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Abstract Elite rugby union teams currently employ the

latest technology to monitor and evaluate the physical

demands of training and games on their players. Tackling

has been shown to be the most common cause of injury in

rugby union, yet current player monitoring technology does

not effectively evaluate player tackling measurements.

Currently, to evaluate measurements specific to player

tackles, a time-consuming manual analysis of player sensor

data and video footage is required. The purpose of this

work is to investigate tackle modeling techniques which

can be utilised to automatically detect player tackles and

collisions using sensing technology already being used by

elite international and club level rugby union teams. This

paper discusses issues relevant to automatic tackle analysis,

describes a technique to detect tackles using sensing data

and validates the technique by comparing automatically

detected collisions to manually labeled collisions using

data from elite club and international level players. The

results of the validation show that the system is able to

consistently identify collisions with very few false posi-

tives and false negatives, achieving a recall and precision

rating of 0.933 and 0.958, respectively. The aim is that the

automatically detected tackles can provide coaching,

medical and strength and conditioning staff with objective

tackle-specific measurements, in real time, which can be

used in injury prevention and rehabilitation strategies.

Keywords Rugby tackle � Injury prevention � Pattern

recognition

1 Introduction

Rugby union is a game composed of intermittent exercise

with a majority of low to medium intensity activity punc-

tuated by periods of maximal or high intensity exercise. It

is a full-body contact game with many injuries resulting

from extrinsic forces. The tackle is one of the most fre-

quent body contact skills in the game of rugby union and

results in the highest incidence of injury. In a preliminary

investigation as part of this work, a tackle count analysis

for international test match level rugby union was con-

ducted. Over the span of two seasons (2009–2011), a mean

tackle count per game of 138.28 was recorded for an

international team over the course of 18 test matches.

Fuller et al. [1] carried out a study over two full rugby

union seasons using 645 players and 13 club teams and

showed that tackles were the most common contact event

with an average of 221 events per match. Injuries sustained

as a result of tackles were also responsible for the greatest

loss of playing time with an average of 213 days lost per

1,000 tackles. In a study conducted by Garraway et al. [2]

tackle injuries in rugby union accounted for 56% of playing

and training days lost to the game. Takarada et al. [3]

performed an evaluation on muscle damage of 15 amateur

rugby union players after 2 matches and found positive and

significant correlations between the number of tackles and

both peak myoglobin concentration and peak creatine

kinase activity which are indirect indicators of muscle

damage. The authors concluded that rugby matches cause

serious structural damage to tissue and the extent of the

damage depends on the number and intensity of tackles. In
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all these works, missed and attempted tackles were also

included in the evaluations. Apart from its importance in

injury causation, tackling is also a key performance indi-

cator in rugby union and coaches closely monitor the

number of successful/unsuccessful tackles achieved by

each player during competitive play. It is important

therefore, from a player welfare and performance per-

spective, to seek objective methods of providing reliable

data on tackles during training and competitive play.

Since rugby union turned professional in 1995 numerous

methods of quantifying constituent elements of competitive

play have been investigated. Initial studies [4–6] utilised

manual notational and digitising time motion analysis

(TMA) systems using game video recordings. Although

TMA is useful to determine the physical demands of

locomotion, the reliability and practical use of these

methodologies in determining the physical demands in

contact events is limited due to the subjective and time-

consuming process of analysing player activity and tasks.

This is not conducive to provide a team with quick feed-

back to review previous game’s performance to prepare

and analyse for the following weeks opponents.

Recent years have witnessed the introduction of sensing

technology during training and competitive play with a

view to providing coaches and trainers with realtime

feedback relating to objective measures of player perfor-

mance in the field. Devices that incorporate global posi-

tioning systems (GPS) and accelerometer sensing

capability, typically contained within a special sports vest

worn by the player, have been deployed in rugby union to

monitor player movements. The primary benefit of these

devices is that measurements of player physical demands

can be delivered to coaches and team officials in real time,

allowing for quick evaluation and decision-making pro-

cesses. In the context of this work, we refer to real time as

the delivery of player measurements to coaches and staff

with negligible delay between the actual event and the

measurement delivery time. Recent studies have measured

the physiological demands of professional rugby union

using GPS sensing technology at both international test

match [7] and club level [8]. GPS receivers, which are in

constant signal contact with orbital satellites, track player

position over time, and have primarily been used to mea-

sure player speed and distance travelled during training

sessions of competition. The validity and reliability of GPS

technology as a measurement tool to access speed and

repeated sprint ability in team sport athletes has previously

been reported [9, 10]. However, GPS technology does not

measure details of the consequences of player actions on

the body and needs to be integrated with other sensing

modalities to provide greater granularity of movement

analysis. For example, integration of GPS and heart rate

provides information relating to the impact of player

movement on the cardiovascular system, whilst GPS and

accelerometer data can provide information relating to

physical loads experienced during movement.

Sensing devices can contain a triaxial accelerometer

which can quantify body impact by measuring the accel-

eration and deceleration experienced by the player.

Although analysis of positional movement (i.e. intensity

and duration of running bouts) can be carried out auto-

matically, analysis of physical loads during specific actions

(i.e. tackles and collisions) requires a significant amount of

time-consuming manual analysis. Tackle-specific infor-

mation could allow members of the medical staff and

strength and conditioning team to evaluate the load sus-

tained in tackles, which may result in injury, or to deter-

mine the cumulative load sustained from tackles in a single

match, a set of training sessions or even over a full season.

