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Abstract Wireless sensing solutions that provide accu-

rate long-term monitoring of walking and running gait

characteristics in a real-world environment would be an

excellent tool for sport scientist researchers and practitio-

ners. The purpose of this study was to compare the per-

formance of a body-worn wireless gyroscope-based gait

analysis application to a marker-based motion capture

system for the detection of heel-strike and toe-off and

subsequent calculation of gait parameters during walking

and running. The gait application consists of a set of

wireless inertial sensors and an adaptive algorithm for the

calculation of temporal gait parameters. Five healthy sub-

jects were asked to walk and run on a treadmill at two

different walking speeds (2 and 4 kph) and at a jogging

(8 kph) and running (12 kph) speed. Data were simulta-

neously acquired from both systems. True error, percentage

error and ICC scores indicate that the adaptive algorithm

successfully calculated strides times across all speeds.

However, results showed poor to moderate agreement for

stance and swing times. We conclude that this gait analysis

platform is valid for determining stride times in both walking

and running. This is a useful application, particularly in the

sporting arena, where long-term monitoring of running gait

characteristics outside of the laboratory is of interest.

Keywords Adaptive algorithm � Inertial sensor � Gait

events � Heel-strike � Toe-off � Stride time � Stance time �
Swing time

1 Introduction

Recent advancements in wireless sensor technology have

made continuous monitoring of physiological and biome-

chanical signals in a natural environment, a realistic pros-

pect [5]. For example, the use of body-worn inertial

sensors, such as gyroscopes, accelerometers and magne-

tometers, have become widespread in the analysis of

human movement [18]. These sensors have been used in a

variety of clinical applications [1, 20], and have been

shown to be useful in certain instances in the sporting

domain [4, 25]. Biomechanical evaluation of running has

traditionally been undertaken in specialized gait laborato-

ries where use of a treadmill enables the capture of large

amounts of movement data [7]. Setup and operation of

these costly systems can be time-consuming and training

intensive in comparison to gait analysis using on-body

sensors. In addition, athletes may not adopt their natural

gait in such a setting. Recent research has focused on the
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use of accelerometers as an extra-laboratory solution to

these challenges [11, 14, 24]. This paper proposes the use

of body-worn gyroscopes for this purpose.

The measurement device used in this study is a flexible,

multi-sensing device, consisting of a triaxial accelerometer

with options of add-on daughter boards with ECG and

EMG measurement capabilities, in addition to triaxial

gyroscope daughter boards (see Fig. 1) [2]. It is, therefore,

a potentially attractive technology for sport and exercise

scientists because of its ability to collect and store large

amounts of diverse information. The purpose of the study

was to investigate the utility of this device in gait analysis

using a novel, fully automatic gyroscope-based algorithm.

We have previously validated the performance of this

algorithm against a force plate for the identification of gait

events in normal and clinically impaired gait [8]. Further-

more, it has been implemented in the classification of fal-

lers and non-fallers using the timed-up-and-go test [9].

However, it has not as yet been applied to sustained

locomotion, particularly for running. It is possible that the

higher impacts repeatedly experienced during running,

along with the altered biomechanics, could degrade the

performance of the algorithm. Identification of gait events,

heel-strike (HS) and toe-off (TO) using inertial sensors,

during faster speeds, has proven to be problematic in the

past [16]. The algorithm presented here is novel, in that it

adaptively calculates thresholds using each subject’s indi-

vidual data to determine HS and TO times from the angular

velocity about the y-axis of a shank-mounted gyroscope (axes

illustrated in Fig. 1). It also incorporates an artifact rejection

routine which ensures more robust gait event detection, par-

ticularly important in running gait due to larger impacts.

The aim of this study was, therefore, to compare the

performance of the adaptive gyroscope-based algorithm

(referred to hereafter as AGA) to a marker-based motion

capture system for the detection of HS and TO and asso-

ciated temporal parameters during sustained walking and

running. The experiment was accordingly carried out on a

treadmill where bouts of locomotion at four different

speeds—two walking speeds, one jogging speed and one

running speed—were performed. Firstly, we calculated HS

and TO points from a marker-based motion capture system

using two different, previously reported algorithms to

successfully identify HS and TO. The first method is an

algorithm proposed by Hreljac and Marshal (HMA) [12].

