
behind another rider experiences a drag reduction of approxi-
mately one third. We thus take the drag multiplication fac-
tor for the peloton, � = 0.7 but acknowledge that adjustments 
in this factor to capture any particular race scenario may be 
implemented in an identical manner. We suppose that the pedal 
force, Fp , exerted in the peloton is equal to the sustainable 
force, Fs , as chosen for the single rider in Sect. 2. This choice 
corresponds to the peloton applying the maximum constant 
force that can be exerted for the entire duration of the race 
without suffering fatigue effects. Although in races we see 
that riders in the slipstream may not pedal continuously, we 
model the pedal force to be constant as a reasonable simplify-
ing assumption. This yields a modification of (5) to capture 
the motion of the peloton:

where the mass factor m = 1 , as the mass is scaled by the 
average mass of the riders in the peloton. We assume that 
m remains at this value for the peloton when a rider breaks 
away, which is a good approximation for a large number of 
riders in the peloton or if the breakaway rider’s mass is close 
to that of the average of all the riders.

Breakaway riders lose the benefit of slipstreaming, but 
escape from the peloton by providing a higher pedal force, 
which may depend on time, say Fb = Fb(t) , so that the break-
away rider exerts a total pedal force Fp = Fs + Fb . For the 
breakaway riders we model the displacement from the breaka-
way position, xb(tb) , with xb(0) = 0 , where t = tb + Tb and Tb 
is the time of the breakaway, that is, x(Tb) = Xb . Then, for a 
single breakaway rider we have

where �b(xb) = �(xb − Xb).

(16)ẍ = F0 − 𝛾 ẋ2 − sin 𝜃(x),

(17)mbẍb = F0 + Fb − ẋ2
b
− mb sin 𝜃b(xb),

By asserting that ẍb > ẍ at a breakaway point x = Xb , where 
ẋb = ẋ , we can use (16) and (17) to find the initial extra force a 
rider will need to provide to accelerate away from the peloton:

We see from (18) that a lower breakaway force is thus needed 
if the velocity is lower when breaking away (for example, 
if the riders are cycling uphill), provided mb < 1∕𝛾 ≈ 1.4 , 
which is consistent with the fact that breakaways predomi-
nantly happen on hill stages and are attempted by lighter 
riders. As a benchmark we consider a flat course, with the 
peloton riding at constant velocity ẋ =

√
F0∕𝛾  . Then, with 

mb = 1 , � = 0.7 , and F0 = 0.028 , we find a breakaway rider 
will need to increase their pedal force by at least 37.5% to 
break away, from Fs = 0.032 to at least Fs + Fb(0) = 0.044 . 
Although this is a significant increase, it is important to 
note that Fs is the average force provided by riders in the 
main field, which is likely to be significantly below their 
maximum.

In this section we assume the extra pedal force to be a con-
stant, that is we set Fb = Fb0 . We will relax this assumption in 
Sect. 5, but for now we will find that this allows us to model 
the situation analytically using the solutions found in Sect. 2 
and gives an explicit understanding of the parametric depend-
ence of the system. We will also assume for simplicity that the 
main field of riders do not react to the breakaway in terms of 
altering their pedal force.

3.2 � Model solutions for a constant breakaway force

We now solve (16) in an identical manner to the analysis in 
Sect. 2.4 for a weakly undulating course. The resulting expres-
sions for the leading- and first-order solutions for the position 
and velocity are given by (11) and (12) respectively, with F� 
replaced by F�∕� and m replaced with 1∕� . The time taken to 
reach a point X in the course is obtained from (15) with the 
same replacements, that is,

where

(18)Fb(0) > (1 − mb𝛾)ẋ
2 + F0(mb − 1).

(19)T0(X) =
1√
�F�

�
arcosh exp

�
�(X − �� )

�
− ��

�
,

(20)
T1(T0) =

√
� cos �

√
F� tanh �� (T0)

∫
T0

0

�
sech2�� (r)

× ∫
r

0

cosh2 �� (s)f (x0(s))ds

�
dr,

F� = F0 − sin �, �� = artanh
�√

�vi∕
√
F�

�
,

�� (t) =
√
�F�t + �� , and �� = log

����v
2
i
∕F� − 1

���∕2� .
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We now suppose the rider breaks away with a constant 
breakaway force Fb = Fb0 at time t = Tb and position 
x(Tb) = Xb , at which point the velocity is given by ẋ(Tb) , 
found from the equations resulting from the above proce-
dure. We again follow a similar process, this time replacing 
F� with F� + Fb0 and m with mb in the analysis performed in 
Sect. 2.4, and use ẋb(0) = ẋ(Tb) , which allows us to obtain 
solutions for ẋb(tb) and xb(tb).