Currently, the only mechanism available to analyse player

tackles and collisions is a time-consuming process of

manually labeling impact data by cross referencing video

footage with the GPS and accelerometer measurements.

Owing to the lengthy time that this process takes for each

player, it is impossible to provide staff with real-time

tackle information that could be used to make decisions on

training content for individual players and the team. In

contrast, an automatic system could provide coaches and

medical staff with real-time tackle information which could

give practical guidance in training volumes and loads. An

automatic system could also monitor the number and load

sustained in tackles throughout a season (in matches and

training sessions) and flag players who are at risk to injury.

Therefore, the aim of this research is to develop a reliable

movement analysis model, utilising pattern recognition

techniques, to automatically detect player tackles and load

using wearable sensing devices. In this paper, we will

detail the algorithm developed to identify this and describe

evaluations, using data collected from elite international

and club level players, to test the reliability of the system.

2 Methods

In this section, we will detail our proposed technique to

automatically detect collisions.

2.1 GPS/accelerometer data

The tackle detection system which is described in this

paper was developed in order to take advantage of sensing

devices which are already being used by elite international

and club teams. The device used for this study is an SPI Pro

(GPSports Systems, Canberra, ACT, Australia) which is

integrated into a purpose built harness and placed between

the shoulder blades overlying the upper thoracic spine of
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the players. The device contains a GPS receiver to record

player position coordinates at a rate of 5 Hz and a three-

axis accelerometer to record player accelerations in the X,

Y and Z planes at a rate of 100 Hz.

The total magnitude of an impact at time t can be

measured by combining the individual accelerations

such that Magt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
t þ Y2

t þ Z2
t

p

: One possible method

to attempt to detect collisions would be to perform a

simple linear threshold on peak magnitude values to

remove all impact peaks below a pre-set magnitude. In

evaluations carried out on elite rugby union players,

which will be described in Sect. 2.3.1, it was noted that

the tackle with the lowest g-force (magnitude) was 5.2G.

Performing a threshold using a value of 5.1G resulted in

an average remaining set of 1,522 impacts per player, 13

of which were coded as tackles, leaving 1,509 impacts

that were not tackles. Detecting such a high average of

incorrect collisions is of course an undesired outcome

for a system which aims to automatically detect player

collisions, therefore, a more detailed analysis of the

accelerometer signals is required to accurately detect

collisions.

2.2 Extracting collision features

Finding features of the accelerometer signal which indicate

that a collision has occurred is a difficult task. Peaks in

acceleration result from a number of actions including

running, jumping, falling, tackling, rucks, mauls and roll-

ing on the ground. The goal of this work is to automatically

detect all instances that relate to a collision or a tackle and

ignore all others. A manual analysis of the acceleration

signals for a number of different tackles reveals that there

is a set of potential indicators that could be used to identify

a collision. The problem with this set of indicators is that

for a given collision only a random subset of these indi-

cators are useful due to the large variation in possible

movements which can occur during tackles. For example,

after a collision occurs, large rapid variations sometimes

occur in the acceleration signal for a period of 1–2 s, while

other times there is no noticeable change to the signal after

the tackle (see Fig. 1). These rapid variations after a tackle

could, for example, correspond to the player hitting the

ground and receiving subsequent impacts from other

players during the initial formation of a ruck.

Fig. 1 Acceleration signal with rapid variations after a tackle versus acceleration signal with small variations after a tackle
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Another potential collision indicator is the temporal

changes in the acceleration signal from the period spanning

directly before the impact to directly after the impact. For

this indicator, the temporal characteristics of the individual

acceleration planes change compared with the accelera-

tions of the impacts before the tackle (see Fig. 2). This

change in acceleration pattern could, for example, corre-

spond to the player making an evasive maneuver to escape

an incoming tackle. Similar to the variation indicator

above, this temporal change only occurs in some tackles.

Although two examples of different collision indicators

are described, many more possible collision indicators

exist. To overcome the problem of different collisions

having different collision indicators, a system which can

dynamically learn which movement features to use is

developed as part of this work. To do this, a number of

different feature sets is first extracted from each impact and

then the system automatically learns which features to use

for each of the different types of impact.

2.2.1 Peak detection

The first step in the feature extraction process is a pre-

possessing step to identify impact peaks. This is carried out

by applying a low-pass filter to the magnitude signal to

attenuate portions of the signal with high frequencies.

Using the filtered signal, we select local maxima with

amplitudes higher than a cutoff g-force (2G). Using the

local maxima frame index, the corresponding maximum

value is found in the un-filtered magnitude signal and is

marked as an impact peak. Through a process of manually

analysing the detected impact peaks, it was discovered that

applying a cutoff frequency of 0.25 Hz resulted in an

optimal signal for impact peak detection. Increasing the

cutoff frequency resulted in missing possible impact peaks

while reducing the cutoff frequency resulted in identifying

many peaks in the one impact region.

In a similar manner, the start and end of the ‘impact

region’ was then identified by finding the local minima to

the left and right of the impact peak in the filtered signal.

The corresponding values in the un-filtered magnitude

signal are then marked as the impact region start and end

points, see Fig. 3 for an example of local maxima and

impact region detection.