This algorithm is based on the values of the vertical and

horizontal components of jerk equal to zero for HS and TO,

respectively. The authors reported absolute value errors in

measuring HS of 4.7 ms and TO of 5.6 ms during walking,

when compared to a force plate. The second method is an

algorithm proposed by Zeni et al. (ZA) [27] for HS and TO

detection in treadmill walking. It is based on the change in

the horizontal component of the velocity vector from

positive to negative. It has been shown by the authors to

determine 94 % of gait events within 16.7 ms of the force-

plate value. We then compared the results obtained using

these algorithms to the results obtained using the AGA.

Finally, we compared the algorithms to each other to assess

the differences across all three methods. We hypothesize

that the level of agreement between the temporal gait

parameters as calculated by two previously reported algo-

rithms [quantified by intraclass correlation coefficients

ICC(2,k), true error and percentage error] would not be

higher than the levels of agreement observed between those

methods and the AGA presented here.

2 Methods

2.1 Experimental setup

The gait of five normal healthy subjects (4M, 1F, age range

26–32 years) was measured on a treadmill using two gait

measurement technologies simultaneously: the SHIMMER

wireless sensor platform (SHIMMER research, Dublin,

Ireland) and the optical marker-based Cartesian Optoelec-

tronic Dynamic Anthropometer (CODA) motion analysis

system (Charnwood Dynamics Ltd, Leicestershire, UK).

The purpose of the study was explained to each subject

before they were asked to give their consent to take part in

the study. Subjects wore their own training shoes. There

were four different treadmill speeds used in the study: 2, 4,

8 and 12 kph. 2 and 4 kph were classed as walking speeds,

and 8 and 12 kph were classed as jogging and running

speeds, respectively. The subjects were given time to

Fig. 1 Inertial sensor used to calculate temporal gait parameters. The

angular velocity about the y-axis was used to identify heel-strike and

toe-off points. This relates to movement in the sagittal plane
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familiarize themselves with the treadmill and the different

speeds. Data were recorded whilst each subject performed

two trials of 20 s duration at each speed. Eight trials were

completed for each of the five subjects. Two trials were

excluded from subsequent analysis due to visibility diffi-

culties with the infrared markers. The experimental setup is

detailed graphically in Fig. 2.

2.2 Gyroscope data acquisition

Gyroscope data were acquired using two shimmer wireless

inertial sensors attached to the shank of the left and right leg.

Each sensor contained a triaxial gyroscope daughterboard,

sampling each of the three axes at 102.4 Hz. Data were

acquired from the inertial sensors using a custom-built

application, developed using the BioMOBIUS software

development environment (http://www.biomobius.org) [3].

The inertial sensors and the optical marker-based acquisition

system were synchronized using a dedicated trigger output

from the CODA system, as described previously [8].

All signal processing and data analysis were carried out

off-line using the MATLAB� [http://www.mathworks.com/

(Natick, VA, USA)] environment. A standard calibration

procedure was used to calibrate all gyroscopes [6]. Before

further processing, the raw gyroscope signal was low pass

filtered with zero-phase fifth order Butterworth filter with a

50.2 Hz corner frequency. Figure 3 shows the angular

velocity signal about the y-axis obtained from the shank-

mounted gyroscope at two different speeds: 2 and 12 kph for

one subject. The HS and TO points are indicated.

2.3 Marker-based data acquisition

Two CODA cx1 units were used to acquire data, one

placed at either side of the treadmill. Previous studies have

validated this system as a reliable platform for gait mea-

surements [17, 19]. Two infrared light-emitting diode

markers were placed on the left and right foot. Markers

were positioned on the inferior lateral aspect of the heel

and the lateral aspect of the fifth metatarsal head on the

exterior of the subjects’ training shoes. The data were

collected at a sampling rate of 200 Hz. Kinematic data

were analyzed using the CODAmotion analysis software.

Two separate, previously reported methods for the calcu-

lation of HS and TO from kinematic data were used for

comparison with the gyroscope-based method, as described

previously (HMA, ZA).

2.4 Temporal parameters

Temporal parameters of gait were derived using a previ-

ously reported algorithm (AGA) [8], which applies an

adaptive threshold approach to determine HS and TO

events from the angular velocity signal about the sensor

y-axis. Each gyroscope sensor is positioned such that its

y-axis is parallel to the floor, in a medio-lateral direction.

