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Abstract Commercial systems utilizing data from inertial

measurement units (IMUs) to analyse movement patterns

have not yet been adapted to monitor daily training in

cross-country (XC) skiing. The main purposes of this study

are to investigate: (1) the feasibility and potential of a

multi-sensor system consisting of a heart rate sensor, global

navigation satellite systems (GNSSs) data and seven IMUs

placed at multiple locations on the body for outdoor XC

skiing, and (2) the validity of employing hard decision

rules based on the correlation between arms and legs for

detecting sub-techniques in classical XC skiing. All sensor

data were synchronously sampled and synchronized with

GNSS data from a commercially available sports watch

while XC skiing on varying tracks, from amateur skiers and

world-class athletes. An algorithm based on the correlation

of the angular velocity of arms and legs was developed to

detect the three main classic sub-techniques, diagonal,

double poling with a kick and double poling. Other sub-

techniques were classified as miscellaneous (0–20%). The

system is shown to work well outdoors on snow during

different conditions, and the implemented algorithm was

validated by video analyses to detect the three sub-tech-

niques with a sensitivity of 99–100%. This study is the first

to detect and link sub-techniques in XC skiing to GNSS

data, thereby associating the detection and distribution of

sub-techniques to different terrains. Such information gives

insight into the technical and tactical aspects of skiers’

daily training and competitions, thereby providing a tool

for coaches and athletes.

Keywords Cross-country technique � Classical sub-
techniques � Inertial measurement units � Physiological
sensors � Movement sensors

1 Introduction

Cross-country (XC) skiing is a demanding outdoor endur-

ance sport, involving whole body exercise while skiing

across varying terrain. Within the classic and skating

techniques, XC skiers continuously shift between various

sub-techniques according to the track topography used in

training and competitions [1]. In the classical technique,

the main sub-techniques are diagonal stride (DIA), double

poling with a kick (DK) and double poling (DP) [2]. In

addition, the herringbone technique [3], where the skis are

angled and edged to increase static friction, is used in steep

uphill terrain, the tuck position in downhill and various

turn techniques are employed at narrow turns [4].

The DIA technique is primarily used on moderate to

steep uphill slopes, where a high ratio of propulsive to

recovery phase provides advantages. DIA follows a diag-

onal coordinated pattern as known from walking and run-

ning, where arms and legs move contralaterally and

produce propulsive force simultaneously [5, 6]. In contrast,

DP is most frequently used on relatively flat terrain,

although recently also on steeper uphill by elite male ski-

ers. A symmetrical and synchronous movement of both

arms, where all propulsive forces are exerted through the

poles, characterizes DP [7]. The arm motion in DP is

supported by considerable trunk flexion in the poling phase
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before the lower limbs elevate the centre of mass by

extending the ankle and knee joints in the repositioning

phase [8]. DK is commonly used in the transitions between

DIA and DP, and it has an upper body movement relatively

similar to the movement in DP, supported by propulsion

from either a left or right leg kick in between the DP

actions [9].

To characterize and quantify such sub-techniques and

their kinematic patterns in the field, microsensor technol-

ogy has shown potential to measure this in real time

without requiring the use of resource-intensive methods

such as video analysis. One of the first attempts, by

Marsland et al. [10] visually identified cyclical movement

patterns in the sensor data from one inertial measurement

unit (IMU) mounted on the skier’s back in both skating and

classical sub-techniques. In a follow-up study, the same

group was able to automatically classify sub-techniques

and kinematics in classic with a limited precision using a

seven-step algorithm [11]. Furthermore, Markov chain of

multivariate Gaussian distributions has been used to clas-

sify sub-techniques in skating using data from a mobile

phone [12], as well as an automated identification system

has been developed based on correlation classified sub-

techniques using sensors placed on hands and skis [13, 14].

To date in XC skiing, microsensor units have not yet been

synchronized with global navigation satellite system

(GNSS) data, although the detection of sub-techniques and

kinematics is clearly influenced by speed and incline.

Sakurai et al. [13] used a small GNSS device to record the

current inclination and speed of an athlete when detecting the

classical-style sub-techniques, but their studywas performed

using roller skis and they did not link the sub-technique

distribution to the terrain. In addition, the potential of using

many time-synchronized IMUs, distributed on several places

on the upper body, arms and legs at the same time, has not

been examined. Therefore, the main purposes of this study

are to investigate: (1) the feasibility and potential of a multi-

sensor system consisting of a heart rate sensor, GNSS and

seven IMUs placed at multiple locations on the body for

outdoor XC skiing, and (2) the validity of employing deci-

sion rules based on the correlation between the angular

velocity on arms and legs for detecting sub-techniques and

cyclic patterns in classical XC skiing.

2 Methods

2.1 Description of sensor system

The prototype multisensory system consists of two types of

sensor modules described in previous publications, one unit

of IsenseU-HR? [15] and six units of IsenseU-Move? [16]

connected to a small computer (Odroid-U3) that controls,

synchronizes and logs sensor data. The IsenseU-HR?

[weight 35 g (75 g including belt), size 7.7 9 4.6 cm]

calculates the heart rate based on ECG data (250 Hz), skin

temperature on the chest (every third second), in addition

to triaxial accelerometer and gyroscope data (20 Hz), and

transmits data wirelessly using Bluetooth 2.1. To measure

the heart rate and skin temperature, the sensor must be

placed on the skin of the chest using a textile electrode belt.