Our interest lies, however, in the solution for the comple-
tion time. To extract this, we reverse the time transformation 
t = tb + Tb and use the solutions (19) and (20) for Tb , to give

with 

 where

We then have the time difference between the breaka-
way rider and the peloton completing the course, 
ΔTend = Tend − Tb,end , given by (19), (20) and (21). Finally, 
we can use this result to compute the optimal breakaway 
position Xb , which maximizes the time difference between 
the breakaway rider and the peloton.

3.3 � Results

For a flat course with a constant breakaway force that is suf-
ficient to leave the peloton, the strategy that maximizes the 
time that a rider finishes ahead of the peloton is trivial, with 
the rider recommended to break away as soon as possible. 
However, for an undulating course, an optimum breakaway 
position emerges (Fig.3). Specifically, this suggests that a 
steep hill close to the end provides a good place to break 

(21)
Tb,end(X;Xb) = T0(Xb) + T0,b(X − Xb)

+ �

[
T1
(
T0(Xb)

)
+ T1,b

(
T0,b(X − Xb)

)]
,

(22)T0,b(Xb) =
mb√

F� + Fb0

�
arcosh exp

�
Xb − �b

mb

�
− �b

�
,

(23a)

T1,b(T0,b) =
cos �√

F� + Fb0 tanh �b(T0,b)
∫

T0,b

0

�
sech2�b(r)

× ∫
r

0

cosh2 �b(s)Fb0(xb0(s))ds

�
dr,

𝜏b = artanh
�
ẋb(0)∕

√
F𝛼 + Fb0

�
,

𝜉b(t) =
√
F𝛼 + Fb0t∕mb + 𝜏b,

and 𝜎b = mb∕2 log
���ẋb(0)

2∕(F𝛼 + Fb0) − 1
���.

away, as we would expect considering the lower velocity 
when riding against gravity and thus reduced penalty in 
increased drag for breaking away. The larger the hill height, 
the greater the gains that can be made. We also find that the 
potential gains increase slowly as the breakaway position is 
delayed until further up the hill, but upon reaching the opti-
mal breakaway position, in this case around halfway up the 
hill, the gains subsequently drop off much more rapidly. This 
suggests that, in a real race whose final course profile com-
prises an uphill followed by a downhill section, if a cyclist 
does not suffer from fatigue effects and is able to provide a 
constant breakaway force then it is better to break slightly 
sooner rather than too late.

4 � Fatigue effects when attempting 
a breakaway

In the previous section we assumed the breakaway force was 
constant to allow us to solve the system using asymptotic 
methods. In this section, we seek an improved model for how 
the force provided by a breakaway rider might vary.

4.1 � Cause of the fatigue

As seen in Sect. 3.1, for a rider to break away from the pelo-
ton the excess force they apply, Fb , must be high enough 
to counter the increase in drag experienced by a solo rider 
(Eq. 18). As a consequence of applying this excess force, 
fatigue effects will come into play, resulting in the force that 
the rider is actually able to exert subsequently dropping back 

b

Fig. 3   Time taken for breakaway rider to complete a course 
compared to the peloton, for a course profile given by 
h = h0exp(−�(x − xmax)

2) (shown schematically in inset), with 
h0 = 0.02, 0.025, 0.03, 0.035, 0.04 , � = 0.5 and xmax = 6 . Here, 
mb = 1 , F0 = 0.028 and Fb0 = 0.011 . We choose vi =

√
F0∕� = 0.2 to 

give ẍ(0) = 0 , so that the peloton is travelling at a constant speed
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towards the sustainable force of the peloton (or possibly even 
below for a short period of time while the rider recovers, as 
we will discuss later on). We expect the fatigue to play a 
role both on a short timescale, due to anaerobic respiration, 
preventing sustained bursts of speed, and on a longer time, 
due to depletion of energy reserves.