The HS and TO characteristic points derived using both the

gyroscope-based and optical motion capture systems were

used to calculate stride, stance and swing times. Stride was

defined as HS to HS of the same foot, stance was defined as

HS to TO of the same foot and swing was defined as TO to

HS of the same foot.

2.5 Statistical analysis

HS and TO points derived from the gyroscope using the

AGA were compared against those derived from the HMA

and the ZA. Comparisons were made for individual steps,

and the left and right leg data were merged. This yielded

1,378 HS and 1,426 TO points for comparison altogether

across all speeds. The true error was defined as the dif-

ference in time (in milliseconds) between the temporal

parameters calculated using the three methods. The per-

centage error (%) was defined as the mean difference

Fig. 2 Experimental setup

Gyroscope-based assessment of temporal gait parameters 209

http://www.biomobius.org
http://www.mathworks.com/


(expressed as a percentage of the reference) between each

method and associated reference. Temporal gait parameters

derived using the AGA were compared against those

derived from the other two marker-based algorithms using

the mean true error, the mean percentage error and ICC(2,

k). The smaller the true error and percentage error, the

greater the agreement between algorithms in calculating

temporal parameters. We interpreted the ICCs in two ways.

One way was using benchmarks suggested by Shrout and

Fleiss [23], i.e., [0.75 excellent reliability, 0.40–0.75 fair-

to-good reliability and \0.40 poor reliability. The other

was by comparing ICC values obtained when comparing

the two kinematic, optical marker-based methods against

each other (HMA vs. ZA). The logic behind this approach

implies that if ICCs observed in the AGA versus HMA and

AGA versus ZA comparisons are as good as or better than

those in HMA versus ZA, this suggests that the platform

presented here can be accepted as a suitable tool for gait

analysis.

3 Results

Observation of participants suggested that they all ran with

a heel-strike pattern. The results indicated that HS and,

therefore, stride time, as calculated by the AGA showed

good to excellent agreement with the other two methods,

while stance and swing times demonstrated poor agree-

ment. Table 1 shows the mean and standard deviation (SD)

of each temporal gait parameter as calculated by each

method.

Table 2 shows the mean true error (ms), percentage

error and ICC(2,k) for all three comparisons across all

speeds. The results for stride time (in bold) indicate that

there was \1 ms of true error between each comparison

across all walking and running speeds. Likewise, for per-

centage error, there was \1.6 % error between each com-

parison across all speeds. This indicates that the AGA can

calculate stride time with similarly high accuracy as the

other two algorithms across all speeds. In contrast, true

Fig. 3 Gyroscope data

recorded from the left shank for

subject 2. The top graph
illustrates a portion of running

at 12 kph. The bottom graph
illustrates a portion of walking

at 2 kph. Stance, stride and

swing times are marked with

dotted lines

Table 1 Mean and standard deviation (SD) of stride, stance and

swing times for each method

AGA HMA ZA

2 kph

Stride time (s) 1.68 ± 0.08 1.70 ± 0.05 1.69 ± 0.06

Stance time (s) 1.08 ± 0.07 1.20 ± 0.04 1.21 ± 0.05

Swing time (s) 0.60 ± 0.05 0.50 ± 0.03 0.47 ± 0.03

4 kph

Stride time (s) 1.23 ± 0.02 1.23 ± 0.02 1.23 ± 0.01

Stance time (s) 0.74 ± 0.03 0.84 ± 0.04 0.84 ± 0.03

Swing time (s) 0.49 ± 0.03 0.41 ± 0.01 0.41 ± 0.01

8 kph

Stride time (s) 0.81 ± 0.01 0.81 ± 0.01 0.81 ± 0.01

Stance time (s) 0.39 ± 0.03 0.44 ± 0.02 0.46 ± 0.01

Swing time (s) 0.46 ± 0.33 0.36 ± 0.01 0.34 ± 0.01

12 kph

Stride time (s) 0.77 ± 0.02 0.78 ± 0.01 0.78 ± 0.01

Stance time (s) 0.45 ± 0.51 0.39 ± 0.06 0.42 ± 0.01

Swing time (s) 0.45 ± 0.02 0.39 ± 0.01 0.36 ± 0.01

Values are expressed as mean ± SD
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error and percentage error were considerably larger for stance