IsenseU-Move? (weight 17 g, size 5.3 9 3.7 cm) has a

triaxial IMU, consisting of a triaxial accelerometer, gyro-

scope and magnetometer in addition to several other sen-

sors that are not used in this study, and it transmits data

wirelessly using Bluetooth Smart. This study focuses

mainly on movement data and for each time stamp there

are a total of 60 channels related to motion, 9 channels

from each of the six IsenseU-Move? units and 6 channels

from the IsenseU-HR? unit; see Table 1. The sampling

frequency of the movement data was 20 Hz, and all

channels were synchronized in time to an accuracy of at

least 30 ms, with the detailed procedure for solving this

explained in detail previously [17].

During the testing, the IMUs were placed on the fol-

lowing locations using straps with velcro: upper back,

lower back, left and right arm, and left and right ankle; see

Fig. 1. The Odroid with battery (weight 370 g) was carried

by the test participants in a small backpack. The multi-

sensory system was controlled by employing a custom-

made Web page accessed by an internal Wi-Fi set up by the

Odroid. The Web page made it possible for the operator to

check the status, select sensors and start and stop both the

system and logging. The Garmin Forerunner 920XT

(Garmin Ltd., Olathe, KS), with both GPS/GLONASS and

a barometric altitude monitor, was included in the system

and used to measure the position and altitude with a sam-

pling frequency of 1 Hz (the highest frequency available).

In this study, the GNSS was mainly used for comparing the

identified techniques throughout the track. Hence, a fre-

quency of 1 Hz was sufficient for segment definitions and

Fig. 1 Location of the seven triaxial IsenseU-Ski sensors and sensor

orientation relative to the skier
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coarse speed estimates, under the assumptions that the

segments were sufficiently long and that the athlete did not

change speed too rapidly (fall or crash preventive

manoeuvres) at the points of segment definition. Since the

position data from the watch and the data logged on the

Odroid have time stamps, they were synchronized obtain-

ing both the position and the sensor data from the skier. A

standalone graphical user interface (GUI) was imple-

mented in MATLAB (The MathWorks, Inc., MA, USA)

and used to interpret and analyse data from the sensor

system immediately after the training sessions. In the

custom-made GUI, the results from the sessions were dis-

played as detailed position tracks in a map in addition to

graphs with altitude, speed (change in position per time

unit), heart rate and arm frequency as a function of dis-

tance, all with the coinciding sub-techniques given in

colours. Additional functionality included quantifying

parameters for selected segments. For example, if a skier

had run a specific track twice during a session, it was easy

to compare the effort (time, heart rate, speed, etc.) of the

different runs; see Table 5.

2.2 Measurements

2.2.1 Participants

Datasets were recorded from 11 different participants, 10

males and 1 female [(mean ± SD) of age 30 ± 7.6 years

(range 16–43), body height 180 ± 6 cm, body mass

73.0 ± 8.4 kg], with levels of skill ranging from amateur

to World Cup skiers; see Table 2. Participants with dif-

ferent performance levels were chosen to examine whether

the system could classify sub-techniques and analyse the

performance for both amateur and professional skiers. All

protocols and procedures were explained verbally to each

skier and written informed consent was obtained. The

Norwegian Centre for Research Data (NSD), Norway,

approved the study (ID 49865 Analyse av teknikkdis-

tribusjon og temporale mønster i langrenn).

2.2.2 Overall design

Data were collected in different types of tracks and snow

conditions (Table 2) to investigate the feasibility and

potential of the system independent of the terrain. The

ground truth of the datasets was obtained from video and

used to validate the classification algorithm. The video was

captured with Garmin VIRB (Garmin Ltd., Olathe, KS)

placed on the forehead of a skier following the test par-

ticipant. The datasets manually synchronized to the video

were automatically divided into cycles to ease the manual

labelling of sub-techniques. The cycles were automatically

segmented using Gaussian low pass-filtered data from one

axis of the gyroscope on the left arm. Start/stop of a cycle

was defined at the time the arm was extended behind the

participant. All 11 skiers were test participants in one or

more of the field tests, and each session lasted between 15

and 60 min. The thermal environment varied from very

cold (- 18 �C) to very hot (? 10 �C). The tracks also

changed across the different test days, from being solid

with high friction via icy tracks with low friction, to warm

weather with wet snow and high friction. The protocol was

slightly different for each field test due to differences in the

daily conditions, environment and tracks. However, all

tests involved all sub-techniques and the skiers were

instructed to ski at both moderate intensity (75–87% of

maximum heart rate) and high intensity (87–97% of max-

imum heart rate) based on their own perception of

intensity.

2.3 Post-treatment and calibration of raw data

The different data channels were continuously synchro-

nized in time (\ 30 ms) [17] before the time-synchronized

raw data were post-processed using MATLAB. Due to

different sampling rates, the data streams needed decima-

tion and interpolation to get a structured dataset sorted by a

time stamp with a corresponding sample for each data

channel (target 20 Hz). Data loss was tagged accordingly,

Table 1 Overview of the location of the sensors

Chest Upper back Left arm Right arm Low back Upper back Left leg Right leg

3D accelerometer (20 Hz) X X X X X X X X

3D gyroscope (20 Hz) X X X X X X X X

3D magnetometer (20 Hz) X X X X X X X

Skin temperature (0.3 Hz) X X

Heart rate (every heart beat) X

GPS/GLONASS (1 Hz) X

Barometric height (1 Hz) X
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Table 2 Overview of

performance level, different

types of test terrain, track

condition and period of data

collection for 11 cross-country

(XC) skiers

Parameters Test location

Competition course Competition course Flat terrain Mountain terrain

Holmenkollen Natrudstilen Sjusjøen Sognefjellet

Participant 1a

Air temperature 0 �C ? 8 �C ? 8 �C
Snow condition Wet and soft Wet and soft Wet and soft