The short-term fatigue effect is commonly attributed to lactic 
acid build-up as a consequence of anaerobic respiration. How-
ever, another cause of fatigue is the net movement of potas-
sium ions (K+ ) out of contracting skeletal muscle [12]. There 
are contrasting opinions on whether lactic acid or potassium 
has the larger effect on force output, as noted by Hargreaves [4]: 
“Generally, the lactate ion does not appear to have any major 
negative effects on the ability of skeletal muscle to generate 
force, although conflicting data exist in the literature. Of greater 
consequence is...the movement of strong ions (e.g., K + ) across 
the muscle cell membrane.” Here we choose to model the move-
ment of potassium ions, but note that a similar mathematical 
relationship would apply if we were considering lactic acid and 
so this assumption will not affect our conclusions. In the follow-
ing sections we incorporate the effect of fatigue due to anaerobic 
respiration and depletion of energy reserves.

4.2 � Potassium transport model

We denote the (dimensionless) measure of increase in concen-
tration of extracellular potassium ions as p. The concentration 
of potassium ions in the blood increases linearly with oxygen 
uptake (VO2 ) up to the maximum sustainable uptake (100%), 
where VO2 is attributed the description ‘exercise intensity’  
[12]. We assume that applying a pedal force higher than the 
sustainable force, Fs , will result in an increase in p. We assume 
a linear relationship, which gives us the equation

We note that a constant of proportionality would be required 
on the right-hand side of (24) if p were to correspond to 
the actual concentration of extracellular potassium. How-
ever, here we are interested only in a measure of the excess 
concentration so this constant may be incorporated into 
our definition of p. Equation (24) predicts there will be a 
net movement of potassium ions back into the muscle cells 
when Fb < 0 , thus allowing for recovery by applying a lower 
force than that of the peloton. The actual output force will 
decrease as potassium ions move out of the muscle cells, 
as confirmed by Cairns [2] and McKenna [14]. This force 
decreases when the ion concentration exceeds 8 mM [2, 14, 
17]. Beyond this value it is reasonable to model the actual 
output force Fp to decrease exponentially with p.

The work of Cairns [2] and McKenna [14] also shows that 
when relating the force exerted to the potassium concentration 
we should consider adding in a threshold. Sejersted [17] notes 

(23b)
dp

dt
= Fp − Fs.

that there is not a simple linear relationship between the potas-
sium concentration and force development: indeed, moderate 
increases in concentration may even cause force potentiation, 
but at high concentrations (i.e., higher than 8–10 mM), force 
development is suppressed. To incorporate this behaviour into 
our model we introduce a threshold potassium concentration, 
p1 , below which we assume the output force is unaffected by 
the value of p. We thus assume the breakaway force is governed 
by

where a ≥ 0 . When a = 0 we recover the case where the 
pedal force is unchanged when the threshold potassium con-
centration is crossed. The force Fb0 is the additional force 
that a breakaway rider attempts to apply, in line with the 
analysis presented in Sect. 3.1. The potassium concentration 
increases less in trained athletes [12], which translates to a 
lower value for the parameter a for trained cyclists, meaning 
they can sustain a higher force for longer.

Substituting (25) into (24) and applying the initial condi-
tion p(0) = 0 gives

where t1 = p1∕Fb0 . The results of this model are illustrated 
in Fig. 4.

4.3 � Stamina model

After a rider breaks away we also expect there to be stamina 
limitations, which will decrease the force that can be exerted 
over a sustained time. As a consequence of the additional 
exertion the output force may dip below the sustainable 
force. We model this by replacing Fb0 with a modified force 
Fbs that incorporates the reduction due to stamina (before 
applying the potassium limitation) so that (25) becomes

We assume that Fbs is governed by the equation

where b ≥ 0 , which gives the solution

(24)Fp =

{
Fs + Fb0 for p ≤ p1(
Fs + Fb0

)
e−a(p−p1) for p > p1,

(25)Fp(t) =

⎧⎪⎨⎪⎩

Fs + Fb0 for t ≤ t1
Fs(Fs + Fb0)

Fs + Fb0

�
1 − e−aFs(t−t1)

� for t > t1,

(26)

p =

{
Fb0t for t ≤ t1

p1 +
1

a
log

(
1 +

Fb0

Fs

(
1 − e−aFs(t−t1)

))
for t > t1,

(27)Fp =

{
Fs + Fbs(t) for p ≤ p1(
Fs + Fbs(t)

)
e−a(p−p1) for p > p1.