and swing times in comparisons that included the AGA,

compared with the HMA versus ZA comparison. This sug-

gests that the AGA identified TO at a different instant than the

other methodologies. In terms of ICCs, all comparisons yiel-

ded excellent reliability (ICC[0.75) for stride time in walking

speeds. At 12 mph, comparisons that included the AGA

resulted in higher levels of agreement (0.83, 0.69) than the

HMA versus ZA (0.60) for stride time, while at 8 mph all

comparisons yielded moderate levels of agreement. ICCs for

stance and swing times show poor to moderate reliability for

comparisons that included the AGA at all speeds.

4 Discussion

This study sought to examine the utility of a wireless body-

worn gyroscope and an adaptive threshold-based algorithm

to calculate temporal gait parameters during sustained

locomotion across a range of speeds from walking to

running. Our hypothesis was partially supported: the level

of agreement between stride time as calculated by optical

motion capture-based algorithms, HMA and ZA, was not

higher than the levels of agreement observed between those

methods and the AGA across all four speeds. This indicates

that the gait analysis system presented here is a valid tool

for the measurement of stride time in both walking and

running.

The stride time interval is a very important phase to

accurately identify in gait analysis, as it is used to delineate

gait cycles. In the deterministic model of running proposed

by Hay and Reid [10], running performance is determined

by two biomechanical variables: stride length and stride

frequency which is a direct outcome of stride time. Stride

time variability has recently become an interesting gait

parameter in running. In a study by Nakayama et al. [21],

Table 2 Mean true error (ms), percentage error (%) and ICC(2,k) for AGA versus HMA, AGA versus ZA and HMA versus ZA at 2, 4, 8 and

12 kph

True Error (ms) Error (%) ICC(2,k)

AGA

versus

HMA

AGA

versus

ZA

HMA

versus

ZA

AGA

versus

HMA

AGA

versus

ZA

HMA

versus

ZA

AGA

versus

HMA

AGA

versus

ZA

HMA

versus

ZA

Walking

2 kph

Heel-strike 26.85 68.64 41.81 0.53 1.23 0.78

Toe-off -65.31 -56.36 22.38 1.37 1.18 0.47

Stride time -0.86 -0.31 0.29 0.97 0.83 1.09 0.96 0.97 0.94

Stance time -111.49 -132.84 -20.42 9.62 11.12 2.13 0.66 0.59 0.85

Swing time 112.93 133.39 19.44 23.86 28.64 5.16 0.51 0.46 0.74

4 kph

Heel-strike 14.62 45.74 30.87 0.35 1.06 0.76

Toe-off -63.15 -31.96 27.34 1.25 0.99 0.50

Stride time 0.29 0.15 -0.12 0.66 0.45 0.66 0.87 0.94 0.83

Stance time -99.27 -90.05 -3.49 11.83 12.39 2.01 0.33 0.33 0.72

Swing time 78.26 80.40 3.64 20.92 22.02 3.87 0.29 0.30 0.41

Running

8 kph

Heel-strike 33.43 64.17 32.17 0.81 1.50 0.79

Toe-off -32.43 -15.10 11.71 0.70 0.69 0.34

Stride time 0.14 0.29 -0.07 1.54 1.27 1.12 0.55 0.57 0.53

Stance time -66.37 -79.13 -20.83 15.22 19.78 5.91 0.32 0.26 0.32

Swing time 65.92 78.84 20.82 18.73 26.81 6.67 0.38 0.32 0.32

12 kph

Heel-strike 24.09 61.74 37.74 0.54 1.41 0.97

Toe-off -28.79 -24.20 4.48 0.81 0.74 0.20

Stride time 0.17 0.29 0.10 1.15 1.26 0.93 0.83 0.69 0.60

Stance time -63.38 -90.15 -26.90 16.73 22.36 9.08 0.30 0.29 0.24

Swing time 54.84 89.99 33.25 16.55 26.35 8.57 0.32 0.28 0.26
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the authors showed that differences in gait variability

between trained and non-trained runners, as measured by

stride-interval time series, suggested that expert runners

can reduce variability in the trained movement without

losing dynamical degrees of freedom for spatio-temporal

organization of the gait pattern. Jordan et al. [13] confirmed

the presence of long range correlations in running, again

using the stride-time interval, thus elucidating the pathways

of adaptive control of locomotion. By examining vari-

ability characteristics delineated by stride times, it may be

possible to monitor sensorimotor function of athletes.