2.2.2 Static window features

The first feature type extracted is from a static window

around the impact peak. In this work, a static window size

of �128 frames from an impact peak is used (i.e. a window

Fig. 2 Temporal characteristics of acceleration signal changes during tackle when compared with impacts before and after tackle

Fig. 3 Peak detection. Grey
region represents a single

‘impact region’ which is

detected by finding local max

and associated local mins of the

magnitude signal. Maxima is

found by 1 finding local maxima

on filtered signal, 2
backtracking to find equivalent

maxima in un-filtered signal
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of 256 frames, or 2.56 s with the impact peak being the

centre window). For each of the channels kt 2
fMagt;Xt; Yt; Ztg the feature measurements f ðktÞ are

extracted, where kt ¼ fk½t � 128�; . . .; k½t�; . . .; k½t þ 128�g
and f ðktÞ is defined below:

f ðkÞ ¼ fMaxk;Mink; lk; rk; bk; ck;Dk; Ikg ð1Þ

where Maxk and Mink are the maximum and minimum

value of the k signal, respectively lk and rk are the mean

and variance of k respectively, bk and ck are the kurtosis

and skewness of k; respectively Dk is the rate of change of

k and Ik is the number of impacts in k:
The overall feature set for all accelerometer channels at

time t is then defined as:

Ft ¼ ff ðMagtÞ; f ðXtÞ; f ðYtÞ; f ðZtÞg ð2Þ

2.2.3 Impact region features

The impact region feature type is calculated in a similar

manner to the static window feature type described in Sect.

2.2.2. The difference in the impact region feature type, as

compared to the static window feature type, is that the

features are calculated from a window with dynamically

calculated start and end points as described in Sect. 2.2.1.

For each of the channels kt̂ 2 fMagt̂;Xt̂; Yt̂; Zt̂g the feature

measurements f ðkt̂Þ are extracted, where kt̂ ¼ fk½tStart�;
. . .; k½t�; . . .; k½tEnd�g and f ðkt̂Þ is defined in Eq. 1 above.

Similar to the static window feature above, the overall

impact region feature set for all accelerometer channels at

time t is then defined as:

Ft̂ ¼ ff ðMagt̂Þ; f ðXt̂Þ; f ðYt̂Þ; f ðZt̂Þg ð3Þ

2.2.4 Impact region signals

As well as calculating features on the impact region

acceleration signals, it is important to utilise the informa-

tion held in the temporal changes of each of the accelera-

tion signals. To do this, the raw signals are used as features.

The raw signal feature set is defined as:

St̂ ¼ fMagt̂;Xt̂; Yt̂; Zt̂g ð4Þ

2.3 Artificial intelligence models

In recent years, machine learning and pattern recognition

techniques have become increasingly important in the area

of movement evaluation [11, 12]. Pfeiffer et al. [12] pro-

pose that simple linear models are inadequate in under-

standing and explaining human behaviour or movement

and more complex, non-linear, methods of analysing

movement characteristics are needed. In recent sports

related studies, different neural network models have been

used in: the identification of swimming talent [13], the

identification of tactical patterns in handball [14],

predicting the flight of javelins [15] and analyzing inter-

limb coordination during a golf chip shot [16].

Machine learning methods are also being applied in

running and gait analysis problems. Billing et al. [17]

utilise an artificial neural network to predict the anterior

and posterior components of ground reaction forces in

running. A linear discriminant analysis model was

implemented by Lee et al. [18] to classify external load

conditions in gait patterns. In this work, a correct classi-

fication rate of 92.5% was achieved when identifying two

loaded and unloaded walking conditions. Janssen et al.

[19] implemented a support vector machine (SVM) to

diagnose fatigue in gait patterns and achieved a fatigue

recognition rate of 98.1%. Lau et al. [11] explored the use

of machine learning in identifying walking conditions of

persons after stroke with dropped foot and found that

SVMs were able to correctly classify 97.5% of walking

conditions. Lau et al. also showed that the SVM model

outperformed neural network-based methods when clas-

sifying the walking conditions.

This work proposes a combination of a number of dif-

ferent non-linear pattern recognition techniques to under-

stand and classify the complex movements of a rugby

tackle. Owing to the complexity of the different types of

tackles which can occur in a training session or a match,

the tackle detection system must have the flexibility to

configure itself to these different signals. Two machine

learning models are utilised to create a framework which

can learn the complex relationship between the source data

(acceleration signals) and the target data (decision of what

is and is not a collision). Support vector machine (SVM)

and hidden conditional random field (HCRF) models were

selected to learn the relationship between the source and

target data.

SVMs are a supervised learning method that analyze

data and recognise patterns [20]. A SVM constructs a

hyperplane, between labeled data points, to classify data

points not in the training set. Given a data set of n points

X ¼ fx1; . . .; xng; xi 2 Rp and associated labels Y ¼
fy1; . . .; yng; yi 2 fþ1;�1g; the goal is to find the maxi-

mum-margin hyperplane which separates the points with

yi ¼ 1 from points with yi ¼ �1; where þ1 and �1 denote

an impact that is and is not a tackle respectively. Owing to

the complexity of the motions which can occur in tackle

and non-tackle events, the two classes are not linearly

separable, thus a standard linear SVM would not per-

form well at creating a linear hyperplane to separate the

two classes. To overcome this, a radial basis function

(RBF) kernel is used to map the input data to a higher

dimensional space where a hyperplane can be used to do

the separation.