Racing time 00:15:50 00:37:15 00:27:42

Participant 2a

Air temperature ? 8 �C
Snow condition Wet and soft

Racing time 00:51:26

Participant 3b

Air temperature ? 5 �C
Snow condition Icy

Racing time 00:23:11

Participant 4a

Air temperature 0 �C ? 5 �C - 18 �C ? 8 �C
Snow condition Wet and soft Icy Hard-packed Wet and soft

Racing time 01:06:26 00:38:17 00:37:50 00:32:14

Participant 5b

Air temperature ? 8 �C
Snow condition Wet and soft

Racing time 00:25:27

Participant 6b

Air temperature ? 8 �C
Snow condition Wet and soft

Racing time 01:03:03

Participant 7b

Participant 7a

Air temperature ? 5 �C
Snow condition Wet and soft

Racing time 00:20:41

Participant 8a

Air temperature - 18 �C
Snow condition Hard-packed

Racing time 00:32:16

Participant 9a

Air temperature ? 8 �C
Snow condition Wet and soft

Racing time 00:56:08

Participant 10b

Air temperature ? 5 �C
Snow condition Icy

Racing time 00:21:43

Participant 11a

Air temperature - 10 �C
Snow condition Hard-packed, icy

Racing time 00:24:46

aAmateur skier
bProfessional skier
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thereby enabling downstream algorithms to track the data’s

validity. Data loss was due to limitations in the wireless

technology; the human body is an excellent shield for

wireless signals and interruptions may occur when the

sensors are located close to the body. This is worse out-

doors than indoors due to less reflection from obstacles.

During these tests, the problem was partially solved by

automatically forcing a reconnect after interruptions in the

wireless link; however, an internal memory with temporary

storage of data during interruptions should be added to the

sensors to completely solve this issue.

As the sensor modules were fixed to the participant’s

body, both the sensor unit positioning and orientation will

vary from session to session. To normalize the data, a

calibration routine was necessary. The goal of the cali-

bration process was to compute the axis that would capture

the most angular motion (in terms of variance). This axis

was assumed to be perpendicular to the sagittal plane (see

Fig. 1), also referred to as the lateral axis, and the sensor

data were rotated according to this reference. The cali-

bration process required datasets satisfying certain con-

straints (i.e., the athlete initially needed to follow a simple

protocol). The constraints were typically satisfied if the

participants performed large movements of arms, legs,

chest and back along the initial part of the track on a flat

terrain (typically obtained from clean DIA or DK

techniques).

2.4 Classification of sub-techniques

2.4.1 Classical sub-technique identification from IMUs

on arms and legs based on correlation heuristics

In this work, the main classical sub-techniques (DIA, DK

and DP) used by a skier while following the skiing track

have been classified. The method was based on data from

four of the IMUs, placed on the athlete’s extremities (arms

and ankles). The information from the angular velocity

channels of these sensors were thus highly related to the

main mechanisms of the kinematics of the skier and are

therefore intuitive and closely related to the visual char-

acteristics of the techniques. All movement patterns not

satisfying the criteria for DIA, DK and DP were grouped as

miscellaneous (MISC). This included the herringbone

technique, undefined technique combinations, technique

transitions, turn techniques and downhill postures.

The classification was based on three assumptions:

(1) A synchronized dataset of at least one full tech-

nique cycle was available and parameterized by the

recorded data within a time window of size ws. That

means that for a given technique evaluation time point ti,

the athlete had completed at least one full cycle of a

given technique within the time interval [ti - ws/2,

ti ? ws/2]. Remark: we have implemented a fixed ws for

the whole dataset, and there is therefore a trade-off

between identifiability and uniqueness. If ws was too

small, the window may not contain sufficient information

and if ws was too large, the window may contain cycles

of different sub-techniques.

(2) The data from both arms and legs were sufficient for

reconstructing a movement cycle. This means that the data

loss from each sensor must be less than (1 - a)ws, where

a is a parameter dependent on grouping criteria and fea-

tures. Remark: the parameterization of this assumption was

conservative as it does not distinguish between ‘‘bulk’’ data

loss or data loss distributed evenly over the window. For

example, a 50% data loss can be tolerable if it was due to

reduced sampling rate, while it would render the identifi-

cation of DK unidentifiable if a continuous batch of data

from the kicking leg was missing.

(3) The body-attached sensors were calibrated so that

the angular rate around the sagittal perpendicular axis was

sufficiently estimated, also when dependent on grouping

criteria and features.

The phase shift of the arm sensors data was used as a

feature for classifying DP and DIA. By calculating the

correlation between the arms angular velocity measures

along the axis perpendicular to the athlete’s sagittal

plane, the in-phase and anti-phase (180� phase shift)

motions of DP and DIA were captured. The relative

angle between the leg sensors was used to distinguish

between DP and DK. This was done by calculating the

difference in angular velocity measures from the two

foot sensors along the axis perpendicular to the athlete’s

sagittal plane. This angular velocity difference was fur-

ther used to estimate the relative angle between the two

legs so that the DP and DK techniques could be sepa-

rated. Combined, the arm and leg work gave a simple set

of rules where DIA and DP/DK were separated by the

arm work, and DP and DK were further separated by the

leg work.