(28)
dFbs

dt
= −bFb0Fbs, Fbs(0) = Fb0,
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When b = 0 we recover the case where stamina plays no 
part. We can again solve the potassium equation (24) to get 
p(t) by substituting for Fp using (28) and (30). The solution 
for p(t) can then be substituted back into (28) to give

where t2 = −
(
log(1 − bp1)

)
∕(bFb).

The stamina effects considered in this model lead to an 
initial slow decrease in pedal force before the deficit potas-
sium in the muscle cells has a severe effect on the force 
output, resulting in a subsequent rapid drop (Fig. 5). As 

(29)Fbs(t) = Fb0e
−bFb0t.

(30)

Fp(t) =

⎧⎪⎨⎪⎩

Fs + Fb0e
−bFb0t for t ≤ t2

(aFs − bFb0)
�
Fs + Fb0e

−bFb0(t−t2)
�

aFs − bFb0 + aFb0

�
e−bFb0(t−t2) − e−aFs(t−t2)

� , for t > t2,

expected, the addition of the stamina limitation results in the 
force dropping below the sustainable force, Fs , for a marked 
period of time, before the potassium level recovers towards 
the threshold value, p1 . In reality we might expect a rider to 
recover after a while, meaning that if they were caught by 
the peloton they could break away a second time. However, 
we are only concerned with single breakaways, as our model 
predicts no advantage of breaking away twice.

5 � Numerical solutions under fatigue effects

We now consider the implications of a breakaway force that 
varies with time due to stamina limitations. As in Sect. 2, we 
assume that the rider exerts the maximum additional force 

(a)

(b)

Fig. 4   a Total pedal force exerted by a breakaway rider, Fp , and b the 
corresponding excess concentration of potassium ions, p, versus time, 
given respectively, by (26) and (27). Here, Fs = 0.032 , Fb0 = 0.8Fs , 
p1 = 0.1 and a = 0.5, 1, 1.5, 2 . The horizontal line in a shows the sus-
tainable force, Fs . The pedal force remains constant until the potas-
sium concentration reaches the critical value, p1

(a)

(b)

Fig. 5   a  Total pedal force exerted by a breakaway rider, Fp , given 
by (31), and b  the corresponding concentration of potassium ions, 
p, versus time, governed by potassium effects and stamina, found by 
solving (24), (28), and (30). Here, Fs = 0.032 , Fb0 = 0.8Fs , p1 = 0.1 , 
a = 0.5 and b = 0.5, 1, 1.5, 2 . The horizontal line in a shows the sus-
tainable force, Fs
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they can when breaking away, which is Fb = Fp − Fs , where 
Fp for a breakaway rider is given by (31), so we have

We note that in the absence of stamina and fatigue limita-
tions, a = b = 0 , we have Fb = Fb0 , recovering the case stud-
ied in Sect. 3.1. As discussed earlier, the breakaway force, 
Fb , has the potential to become negative, corresponding to 
overexertion of the rider so that they can no longer maintain 
the sustainable pedal force of the peloton, Fs . This can typi-
cally occur in a cycle race where a breakaway rider is first 
caught by the peloton before being subsequently dropped.

We solve the equations for the peloton, (16), and the 
breakaway rider, (17), with Fb given by (32), numerically for 

(31)

Fb(t) =

⎧⎪⎨⎪⎩

Fb0e
−bFb0t for t ≤ t2
Fb0

�
aF0e

−aF0(t−t2) − bFb0e
−bFb0(t−t2)

�
aF0 − bFb0 + aFb0

�
e−bFb0(t−t2) − e−aF0(t−t2)

� , for t > t2.

different breakaway positions to determine the best position 
to break away. As we are only considering single breaka-
ways, we only need to consider the final part of the race. 
For a flat course we find that, for the parameters considered 
here, the best breakaway point is around x = X − 5.5 , which 
corresponds to 2.5km from the end of the race (see Fig. 6a). 
We note that this prediction is independent of the total length 
of the course (provided the course is sufficiently long that the 
start of the race has negligible effect). While the optimum 
value will depend on the physical parameters associated with 
the rider, the approach is the same: to have a velocity higher 
than the main field for as much time as possible, as demon-
strated in Fig. 6b.

We have already seen in Sect.  3 that the success 
depends on the breakaway force being sufficiently large 
compared to the sum of the gravitational and pedal forces 
of the main field, as given by Eq. (18). As for a constant 
breakaway force, the model predicts that it is best to break 
away when cycling uphill, when the velocity is lower, and 
thus the penalty due to the increased drag when cycling 
alone are minimized.