The second model utilised is a HCRF which is a dis-

criminative hidden state model which can find temporal

Elite level rugby union using a wearable sensing device 85



sub-structure in a set of dependent time-series signals and

can be used to classify signals independent of signal length

[21]. HCRFs are a supervised learning model which, given

a data set of n points X ¼ fx1; . . .; xng; xi 2 Rp and asso-

ciated labels Y ¼ fy1; . . .; yng; yi 2 fþ1;�1g; aim to learn

hidden temporal substructures within the input data such

that the input classes can be discriminated between.

2.3.1 Model implementation

The main goal of this work is to develop a model which

can automatically discriminate between impacts that are

collisions and impacts that are not collisions. This work

proposes a framework which can learn to automatically

discriminate between tackle and non-tackle impacts based

on an initial set of manually labeled tackles. One problem

with basing the model on manually defined labels is that

error can be introduced during the manual labeling process.

In preliminary research for this work, manual labeling

errors were mainly introduced due to an ambiguous defi-

nition of what a tackle is. A solution to this is to use an

official definition of a tackle. A tackle, according to the

rules clearly set out by the IRB 2010 Laws of the Game, is

defined as follows: ‘‘A tackle occurs when the ball carrier

is held by one or more opponents and is brought to ground.

A ball carrier who is not held is not a tackled player and a

tackle has not taken place. Opposition players who hold the

ball carrier and bring that player to ground, and who also

go to ground, are known as tacklers. Opposition players

who hold the ball carrier and do not go to ground are not

tacklers’’. It should be noted that in the remainder of this

paper, any reference to a tackle refers to the official IRB

definition of tackle. References to a collision refer to the

tackle definition used by Garraway et al. [2] where a tackle

was defined as an on or off the ball instance were one

player collided with another player. Labeling is then the

process of manually defining when tackles, according to

the IRB definition, occur while the overall goal of this

work remains to be the automatic detection of player col-

lisions (i.e. detection of tackle collisions and non-tackle

collisions). Figure 4 shows the interaction between the

three impact types: tackle, collision and non-tackle.

A problem with the unambiguous labeling process is

that non-tackle collisions are now included in the negative

training set. Training a classifier on a negative training set

which included non-tackle collisions would result in a

detection system which would not be able to detect non-

tackle collisions and would perform very poorly at

detecting tackles which are similar to any of the non-tackle

collisions in the training set. Another problem with the

training set is that the number of non-tackle impacts that

occur in a match or training session is substantially larger

than the number of tackle impacts. Thus, there is a

substantially larger variation in the type of acceleration

signals which can occur for non-tackles when compared

with tackles. To overcome both these problems, a learning

grid, which automatically learns which non-tackle features

and training samples to use, is created with the aim of

excluding the incorrectly labeled non-tackle collisions

from the learning process. A result of this learning process

is that the system will learn to detect tackles and non-tackle

collisions which have similar collision profiles to tackles.

By making the assumption that the majority of non-tackle

collisions are attempted, but unsuccessful tackles, it can be

stated that the system learns to detect tackles and attempted

tackles.

Each element of the learning grid is a classifier which

aims to learn a different aspect of the relationship between

the source and target data. More specifically, each element

of the grid aims to learn the difference between features of

a tackle and features of a related set of non-tackles which

are unique to that element (i.e. each element has a unique

set of non-tackle features). A final collision classifier is

then built by dynamically finding the optimal combination

of unique grid elements. The optimal combination of grid

elements should not include any classifiers which where

trained on a significant amount of incorrectly labeled non-

tackle collisions.

To train the classifiers for each grid element, a training

set consisting of labeled examples of tackles and non-

tackle impacts is required. In this work, the individual

classifiers in the grid are trained using data from four

players which were collected during an elite club level

rugby union match. Additional to the training data, data to

test the models is required. Test data were collected from

three additional players, which will be referred to as player

A, B and C, to test the system. Data for players A and B

were collected during an elite club level rugby union match

and data for player C were collected during an elite

international rugby union match. Testing of the system will

be described in Sect. 3. Each players’ data set was manu-

ally labeled to identify frames in which an official tackle

Fig. 4 Relationship between impact types: C tackle collision,

B-C non-tackle collision, A-C non-tackle and A-B non-collision
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occurred by cross referencing the GPS/accelerometer data

with video footage of the match. The tackles were identi-

fied by two medical staff members of an elite rugby union

team. The training data were then preprocessed to detect

each impact peak, x; using the method described in

Sect. 2.2.1. A peak feature !ðxÞ ¼ fFx;Fx̂; Sx̂g is calcu-

lated for each impact peak frame x using the techniques

discussed in Sects. 2.2.2–2.2.4, where Fx;Fx̂ and Sx̂ define

the static window features, impact region features and

impact region signals respectively.

The resulting set of peak features, !; is then split up into

two sets, according to the manually defined labels, to create

a tackle set T and a non-tackle set T where jTj ¼ n; jT j ¼
h; T ¼ f!ðx1Þ; . . .;!ðxnÞg; T ¼ f!ðx1Þ; . . .;!ðxhÞg and x

and x denotes a tackle and non-tackle frame, respectively.