In Fig. 2, the classification algorithm is illustrated using

an example from a professional skier (participant 3) at

Natrudstilen. The upper graph displays the angular velocity

of the two arms; during DIA the arms had opposite

movements, while during DK and DP the arm movements

were synchronized. The graph below displays the relative

angle between the leg sensors, showing that the relative

angles between the legs were high for every ‘diagonal kick’

for DIA and that there was an opposite spike in the relative

angle for every kick for DK, while the difference was

irregular and relative small for DP. In addition, the fig-

ure displays the arm frequency, as well as arm correlation,

leg work features and clustering for each of the different

sub-techniques. The arm frequency was calculated by

computing the autocorrelation of the signal channel
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perpendicular to the sagittal plane and using the peak with

the highest prominence (topography) to define the signal

delay. The inverse of this delay was used as the cycle

frequency estimate.

2.4.2 Pseudocode of the classification algorithm

The pseudocode of the classification algorithm is given

below. For each new sample of data, the window was

Fig. 2 Classification of sub-techniques [diagonal (DIA), double

poling with a kick (DK) and double poling (DP)] for a professional

skier (participant 3 at Natrudstilen); the two upper rows present the

input data to the algorithm for the arm and leg activity for each sub-

technique, the third row shows the arm frequency estimates in relation

to classification, while the lower row displays the output data in the

form of classification as a function of arm correlation and legwork
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updated by removing the oldest sample and the following

calculations were made:

Arm work:

The total variance of the arms VTA were calculated and

used to check if the arms were moving significantly.

VAl þ VAr ¼ VTA [ TAV:

Here, VAl and VAr are the variance of the left and right

arm, and TAV is the tolerance of VTA. We then calculate the

correlation CA between the arm angular velocity measures

along the axis perpendicular to the athlete’s sagittal plane

as follows:

(a) If CA[TDP, then the athlete uses DP or DK.

(b) If CA\ TDIA, then the athlete uses DIA.

Here, TDP and TDIA are the tolerance of DP and DIA.

Leg work:

The difference in angular velocity was calculated from

the two foot sensors along the axis perpendicular to the

athlete’s sagittal plane. We calculated the variance VLa of

this difference as follows:

(a) If VLa[ TL, then the athlete uses the leg.

(b) Otherwise, the athletes do not use the leg.

Technique decision:

This gives the following technique grouping:

If VTA[TAV and the assumptions (described earlier)

holds:

(a) DP: if (CA[ TDP) and (VLa) B TL,

(b) DK: if (CA[ TDP) and (VLa)[ TL,

(c) DIA: if (CA\ TDIA),

(d) MISC: if not (DP|DK|DIA).

The limits for the constants in the pseudocode (TAV,

TDP, TDIA, TL) were manually set, to group decisions for as

much of the dataset as possible without being influenced by

false identification due to insufficient information.

2.4.3 Validation of sub-technique classification

To evaluate the performance of the sub-technique classi-

fication, selected datasets were manually combined and

synchronized with a video of the skier into a final video

showing the skier and selected data channels from IsenseU-

Ski. Using this video, each cycle was manually labelled as

DP, DK, DIA or MISC. Manual classification of video is

time consuming; therefore, only parts of the measured data

were used for validation. In some of the earlier sessions,

video was not used; and in some of the sessions, there was

a high rate of dropouts from one or more sensors. The

selection of datasets used for validation was therefore

based on the requirement that the dataset was as complete

as possible and there was video evidence. In total, datasets

were classified from six participants while skiing with

moderate intensity using their preferred sub-technique

according to the terrain. Technique cycles missing more

than 20% of the sensor data were deemed invalid and

ignored in the validation. The data loss limit was included

to prevent the algorithms from classifying the cycles based

on insufficient/uncertain information. For example, missing

leg movement information during the kick phase of the DK

would have incorrectly made the algorithm classify the

technique as DP. Out of the six participants, three were

amateurs and three were professionals, five were male and

one was female. The datasets were acquired at Natrudstilen

and Sognefjellet. The statistical analysis on the validation

of sub-technique classification was done using confusion

matrices. In the confusion matrices presented, the columns

represent the manually labelled class and the rows repre-

sent the class classified by the algorithm. Ideally, all cycles

should end up on the diagonal, which means that they are

classified to the correct class. However, if a cycle appears,

e.g., in the second lowest square to the left it means that the

cycle was labelled as DP, but wrongly classified as MISC.

The sensitivity (true positive/(true positive ? false nega-

tive)) is shown in the lower row, and the precision (true

positive/(true positive ? false positive)) is shown in the

column to the right. The mean sensitivity and precision for

DIA, DK and DP are reported in Table 4 for each dataset,

along with the dataset’s duration, number of cycles and the

balance of each detected technique measured in the number

of cycles.

3 Results

This section is divided into three sub-sections. The first

sub-section demonstrates the potential of the available data

from the sensor system and illustrates the possibilities for

further developments. In the second section, the validation

of the sub-technique characterization is provided. Finally,

the last sub-section exemplifies how sub-technique char-

acterization can be useful by comparing the performance

data of two different skiers.