We next study the effect of course contours, beginning 
with a course composed of a single valley. The optimal 
breakaway position depends strongly on the valley location 
as seen in Fig. 7. Figure 7b indicates that the best position 
to break away is generally just after the trough of the val-
ley since the velocity of the main field of riders will be low 
as they travel uphill out of the valley, meaning they benefit 
less from the drag reduction. One exception to this is when 
the trough occurs very close to the end as seen in Fig. 7c, 
in which case breaking away earlier can result in a larger 
win margin to make the most of the extra force available. 
A second exception is when the valley occurs too far from 
the end of a race (for example xmin = 6 in Fig. 7a), where 
the advantage of breaking away in the valley is countered 
by the large subsequent time without slipstreaming, in 
which the breakaway rider has a velocity lower than that 
of the peloton. For valleys that occur very early on, the 
optimal breakaway position is x = X − 5.5 , which is the 
same as for the flat course. When the trough roughly coin-
cides with this position ( xmin ≈ 14.5 in Fig. 7c, as seen 
with xmin = 14 in Fig. 7a) we obtain the best possible win 
margin of all courses.

Considering the same simulation for peaks instead of 
valleys yields a similar result (see Fig. 8), with the optimal 
breakaway position generally being before the peak, when 
the velocity is lower. We also notice that, despite the course 
now finishing with a downhill section where the velocity, 
and hence drag, is higher, the breakaway rider is able to fin-
ish a similar amount of time ahead of the peloton to when 
there is a valley with the same change in altitude and the 
course ends with an uphill stretch.

(a)

(b)

b

Fig. 6   Motion along the last 20 length units ( ≈ 10km) of a flat course, 
given by (16), (17), and (32). Here, mb = 1 , Fs = 0.032 , Fb0 = 0.8Fs , 
p1 = 0.1 , a = 0.5 and b = 0.5
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Finally, we consider the effect of the hill height. We fix 
the position of the maximum and vary the height and gra-
dient of the course separately to understand when the hill 
offers a good breakaway opportunity. We emphasize that 
there is no restriction on the gradient of the hill, and so this 
analysis holds for shallow gradients or extreme mountain 
stages.

The results shown in Fig. 9 indicate that a shallower hill 
lengthens the uphill section and the optimal breakaway posi-
tion occurs at some point in this section, depending on the 
gradient. From Fig. 10 we see that even a short hill that 

(a)

(b)

(c)

Fig. 7   Effect of valley position on breakaway success. Motion along 
the last 20 length units ( ≈ 10km) of a valley course profile given 
by h = h0 exp

(
−�(x − xmin)

2
)
 with h0 = − 0.04 , � = 0.5 , mb = 1 , 

Fs = 0.032 , Fb0 = 0.8Fs , p1 = 0.1 , a = 0.5 and b = 0.5 . The solution 
is given by (16), (17), and (32)

(a)

(b)

Fig. 8   Effect of peak position on breakaway success. Motion 
along the last 20 length units ( ≈ 10 km) of a hill course pro-
file given by h = h0 exp

(
−�(x − xmax)

2
)
 with h0 = 0.04 , � = 0.5 , 

xmax = 6, 10, 14, 18 , and mb = 1 , Fs = 0.032 , Fb0 = 0.8Fs , p1 = 0.1 , 
a = 0.5 and b = 0.5 . We choose vi = 0.2 so that initially the peloton 
is moving at constant velocity on a flat course (given by (16) with 
ẍ = 0 ). The solution is given by (16), (17), and (32)
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occurs early in a race can provide a good place to break 
away early if it is high enough. The generic strategy in all 
of these cases is to break away over the period of low veloc-
ity, during the steep climb. It is here that the drag reduction 
experienced in the main field of riders is lower, and apply-
ing a higher force allows the breakaway rider to advance a 
significant distance ahead in this period, making it difficult 
for the peloton to catch up.

6 � Conclusions

In this paper we have formulated a model for the motion of 
a cyclist in a race, to determine the optimal time to break 
away from the peloton. Using an asymptotic expansion for 
small deviations in the gradient of the course allowed us to 
produce an explicit expression for the time to complete a 
given course.