The final step in preparing the training data for the

learning grid is to divide the non-tackle features into

subsets, where each subset represents a different type of non-

tackle impact. This is carried out by clustering the non-

tackle feature set, T; into K clusters using a K-means??

clustering algorithm. Although each feature !½i� 2 T has

three different feature types (!½i� ¼ fFxi;Fx̂i; Sx̂ig), we use

the second feature type !½i�ð1Þ ¼ Fx̂i as the coordinates to

calculate the clusters. We define Tk as the kth non-tackle

feature subset. Through a process of evaluating different

values of K; we found K ¼ 10 to be the number of clusters

which produced the best overall classifier. We observed

that lower values of K most likely produced an overall

weaker classifier because the non-tackles data set was not

split up enough for each classifier to represent a particular

type of non-tackle. Each classifier ended up representing

more than one non-tackle type and therefore the discrimi-

nation between tackle and non-tackle was over generalised.

In contrast to this, we observed that values of K greater

than 10 most likely produced weaker classifier due to over

training. Similar non-tackle impacts ended up being

assigned different clusters and therefore each classifier

learned to discriminate between tackles and a very specific

set of non-tackles which did not generalise well when

tested on new non-tackles.

The data set for the learning grid is organised such that

each row m represents one of the three feature types (Fx;Fx̂

or Sx̂) and each column k represents one of the K non-tackle

clusters combined with the tackle data set. More formally,

the training data for each learning grid element ðk;mÞ is

defined as Wkm ¼ fTðmÞ; TkðmÞg; where TðmÞ and TkðmÞ
represent the mth feature type in the tackle data set and

in the kth non-tackle cluster, respectively (e.g. Tð0Þ ¼
fFx̂1; . . .;Fx̂ng).

Each classifier, hkm; in the learning grid then learns a

different aspect of the overall relationship between source

and target data by learning the relationship between source

and target data in the training set Wkm: For the rows of the

learning grid m ¼ 0 and m ¼ 1; which correspond to the

feature types Fx and Fx̂ respectively, the SVM is used as

the learning model. For the row m ¼ 2; which corresponds

to the feature type Sx̂; the HCRF is used as the learning

model. As defined in Sect. 2.2.4, the features Sx̂ correspond

to the raw acceleration signals within a dynamic window.

These features are utilised in order to model the temporal

changes of the acceleration from the beginning of the

window to the end of the window. The traditional SVM

model cannot be used to model the temporal changes of the

signals, therefore an additional model is required. Over the

years, Hidden markov models have been successfully

applied in temporal sequence classification applications

including speech and gesture recognition [22, 23].

Recently, hidden conditional random fields have been

proposed as an alternative model for sequence classifica-

tion and Wang et al. [21] have shown that the HCRF model

outperforms HMMs. The HCRF is, therefore, used to

analyse the temporal movement characteristics of the

impact region signals and find temporal substructures of

these signals which could be useful in identifying tackles.

2.3.2 Model fusion

Although each element of the learning grid is configured to

represent a different aspect of the relationship between a

subset of the training data and target data, a method to

automatically learn the best combination of particular

elements is needed to produce an overall collision detection

model. This work proposes a variation of the adaptive

boosting (AdaBoost) learning algorithm as a method to

dynamically combine different classifiers. AdaBoost is an

algorithm for constructing a strong classifier as a linear

combination of weak classifiers [24]. Each weak classifier

is built such that it favors instances misclassified by other

classifiers. For each call, a distribution of weights Dt; that

indicates the importance of examples in the data set for the

classification, is updated. On each round, the weights of

each incorrectly classified example are increased so that the

next classifier focuses more on those examples. A weak

classifier is a classifier which can perform a little better

than making random guesses. In this work, each element of

the learning grid is treated as a weak classifier.

The training of the overall collision detection system

can be thought of as a two-stage process. The first stage is

the initial independent training of each weak classifier hkm

using a subset of the training features Wkm described in

Sect. 2.3.1 above. The second stage is a combination stage

where the set of classifiers are tweaked and combined to

produce a linear combination of classifiers which are

complementary to the overall task of classifying collisions.

This second stage requires an additional set of labeled
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training examples used for model validation. Data for two

additional players, collected during an elite club level

rugby union match, were used as the validation data set in

this work. Similar to the labeling process of the training

data above, each players’ data set was manually labeled to

identify frames in which a tackle occurred by cross refer-

encing the GPS/accelerometer data with video footage of

the match. Each feature type of the validation data set is

defined as w
0

m ¼ fT
0 ðmÞ; T 0 ðmÞg where T

0 ðmÞ and T 0 ðmÞ
represent the mth feature type in the tackle validation set

and non-tackle validation set respectively.

Using the set of classifiers H ¼ fh11; . . .; hK1; . . .; hKMg;
a method was developed to dynamically adjust and com-

bine the learning grid elements, using the training and

validation data, such that an optimal combination of impact

feature relationships can be learned.