3.1 Sensor system output and potential for analysis

of skiing technique quality

Over a period of 5 months, 9 h and 34 min of data was

measured. Although a structured study of user friendliness

has not been done, the test participants were asked to rate

how comfortable the system was to wear during the ses-

sion. All participants responded that the backpack was

comfortable to wear and they did not notice the sensors or

backpack after it had been mounted. One participant made

the remark that the left IsenseU-Move arm sensor was

somewhat in conflict with the watch.
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3.1.1 Cyclic relations on different body parts

This sub-section illustrates how features related to kine-

matics and timing of body segments may be extracted from

the raw data and used in technique training by athletes and

coaches.

Four cycles of pre-processed and calibrated gyroscope

data from six different parts of the body of an amateur

skier (participant 4) while skiing DIA, DK and DP are

displayed in Fig. 3. The figure shows that the multi-sensor

system was able to measure a repeatable cyclic pattern for

each body part for all three sub-techniques in amplitude,

frequency and shape. This repeatability could be used as a

feature for evaluating the skier’s performance over time,

for example to evaluate if the skier was able to maintain

the same cycles when he is fatigued at the end of an

interval session or a race. Potentially, this could also be

done in real time, since the system can recognize when the

quality of the technique drops and notify the skier so that

he/she can compensate for this in the rest of the work-

out/competition. In addition, the figure shows that each

sub-technique has its own characteristic patterns that can

be used to classify sub-techniques by combining different

sensors and also to analyse how the skier can improve the

specific sub-technique. For this amateur skier, the move-

ments of the upper body were much more pronounced

during DP than during DIA and DK. This is as expected

for DIA, but not for DK.

3.1.2 Difference in timing between different body parts

Body part timing will provide important insight into

tracking the athlete kinematics, and previous papers show

that the timing of different body parts may relate to

effective force production during a movement cycle and

explain why different techniques are more or less effi-

cient at a given condition [5–7, 18]. The phase differ-

ences between the movements of the different body parts

can be calculated by selecting a reference channel and

correlating a data ‘window’ from each of the other

channels with the reference. Figure 4 shows examples

where the phase differences have been removed for an

amateur skier (participant 4) during DIA, DK and DP

based on the lateral axis data from the gyroscope sensor

for arms, legs and torso. Here, the sensors on the right

arm and right leg were chosen as the respective refer-

cFig. 3 Calibrated gyroscope data at six different positions (left/right

arm and leg, upper and lower back) of an amateur skier (participant 4)

during diagonal (DIA), double poling with a kick (DK) and double

poling (DP) in flat terrain. The colours represent the neighbouring

cycles shifted in time to show the cyclic repetitive movement patterns
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ences. The phase shifts were found by the maximal

correlation between the reference and the other channels,

and the figure shows the selected window of data plotted

after the phase shifts have been compensated for. The

phase differences shown in the plot are quantified in

Table 3. The relative motion between the upper and the

lower part of the back were shifted by 0.05 s for DIA

and - 0.1 s for DK compared to the leg motion. As

expected, arm motions were synchronized for DK and

DP and asynchronous for DIA. Leg motions were as

expected for DP and DK, but during DP there were

limited and noisy movements. Phase differences, like in

the example showed here, are believed to be essential in

the qualitative evaluation of ski technique.

3.2 Validation of sub-technique classification

In this sub-section, the results from the validation of the

classification of sub-techniques are presented. The results

are presented for all participants in Table 4, and as con-

fusion matrices for four of the participants, two with the

highest and the two with the lowest sensitivity/precision in

Fig. 5. The sensitivity and precision reported in Table 4

were based on the classification of DP, DIA and DK; the

cycles classified or labelled as MISC were left out, as the

algorithm does not implement rules for distinguishing other

sub-techniques. The MISC classification/values are how-

ever included in the confusion matrices in Fig. 5, and the

rightmost columns show the potential for increasing the

Fig. 4 The signals’ correlations following removed phase differences

between arms and torso relative to the right arm (upper graphs), and

for leg and torso relative to the right leg (lower graphs) for an amateur

skier (participant 4) while skiing diagonal (DIA), double poling kick

(DK) and double poling (DP) techniques

Table 3 Phase differences (s) between arms and torso [relative to right arm (in italic)] and leg and torso [relative to right leg (in italic)] for an

amateur skier (participant 4) while skiing with diagonal (DIA), double poling kick (DK) and double poling (DP) techniques

Timing (s) Low back Upper back Left arm Right arm Low back Upper back Left leg Right leg

DIA - 0.5 - 0.45 - 0.6 0 0.25 0.3 0.6 0

DK - 0.35 - 0.45 0 0 - 0.3 - 0.4 - 1.4 0

DP 0.85 - 0.45 0 0 - 0.4 - 0.4 0.9 0

The body movement synchronization precision is limited by the system data sampling resolution at 50 ms and sensor time-synchronization

precision[ 30 ms
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classification precision by implementing further sub-tech-

niques. Table 4 shows that all sub-techniques were used

during validation and that the sensitivity for DP, DIA and

DK were excellent. It also shows that the miscellaneous

class was much higher (24% of cycles instead of * 7% of

cycles) for participant 3 than for the other skiers. This is

due to the fact that the course in Natrudstilen was a com-

petitive XC arena with sharp curves and steep hills,

demanding the skiers to use techniques other than the three

main sub-techniques; this was not the case at Sognefjellet.