Variability measurements in walking and running requires

large amounts of data to be collected in a steady state,

which up to now has been difficult with laboratory-based

methods. The wireless body-worn gyroscope-based gait

analysis system presented here can be considered a func-

tional, cost-effective alternative to these traditional meth-

ods, allowing an individual’s performance to be monitored

continuously in a natural environment.

The stance and swing times calculated using the AGA

yielded poor to moderate ICCs across all speeds. In a study

carried out by Lee et al. [14] where an accelerometer was

placed on the sacrum and used to extract temporal

parameters of running gait, they also found strongest

agreement between stride times and reduced agreement in

stance time, although not to the same extent as the stance

times reported here. In a study by Heiden and Burnett [11],

they established that the location of the sensor greatly

affected the ability of the sensor to accurately determine

when HS and TO occurs. They found that the closer the

sensor was to the foot, the more accurate the results. In our

study, the sensor was worn on the upper shank. The algo-

rithms applied to the marker data that were obtained from

the optical motion capture system used the acceleration or

velocity of the toe marker to calculate TO. Due to the

physical separation of our sensor from the toe, it is rea-

sonable to expect a time lag between the peak in the shank

angular velocity signal associated with TO and that of the

marker data, as the shank segment moves earlier than the

foot as the toe comes off the ground. This is substantiated

by the consistently longer swing times calculated by the

AGA across all speeds compared to the HMA and ZA

(Table 1). This problem is not encountered in the identi-

fication of HS as there is a more pronounced and syn-

chronous change in momentum at HS in both the shank and

foot segments. The angular velocity signal in Fig. 3 qual-

itatively illustrates how the TO point is clearly identifiable

across a series of steps at both the walking and running

speeds using the AGA. These observations lead us to

conclude that poor stance and swing times reported here

are not due to random errors in TO detection. Rather, they

are more likely due to the positioning of the sensor on the

upper shank, and the resulting earlier detection of TO,

compared to the TO times calculated from the toe markers.

If this is the case, then simply moving the position of the

sensor should greatly improve estimates of stance and

swing times. Further work is required to confirm this.

While previous researchers (including the authors) have

presented gyroscope-based algorithms for the calculation

of HS and TO during walking [1, 8, 22], few attempts have

been made to implement approaches for running. Previous

studies have shown that an accelerometer can be used to

analyze running gait [14, 15, 24]. An advantage of using a

gyroscope for this purpose is that the signal is less influ-

enced by gravity and by the orientation of the sensor. Yang

et al. [26] used a shank-mounted gyroscope to calculate

locomotion speeds between 5.5 and 7.8 mph, resulting in a

2.8–5.8 % underestimation of speed, approximately. The

authors stated the importance of identifying gait charac-

teristics from inertial sensor measurements as the key to

developing effective gait speed estimation methods for

walking and running. However, they do not report data for

gait event detection. To the author’s knowledge, this is the

only study that has used on-body wireless gyroscopes to

successfully calculate stride times in running speeds as

high as 12 mph.

Some limitations in the study must be highlighted. The

algorithms chosen for comparison (HMA, ZA) have pre-

viously been presented for walking. It is not known if using

these algorithms to determine gait events during running

would have affected our results. The fact that all subjects

ran with a heel-striking gait pattern may have moderated

this risk. A second limitation is that neither method used

for comparison is considered a true ‘‘gold standard’’.

However, all three algorithms used in this study have

separately been validated against a force plate for walking

in previous studies. The three-way comparison was

implemented in an effort to make the analysis more rig-

orous in light of these limitations.

We conclude that the gyroscope-based gait analysis

platform presented here is a useful tool in calculating stride

times in both walking and running. The gyroscope board

could ultimately be combined with the ECG/EMG boards for

physiological and biomechanical wireless monitoring of an

athlete. Different sensor locations need to be investigated in an

effort to improve the accuracy of stance and swing times.

Ideally, the performance of this system would be tested for a

range of running speeds using a force plate embedded in a

treadmill for a true ‘‘gold standard’’ comparison.
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