The procedure for finding the best combination of

learning grid elements is an iterative process. For each

iteration 1\t� T ; the goal is to tweak all classifiers in the

grid such that each classifier puts more focus on classifying

validation data samples with larger weights Dt½i�: The

classifier which performs best at classifying the weighted

validation set, defined as eht; is removed from the learning

grid and stored in a final classifier vector. The weights Dtþ1

are then set such that validation data samples which were

incorrectly classified by eht are given a larger weight. This

process is repeated until the best remaining classifier eht

performs worse than random guessing or until there are no

classifiers left in the learning grid. We now describe this

learning process in more detail:

The initial set of weights, D1; for the validation data set

is defined as follows:

D1ðiÞ ¼
1

L0
; i ¼ 1; . . .; L

0
: ð5Þ

where L
0

is the number of impacts in the validation set.

For each iteration of the classifier selection process, all

classifiers are adjusted according to the weights Dt: The

method to adjust each classifier, such that it favors vali-

dation samples with larger weights, depends on whether the

classifier is a SVM or HCRF model. The adjustment pro-

cess for the HCRF and SVM models is described below:

HCRF adjustment. Given an impact signal, S, with an

unknown label, the HCRF model will output the proba-

bility that the signal is a tackle. If the probability is above a

set threshold, the impact signal is classified as a tackle (see

Eq. 6).

hc
kmðsÞ ¼

þ1 if hkmðSÞ[ c

�1 otherwise

(

ð6Þ

In general, a probability greater than 0.5 specifies that

the signal is a collision. To adjust the classifier, the

threshold is modified such that it favors correctly

classifying validation samples with larger weights. The

adjusted threshold value c is defined as the threshold value

which results in the minimum weighted error value. The

weighted error value is the sum of weights DtðiÞ which

have corresponding validation samples, W
0

m½i�; which were

misclassified by the model. Equation 7 describes the formal

definition of the adjusted threshold value:

c
0 ¼ argmin

0\c0 � 1

X

jW0mj

i¼0

DtðiÞ yi 6¼ hc0

kmðW
0

m½i�Þ
h i� �

NðyiÞ
ð7Þ

where NðyiÞ defines the number of training samples in the

training set w
0

m which have a label equal to the label yi:

Dividing each performance measure by NðyiÞ ensures that

equal preference is given to tackle and non-tackle impact

labels independent of any difference in size between the

tackle and non-tackle data sets.

SVM adjustment. The classification performance of an

RBF SVM is largely affected by its model parameters

which have to be set before training. The RBF parameters

include the gaussian width, r; and the regularisation

parameter, C. Valentini et al. [25] have reported that,

although an SVM can not learn very well with a low C, its

performance largely depends on the r parameter. A method

to adjust the SVM model is proposed by adaptively

adjusting the r parameter such that an SVM model which

favors samples with greater weights is produced.

Similar to calculating the threshold parameter in

the HCRF model above, the adjusted gaussian width

value, r; is defined as the value which produces the

model with the minimum weighted error value. The

weighted error value is the sum of weights DtðiÞ which

correspond to misclassified validation samples. Equa-

tion 8 describes the formal definition of the adjusted

gaussian width.

r
0 ¼ argmin

2�3\r0 � 210

X

jW0mj

i¼0

DtðiÞ yi 6¼ hr0

kmðW
0

m½i�Þ
h i� �

NðyiÞ
ð8Þ

where hr
km corresponds to a SVM model which has been

trained on the original training set Wkm using the model

parameter r: By training on the training set Wkm and cal-

culating the best r value using the validation set W
0

m; the

chances of creating an over-trained model, that can only

correctly classify impacts very similar to those it has been

trained on, is greatly reduced.

AdaBoost process. The process to adaptively select

relevant classifiers is detailed in Algorithm 1. For each

iteration t, the set of classifiers, H; is adjusted to create an

updated set of classifiers, Hs; which favor data samples in

the validation set which have larger weights DtðiÞ: The

adjusted classifier hs corresponds to either the adjusted
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HCRF model hc0 or the adjusted SVM model hr0 described

above. The best classifier, eht; for the current iteration t is

then chosen. If the performance of the best classifier is

better than random guessing, a classifier weighting factor,

at; is calculated and the validation sample weights, Dtþ1;

are then calculated.

The final collision classifier, C; is defined as the

weighted combination of the best classifiers, as defined in

Eq. 9:

C !ðxÞ½ � ¼ sign
X

T

t¼1

at
eht !ðxÞð Þ

" #

ð9Þ

where !ðxÞ is the set of impact peak features calculated for

impact peak x. If C !ðxÞ½ � is positive then impact peak x has

been classified as a collision.

3 Results

To evaluate the performance of our proposed system in

detecting collisions, the output of our system is compared

with that of manually labeled collisions. A second evalu-

ation is also conducted to quantify the performance

improvement of our learning grid approach when com-

pared with a standalone SVM or HCRF model. The

standalone models were trained using the same labeled data

set that the individual classifiers in the learning grid were

trained on. Unlike the learning grid model, the standalone

models were trained on the complete negative data set

which was not split up into K clusters. Two standalone

SVMs, which correspond to static window and impact

region features, were trained on the static window and

impact region features, from the complete training set,

respectively. The standalone HCRF was then trained on the

impact region signals from the training set.

As discussed in Sect. 2.3.1, data collected from three

additional players, denoted as player A, B and C, is used to

test the system. Each players’ data set was preprocessed to

detect impact peak regions and corresponding peak fea-

tures. A total of 1,179, 619 and 383 impacts peaks were

detected for player A, B and C, respectively. Each impact

peak was then classified by the final collision classifier,

defined in Eq. 9, as well as being classified by the three

standalone classifiers. Collisions for each player were also

manually labeled in order to create a ground truth dataset.