Table 4 Datasets used for validation of sub-technique classification with duration of time, number of cycles, the balance of the detected

techniques and the sensitivity and precision for the classification of diagonal (DIA), double poling with a kick (DK) and double poling (DP)

Parameters Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 Participant 6

Sognefjellet Sognefjellet Natrudstilen Sognefjellet Sognefjellet Sognefjellet

Racing time 11:53 14:22 04:04 14:44 14:30 14:37

# Cycles 272 226 99 396 315 245

DIA (% Cyc) 52 29 33 42 38 51

DK (% Cyc) 17 13 8 10 13 25

DP (% Cyc) 28 53 35 41 41 19

MISC (% Cyc) 3 5 24 7 8 5

Sensitivity (%) 100 100 100 100 99 99

Precision (%) 100 100 100 99 99 99

MISC other techniques than DIA, DK and DP, Sensitivity average true positive rate (true positive/(true positive ? false negative)) for DIA, DK

and DP, Precision average positive prediction rate (true positive/(true positive ? false positive)) for DIA, DK and DP, % Cyc percentage in

relation to the total number of cycles

Fig. 5 Confusion matrices for

four participants while skiing

with medium intensity in

classical sub-techniques:

diagonal (DIA), double poling

kick (DK), double poling (DP),

miscellaneous (MISC). The

columns represent the cycles

labelled as one of the four

classes by video proof (gold

standard), while the rows

represent the cycles classified to

each of the four classes by the

algorithm. The diagonal

represents the cycles correctly

classified, the bottom row

represents the specificity for

each class and the right column

represents the precision
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As an overall interpretation of the confusion matrices,

the sensitivity and specificity for DP, DIA and DK were

excellent, but there was some confusion regarding the

cycles classified or labelled as MISC. This is as expected

since the cycles labelled or classified as MISC fall outside

the current assumptions defined for the classification

algorithm.

3.3 Feasibility of sub-technique identification

in skiers’ training

In this sub-section, we exemplify how sub-techniques

characterization can be used by comparing two different

skiers while skiing at moderate and high intensity. Maps

showing sub-technique distribution with corresponding

altitude, speed and heart rate versus distance while skiing

with high intensity in mountainous terrain at Sognefjellet

for one amateur (participant 4, Fig. 6a) and one profes-

sional (participant 5) are displayed in Fig. 6b. The pro-

fessional skier had two periods when one or more channels

had dropouts, shown as black lines and marked as lost

sensor data (LS). Both periods were during steep downhill

(i.e., it would have been classified as MISC) when the skier

had his arms tight to the body. Both the amateur and the

professional skier were generally using DIA uphill, DP in

flat terrain and MISC downhill. The highest speed was

when using DP or MISC, and the lowest speed was when

using DIA and DK. Overall, the professional skier was

using more DK and less DIA than the amateur skier, which

is as expected.

In Table 5, the information from the high-intensity

session has been quantified and compared with moderate-

intensity sessions in the exact same track. There is a clear

difference between the moderate and high intensities for

Fig. 6 Map, altitude, speed and heart rate with sub-technique

classification [diagonal (DIA), double poling kick (DK), double

poling (DP) and other techniques (MISC)] of a an amateur

(participant 4) skier and b professional skier (participant 5) while

skiing with the classical technique at high intensity in mountain

terrain. Periods with one or more missing channels (LS) due to sensor

dropouts are indicated with black lines. Numbers of the overall

distribution of sub-techniques (in fraction) are displayed in the

legends of the maps
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both participants. The high-intensity run had, as expected,

shorter duration time, higher speed, higher mean heart rate

and higher frequency compared to the moderate-intensity

run. The amateur participant was using more DP and less

DIA in the high-intensity run compared to the moderate-

intensity run, while the use of DK was similar. The pro-

fessional skier was using more DK and less DIA during

high-intensity compared to the moderate-intensity run.

Both these findings were expected since DP and DK are

normally used at higher speeds than DIA. When increasing

intensity, also speed increases and a larger distribution of

‘‘high-speed’’ sub-techniques are employed. Figure 7

shows the altitude and accumulated time loss for the

amateur skier (participant 4) compared to the professional

skier (participant 5). The amateur skier was continuously

losing time compared to the professional skier, but more

during uphill than downhill terrain.

4 Discussion

In this study, we demonstrate the possibilities of using a

multi-sensor system with time-synchronized heart rate,

multiple triaxial IMUs as well as global position data to

detect sub-technique distribution and detailed micro-pa-

rameters, such as timing between different body parts and

repeatability, amplitude and sharpness in the cyclic pattern

while XC skiing in the classical technique on snow. A

bottom-up approach based on knowledge and the most

obvious and intuitive patterns was used to develop an

algorithm based on the correlation between the angular

velocity of arms and legs to classify the three main clas-

sical sub-techniques. This approach showed excellent

sensitivity and precision of 99–100%, for both amateur and

professional skiers. Subsequently, this information was

connected to the skier’s position as well as to the corre-

sponding speed, incline and heart rate.