Initially we modelled the breakaway rider with a constant 
pedal force (higher than the peloton), which allowed us to 
use explicit asymptotic expressions. From this we obtained 
an equation for the time difference between the breakaway 

(a)

(b)

b

Fig. 9   Effect of hill gradient on breakaway success. Motion along 
the last 20 length units ( ≈ 10 km) of a hill course profile given by 
h = h0 exp

(
−�(x − xmax)

2
)
 with h0 = 0.04 , � = 0.1, 0.3, 0.5, 0.7 , 

xmax = 12 , and mb = 1 , Fs = 0.032 , Fb0 = 0.8Fs , p1 = 0.1 , a = 0.5 
and b = 0.5 . We choose vi = 0.2 so that initially the peloton is mov-
ing at constant velocity on a flat course (given by (16) with ẍ = 0 ). 
The solution is given by (16), (17), and (32)

(a)

(b)

b

Fig. 10   Effect of hill height on breakaway success. Motion along 
the last 20 length units ( ≈ 10 km) of a hill course profile given by 
h = h0 exp

(
− �(x − xmax)

2
)
 with h0 = 0.02, 0.03, 0.04, 0.05 , � = 0.5 , 

xmax = 12 , and mb = 1 , Fs = 0.032 , Fb0 = 0.8Fs , p1 = 0.1 , a = 0.5 
and b = 0.5 . We choose vi = 0.2 so that initially the peloton is mov-
ing at constant velocity on a flat course (given by (16) with ẍ = 0 ). 
The solution is given by (16), (17), and (32)
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rider and the main field in terms of the breakaway position, 
allowing us to determine the optimal position. By consider-
ing a single hill and varying its characteristics we showed 
that breaking away when travelling uphill is optimal since 
rider velocities will be lower and thus the drag reduction in 
the peloton will be less significant. This analytical model 
can be used to predict the optimal position to break away in 
a given race for a given individual and course profile.

We then extended the analytical model by including 
fatigue effects in the pedal force, no longer assuming the 
pedal force of a breakaway rider would remain constant. 
We considered the movement of potassium ions out of 
the muscle cells, linking the potassium concentration to 
the force output and including a stamina limitation, which 
led to an equation describing the decay of the pedal force 
over time after a breakaway. This model must be solved 
numerically, but the asymptotic approximations enable us 
to perform parameter sweeps for the breakaway position 
on different course profiles to determine how the breaka-
way strategy may be altered depending on the steepness, 
length and position of hills along a course. The analysis 
imposed no constraints on the gradient of the hills, and so 
the methodology would hold for any course profile, includ-
ing mountain stages.

The strategy for riders should be to break away at a posi-
tion that allows a velocity higher than the peloton for as 
much of the course as possible. We found that the optimal 
way to achieve this is to break away just before the velocity 
is expected to be low for a sustained period of time, such as 
at the beginning of a long hill climb. Uphill sections allow 
the breakaway rider to create distance between themselves 
and the main field as a result of the reduced benefit from the 
drag reduction in the peloton. We also observed that if a hill 
occurs too early in the course the peloton will have time to 
catch up with a rider who uses the hill to break away, but an 
early uphill section may still be the optimal place to break 
away if it is sufficiently steep or long. As well as choos-
ing a breakaway position where a velocity higher than the 
peloton can be sustained, it is of course also important to 
minimize the duration and magnitude of a breakaway rider 
velocity that is lower than the main field, where the gap will 
be decreasing. As a consequence of this, if an uphill section 
is followed by a downhill section, or if the uphill section is 
quite long, it may be optimal to break away halfway up the 
hill so that the extra force can be sustained up to the top of 
the hill.

This paper provides a framework for performing efficient 
parameter sweeps that determine the optimal strategy for 
breaking away in a cycling race. The methodology readily 
generalizes to more complex scenarios, for example, incor-
porating rider fitness and strategies (of which plentiful data 
will be available to a cycling team), the possibility of two or 

more riders breaking away from the main field together, and 
the peloton’s response to a breakaway. It would be prudent 
to investigate the influence of other physical and physiologi-
cal factors, such as diet, nutrition, and training, which all 
play a vital role in rider performance [7]. Finally, it would 
be interesting to combine these ideas with the field of rider 
tactics, such as a rider faking a breakaway to tempt a reac-
tion from riders in the main field. This opens up the enticing 
possibility that the type of modelling presented here may be 
combined with concepts from the field of non-cooperative 
game theory (see, for example, [11]) to explore a wider class 
of winning strategies.
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