The manual labeling process took around 2 h to complete

for each player (i.e. match video lasts 80 min, plus

approximately 40 min of rechecking potential collisions).

The automatically detected collisions were then compared

to the set of manually labeled collisions and a set of per-

formance measures were calculated using the classification

measures defined as follows:

True positive (TP). An impact peak which was auto-

matically classified as a collision and was also manually

labeled as a collision.

False positive (FP). An impact peak which was auto-

matically classified as a collision but was not manually

labeled as a collision.

True negative (TN). An impact peak which was not

automatically detected as a collision and was also not

manually labeled as a collision.

False negative (FN). An impact peak which was not

automatically detected as a collision but was manually

labeled as a collision.

Using the overall number of TPs, FPs, TNs and FNs two

overall metrics, precision and recall, were calculated to

quantify the correctness of the detected collisions for the

three players using the different models (see Eqs. 10, 11).

The recall refers to the ability of the classifier to select

collisions from the overall data set (i.e. a high recall equals

a low number of false negatives and high number of true

positives). The precision refers to the ability of the clas-

sifier to select correct collisions from the overall data set

(i.e. a high precision equals a low number of false positives

and high number of true positives).

Precision ¼ TP

TPþ FP
ð10Þ

Recall ¼ TP

TPþ FN
ð11Þ

Table 1 details the performance measures of our

proposed system and the three standalone classifiers.

The results of the evaluation show that the automatic

collision detection system proposed in this work achieved a

recall of 0.933 and a precision of 0.958. Achieving both a

high recall and precision rating indicates that the system

performs very well at automatically detecting collisions,

correctly identifying a large number of collisions while

only misclassifying a relatively small number of impact
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peaks. A comparison of the performance values of the

standalone classifiers, when compared with our proposed

method, reveals the importance of the learning grid

approach. The best performing standalone model, the SVM

trained on static window features, achieves a relatively low

precision and recall score of 0.761 and 0.631, respectively.

These results indicate that it is difficult for a single model

to learn the complex relationship between source and target

data. It shows that the proposed approach of training a

complementary set of classifiers, where each classifier

learns a unique aspect of the tackle motions, performs

much better than attempting to train a single classifier to

learn all aspects of tackle motions.

4 Discussion

Movement sensing technology is now extensively used by

professional rugby union teams to improve physical con-

ditioning and to reduce injury risk. This technology is used

to analyse the type, frequency and duration of movement

activities performed by a player, and their relationship to

the teams respective tactics. While current implementa-

tions of this technology can be used to quantify overall

physical work and therefore be utilised to build appropriate

training programs to improve physical conditioning, the

current technology cannot be effectively used to evaluate

injury risk. A number of works have investigated the cause

of injury in rugby union and have reported that the main

cause of injury in training and match situations is player

collisions. In order for GPS/accelerometer technology to be

effectively utilised as an injury risk assessment and

performance tool, a method to automatically identify

player collisions using the GPS/accelerometer data is

needed.

Using traditional methods, the ability to identify, code

and quantify the forces in tackles is a time-consuming

process which requires a significant amount of time and

effort for video analysts. The real-time evaluation of these

tackle variables for individual players and teams would

allow for comparison within and between training and

game environments. Injury recurrence rates of 19% have

been reported in professional club rugby union. Recurring

injuries are shown to have greater severity than new inju-

ries [26]. Brooks et al. [26] recently advocated the need for

individual position-specific injury prevention programs in

rugby union. Monitoring of weekly, monthly and annual

training/game tackling measurements would allow for the

development of upper and lower limits for individual

players (i.e. the number of tackles that may place a player

at risk to injury). This could provide coaches and medical

staff with objective data to identify injury trends and risks

related to tackle events and develop training, prehabilita-

tion and conditioning programs to reduce the incidence of

injuries caused by collisions. For example, training content,

load and overall volume can be modified to individual and

team requirements. The provision of real-time feedback

measuring player tackles during a particular training/game

can therefore be controlled instantaneously once limits are

reached, potentially reducing the risk of player injury. This

could also potentially be used to control the intensity and

frequency of tackles as part of a graded progressive return

to full function following injury as part of their return to

play.

This work has addressed the need for an objective and

real-time tackle analysis system by developing a technique

to automatically classify player collisions using sensing

devices already being used by elite rugby union teams. It

has been shown that our technique performs well at

detecting collisions using data collected from two players

during an elite club level match and from one player during

an elite international level match. When compared with

manually identified collisions, the learning grid approach

achieved a recall of 0.933 and a precision of 0.958. These

measures demonstrate that the system is able to consis-

tently identify collisions with very few false positives and

false negatives. A comparison of the performance values of

the different standalone classifiers, when compared with

the learning grid approach, reveals that the learning grid

approach is more accurate at identifying collisions. The

difference in performance between the learning grid and

standalone classifiers suggests that the set of motions which

can occur during a collision are too complex and varied for

a single classifier to learn. Another cause of the poor per-

formance is that the standalone models do not account for

Table 1 Collision detection performance for players A, B and C

Model Player #TP #FP #TN #FN Precision Recall

Learning

grid

A 23 1 1,153 1 0.958 0.958

B 24 1 591 3 0.96 0.888

C 23 1 351 1 0.958 0.958

Total 70 3 2,102 5 0.958 0.933

SVM static

window

A 13 3 1,151 12 0.812 0.52

B 19 4 588 8 0.826 0.703

C 16 8 351 8 0.666 0.666

Total 48 15 2,090 28 0.761 0.631

SVM

impact

region

A 10 19 1,135 15 0.344 0.4

B 19 12 580 8 0.612 0.703

C 16 8 351 8 0.666 0.666

Total 45 39 2,066 31 0.535 0.592

HCRF

impact

region

A 8 50 1,104 17 0.137 0.32

B 7 42 550 20 0.142 0.259

C 10 53 306 14 0.158 0.416

Total 25 145 1,960 51 0.147 0.328
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errors in the manual labeling process. For example, a tra-