4.1 Development of a flexible multi-sensor system

for measuring movement in cross-country skiing

The IsenseU-Ski multi-sensor system, developed specifi-

cally for this study, uses a total of seven sensor units that

can easily be attached/detached on various parts of the

body providing movement data with sufficient quality for

subsequent analyses of detailed technique parameters in

XC skiing. A multi-sensor system has the potential to

reveal features that are quantified indicators of technique

performance. To monitor these features in deeper case

studies and thereby identify the main underlying

Table 5 Sub-technique

classification [diagonal (DIA),

double poling kick (DK), double

poling (DP)] and race

characteristics of an amateur

(participant 4) and a

professional (participant 5) skier

while skiing with the classical

technique at moderate and high

intensity in mountain terrain

Parameters Participant 4 Participant 5

Moderate intensity High intensity Moderate intensity High intensity

Racing time 13:13 11:55 11:23 09:40

Racing distance (m) 2760 2760 2790 2790

Distance climbed (m) 74.2 75.9 91.8 90.4

Mean speed (m/s) 3.5 4.1 4.1 4.8

Mean heart rate (%max) 72 84 82 89

Frequency (Hz) 0.76 0.83 0.68 0.75

Frequency DIA (Hz) 0.86 0.95 0.77 0.86

Frequency DK (Hz) 0.73 0.81 0.65 0.71

Frequency DP (Hz) 0.71 0.78 0.65 0.72

DIA (% Time) 38 35 28 22

DK (% Time) 8 9 14 20

DP (% Time) 34 43 35 37

MISC (% Time) 13 12 15 14

LS (% Time) 7 2 8 7

MISC other techniques than DIA, DK and DP, LS periods with less data, dropouts of at least one channel, %

Time percentage in time/samples

Fig. 7 Accumulated time gap (red) for the amateur skier (participant

4) compared to the professional skier (participant 5) and height

altitude while skiing the same segment in high intensity
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mechanisms may be a helpful tool as athletes strive to

improve their technique. Single sensor systems, most

commonly used in field conditions previously [10–12], can

be useful for sub-technique classification, but do not have

the same potential for technique evaluation as a multi-

sensor system. Sakurai et al. [13, 14] used four

accelerometers placed on hands and skis showing that they

were able to classify the main sub-techniques of the skating

technique, but did not study details in phase differences,

timing or technique characteristics. In addition, Myklebust

et al. [19] used a wired system with five accelerometers

(Plux: http://biosignalsplux.com) taped to the hip, poles

and ski boots to study differences in skating sub-tech-

niques. Such wired systems, like Plux or Xsens (https://

www.xsens.com), do not have limitations with regard to

the wireless data acquisition, but they constrain the loca-

tion of sensors and are more complex to attach/detach.

The advantage of a flexible system like IsenseU-Ski,

compared to commercial systems used by others, is control

of the raw data and all steps of the processing in the

embedded software. Thus, we can change parameters like

sampling rate, raw data filtering, signal processing and

calibration according to the requirements. This is highly

preferable to designing and running different protocols, and

it allows the measurement of macro parameters, e.g., sub-

technique classification, over long periods of time due to

less power consumption, as well as high-resolution

parameters over shorter times, e.g., measuring differences

in the DP technique between two different skiers. Since the

calibration, which is dependent on the position/orientation

of the sensor, can be adopted, the sensors can be shifted

and placed on other locations on the body or onto equip-

ment like skis, boots and poles. Also, other commercial

sensors (for example, oxygen saturation, non-invasive

lactate or breathing sensors) can be synchronized with our

system to get better control over the power used by the

skier. In this study, the data analyses were post-treated and

the data were available immediately after the sensor data

were uploaded. However, the information can, in principle,

be presented online as long as Wi-Fi or mobile connection

(3G, 4G) is available.

Our study has been done outdoors on snow under vari-

ous conditions, while most other studies have been per-

formed indoors in the laboratory on treadmills [19] or

outside on roller skis [12–14]. In addition, time-synchro-

nized sensor data from seven locations opens up for more

detailed analyses outside on snow than those previously

performed by others. Various features related to the cyclic

pattern, for example cycle similarity/repeatability for each

sensor, cycle peaks and cycle peak timing/phase, can be

extracted and used for evaluating technique quality in

different terrains and conditions. There is currently a lack

of information on technique quality measures when

training or competing in the field during XC skiing, and

feature extraction from our system may be used as a tool

for such purposes. When such features are validated, they

can be further used to characterize and improve the tech-

nique for both amateurs and professional skiers or to see

the effects of changes in equipment.

Validation of algorithms and systems for characterizing

XC skiing is time consuming, since it involves manually

getting ‘the proof’ from a video. Since the precision and

sensitivity of IsenseU-Ski were excellent, this system has

the potential of replacing the video proof and is thereby a

valuable tool for validating more simple single-sensor

systems and their ability to classify sub-techniques in

classical XC skiing.

4.2 Validation of sub-techniques

The implemented algorithm validly detected the three main

classic sub-techniques, DIA, DP and DK, for both amateurs

and professionals with an excellent sensitivity and preci-

sion of 99–100%. The results showed that there were only

two cycles that were misclassified in the main sub-tech-

niques (DIA, DP and DK) for the six datasets evaluated.

Participant 1 had one cycle classified as DK that had been

labelled as DP. In that case, the algorithm was using a

window of data that contained roughly two cycles. This

particular cycle was a DP cycle with a lane change that

contained a DK cycle before and after, i.e., some of the pre-

and post-samples were used in the classification of the

cycles within. This resulted in an overweight of samples

within the cycle definition classified as DK (20/28). Par-

ticipant 7 had one cycle classified as DP that was labelled

as DK. In this cycle, the test participant used a left leg kick,

but this was not seen because it was dropped out in samples

from the left leg sensor.

The algorithm only used data from the gyroscope and

features from the sensor’s axis perpendicular to the ath-

lete’s sagittal plane; see Fig. 1. This means that techniques

characterized by motion around the axis perpendicular to

the coronal plane are not detected or evaluated by the

current implementation. Thus, direction-change techniques

were not observed, detected or classified. Techniques

commonly used outside the tracks like herringbone tech-

nique and DP through turns or tracks changes with path

correcting leg work are not specifically addressed or

grouped in the implementation. Due to the algorithm def-

inition, these will typically be classified as DIA and DP.

However, the human observer would label these cycles as

MISC. This explains the confusion for the MISC class seen

in the confusion matrices in Fig. 5.

In the literature, two studies have reported on automatic

classification of classical sub-techniques [11, 13], while

Stöggl et al. [12] and Sakurai et al. [14] classified sub-
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techniques in the skating technique. The findings from

Marsland et al. [11] report an overall classification rate of

83% for DIA, DP and DK. They have, however, reported

that 39.7% of the misclassified cycles were due to incorrect

turn classification. Sakurai et al. [13] reported 98.5%

accuracy of the total classification of DIA, DP and DK on

roller skis. Since we only included and evaluated the three

main classical sub-techniques in our algorithm, the preci-

sion of the two methods cannot be directly compared. Also,

the percentage of time using the MISC class will be highly

dependent on both the skills of the skier and the terrain. A

beginner will have more slipped kicks and unidentifiable

technique cycles than a highly skilled skier. Our data

support this: in a relatively flat terrain without sharp turns,

the MISC class was down to 0%, while in competitive XC

arenas the MISC class was around 24%.

The presented classification method was based on a

bottom-up approach by manually exploring the data

selecting features based on knowledge and the most obvi-

ous and intuitive patterns. The algorithm represents an

early stage in the process of exploring and making a

detailed model technique identification and characteriza-

tion. A more general study, including multivariate analysis

and statistics for identifying the main descriptive features

from all the sensors and sensor channels, should be con-

sidered to reduce the need of sensors and classify sub-

techniques other than DP, DIA and DK. Rules for these

techniques can, however, be added in a modular way by

applying features that catch sideways leg work in a similar

way as presented for the DK technique. Treating these

techniques as separate sub-techniques is expected to

greatly improve the classification of sub-techniques now

treated as MISC, e.g., herringbone, turning techniques,

changing tracks and so on.

4.3 Sub-technique identification in different terrains

This is the first time sub-technique classification in XC

skiing has been linked to global position data on snow to

show the distribution of sub-techniques in different terrains

and at varying conditions. Sakurai et al. [13] automatically

identified the sub-technique of classical skiing, but their

study was performed on roller skis and was only linked to

the inclination and skiing velocity from the position data,

not creating a detailed distribution of sub-techniques linked

to the skier’s position from GNSS data. In addition, there

are few other reported studies using IMUs in XC skiing

[11, 12, 14], and their data has not been synchronized with

position data. Also, most other studies using IMUs in XC

skiing were performed indoors on roller skis. Our work is

the first to report the use on multiple triaxial IMU data

measured outdoors on snow in different terrains and during

varying conditions.

The link between classified sub-techniques and data

from GNSSs is important, since the choice of sub-tech-

niques and kinematics are clearly influenced by speed and

incline. Our system makes it possible to detect differences

in sub-technique distribution between high and moderate

intensity and between skiers of different performance

levels. Hence, a distribution of these sub-techniques in

skiers’ daily training and competitions would provide a

unique insight into the technical and tactical aspects that

could be used for further development of their technique

and performance.

5 Conclusion

This new system for measuring and analysing XC skiing

technique is comfortable and flexible and can wirelessly

measure a large amount of synchronized movement data

that are valuable for subsequent micro and macro analyses

of XC skiing techniques. By using our bottom-up approach,

based on knowledge and the most obvious and intuitive

patterns, we developed an algorithm where correlation

measures between IMUs on the arms and legs classified

sub-techniques. This algorithm could automatically iden-

tify the three main classical sub-techniques in XC skiing

with excellent sensitivity and a precision of 99–100%, for

both amateur and professional skiers. Our algorithm used

data from the gyroscope and features from the sensor’s axis

perpendicular to the athlete’s sagittal plane, which was

appropriate for the detection of these three techniques.

However, motion around the axis perpendicular to the

coronal plane is not detected or evaluated by the current

implementation. This might limit the detection of other

sub-techniques such as herringbone in classical skiing or

the different skating techniques. The main challenge with

the current system is related to dropouts in signals due to

limitation in wireless technology.

Uniquely, this study is the first to detect and link sub-

techniques in XC skiing to global position data and to

provide a distribution of sub-techniques in different ter-

rains. Such information gives a unique insight into the

technical and tactical aspects of skiers’ daily training and

competitions, thereby providing a valuable tool for coaches

and athletes. For example, the amount of time spent on

various sub-techniques during different types of training

(e.g., continuous low-intensity training or high-intensity

interval training) is of high interest in this connection.

Furthermore, the individual skiers’ speed or work rate

spectra in the utilization of different sub-techniques, as

well as the specification of typical transition points

between sub-techniques, would provide valuable informa-

tion. This would enable a comparison of these aspects

between training sessions performed at different track
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profiles and external conditions and competitions, and

between roller skiing versus on-snow training. Overall, this

information allows for better understanding of the training

load and technical solutions performed, which subse-

quently allows for better coaching and future planning of

training. In addition, competition analyses showing where

and why skiers lose or gain time compared to competitors

could be of high interest for athletes, coaches and even

spectators and media in the future.
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8. Holmberg HC, Lindinger S, Stöggl T, Björklund G, Müller E

(2006) Contribution of the legs to double-poling performance in

elite cross-country skiers. Med Sci Sports Exerc 38:1853–1860

9. Gopfert C, Holmberg HC, Stöggl T, Muller E, Lindinger SJ
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