ditional SVM will attempt to find an optimal hyperplane

which divides all the labeled non-tackle collisions and the

tackle collisions. From our experiments, we discovered that

this learning process is unable to find an optimal hyper-

plane between the labeled data points and this results in

both non-tackle collisions being classified as tackles and

tackles being classified as non-tackle collisions.

The approach described in this paper overcomes this

problem by automatically training a linear combination of

sub-classifiers which learn different, and unique, aspects of

collision motions. Not only does this model learn different

aspects of non-tackle collisions, but it will also attempt to

discard any impacts which have potentially incorrect labels

by excluding non-tackle impacts which could in fact be

collisions. The high performance of this collision classifi-

cation technique means that coaches, medical and strength

and conditioning staff can obtain reliable and objective

collision measurements in real-time for individual players.

5 Conclusion/future work

As the physical demands placed on elite rugby union

players increases, there is a specific need for objective

measurements of player wellbeing. Tackling is one of the

most important parts of the game in rugby union but it is

also the single greatest cause of player injury. Objective

measurement of player wellbeing therefore needs to

include measurements relating to tackling but, to date, no

automated system exists to do this. The work discussed in

this paper shows that automated collision analysis is pos-

sible by utilising accelerometer signals received from a

single sensor, worn on the player, to build a tackle mod-

eling system. Using the built tackle models, accelerometer

signals received different players can be used to automat-

ically identify tackles. Furthermore, it is shown that, not

only is automated collision analysis possible, but that the

detection of the tackles can be carried out with relatively

high accuracy.

These detected collisions can be utilised to monitor

player wellbeing, develop injury management protocols

and return to play criteria for individual players and teams.

Future studies, in a larger sample size, could investigate

more detailed classification of collisions with the aim of

identifying successful or unsuccessful tackles, which

would have applications in player performance evaluation,

as well as the identification of the location on the players

bodies which received the impact. Improving the overall

precision and recall of the system could also be investi-

gated. Increasing the number of players which the system is

trained on may be one method used to improve the per-

formance. Future work will also investigate the use of the

system when measuring all 15 players on a team during a

match. This will include collaborating with coaches and

medical staff to investigate methods of fusing results from

all players to create a higher level picture of the collisions

during the match.

Although this work focuses on the automatic analysis of

rugby tackles, an interesting line of research may be to

apply our proposed technique on other domains of move-

ment classification. In particular, detecting falls in the

elderly population is an important area of research and the

application of the technique proposed in this paper may

provide a very robust fall identification system.

6 Statement of institutional review board approval

for the study protocol

The University College Dublin Human Research Ethics

Committee provided ethical approval for the study.
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9. Barbero-Álvarez JC, Coutts A, Granda J, Barbero-Álvarez V,
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(2010) Diagnosing fatigue in gait patterns by support vector

machines and self-organizing maps. Human Mov Sci 30(5):966–975

20. Chang C, Lin CJ (2011) LIBSVM: a library for support vector

machines. ACM Trans Intell Syst Technol 2(3):1–27

21. Wang SB, Quattoni A, Morency LP, Demirdjian D, Darrell T

(2006) Hidden conditional random fields for gesture recognition.

Proc IEEE Comput Vis Pattern Recognit 2:1521–1527

22. Rabiner LR (1989) A tutorial on hidden Markov models and

selected applications in speech recognition. In: Proceedings of the

IEEE, pp 257–286

23. Kelly D, Mc Donald J, Markham C (2011) Weakly supervised

training of a sign language recognition system using multiple

Instance learning density matrices. IEEE Trans Syst Man

Cybernet Part B (Cybernetics) 41(2):526–541

24. Freund Y, Schapire R (1997) A decision-theoretic generalization

of on-line learning and an application to boosting. J Comput Syst

Sci 55:119–139

25. Valentini G, Dietterich T (2004) Bias–variance analysis of sup-

port vector machines for the development of SVM-based

ensemble methods. J Mach Learn Res 5:725–775

26. Brooks JHM, Kemp SPT (2010) Injury–prevention priorities

according to playing position in professional rugby union players.

Br J Sports Med 45(10):765–775

92 D. Kelly et al.


	Automatic detection of collisions in elite level rugby union using a wearable sensing device
	Abstract
	Introduction
	Methods
	GPS/accelerometer data
	Extracting collision features
	Peak detection
	Static window features
	Impact region features
	Impact region signals

	Artificial intelligence models
	Model implementation
	Model fusion


	Results
	Discussion
	Conclusion/future work
	Statement of institutional review board approval for the study protocol
	References


