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Abstract
This article examines liquid biopsy using non-coding RNAs and extracellular vesicles in detail. Liquid biopsy is emerging 
as a prominent non-invasive diagnostic tool in the treatment of breast cancer. We will elucidate the roles of these molecules 
in early detection, monitoring treatment effectiveness, and prognostic assessment of breast cancer. Additionally, the clini-
cal significance of these molecules will be discussed. We aim to delve into the distinct characteristics of these molecules 
and their possible roles in breast cancer management, with an anticipation of their contribution to future diagnostic and 
therapeutic advancements.
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Introduction

With advances in cancer biology and treatment, identifying 
biomarkers that reflect tumor characteristics is critical, in 
addition to elucidating basic information, such as histologic 
type, when devising a treatment strategy. Hormone receptor 
expression and human epidermal growth factor receptor 2 
(HER2) overexpression are critical in navigating therapies 
against breast cancer. Traditionally, tissue biopsy has been 
the cornerstone for identifying biomarkers; however, this 
method is highly invasive [1]. Consequently, there is ongo-
ing research on the clinical implementation of liquid biopsy 
(LB), which is less invasive, allows multiple testing, and can 
address the temporal and spatial heterogeneity of tumors 
[2, 3].

LB can detect tumor cells and tumor-derived substances, 
primarily in the blood (serum and plasma). The use of LB 
has recently been extended to include all body fluids, such as 
saliva, urine, and cerebrospinal fluid. Initially, the focus of 
LB was on circulating tumor cells, cell-free DNA in blood, 
and circulating tumor DNA, which originates from tumors. 
However, with advances in research, the utility of tumor-
derived RNAs and extracellular vesicles has gained atten-
tion. Liquid biopsy strategies for breast cancer involving 
non-coding RNAs (ncRNAs) and extracellular vesicles are 
varied and have been extensively reported. Reviewing these 
approaches and considering their implications for future 
clinical strategies and prospects is essential.

This article aims to comprehensively review ncRNAs and 
extracellular vesicles as LB tools in managing breast cancer.

ncRNAs (Table 1)

ncRNAs refers to all RNAs except messenger RNA 
(mRNA), which are translated into proteins. Previously con-
sidered non-functional and labeled “junk,” ncRNAs influ-
ence various stages of gene expression, including transcrip-
tion, post-transcription, translation, and signal transduction, 
serving as functional regulatory molecules that orchestrate 
intracellular processes. Certain ncRNAs are implicated in 
cancer, functioning as oncogenes or tumor suppressors, and 
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their dysregulation may contribute to cancer development, 
progression, and metastasis [4].

ncRNAs are categorized by their base length. Notably, 
RNAs shorter than 300 nucleotides are designated small 
ncRNAs (sncRNAs), with microRNAs (miRNAs) being the 
most well-studied sncRNA in the context of cancer [5]. They 
play significant roles in the initiation, growth, and spread of 
malignant tumors [4].

miRNAs

Since the discovery of the first miRNAs in 1993, miRNAs 
and their target genes have been known to create a sophis-
ticated regulatory network integral to various biologic 
functions, including cell proliferation, differentiation, and 
apoptosis. These processes are crucial for elucidating cancer 
development and progression [6].

As of November 1, 2023, 1917 miRNAs have been 
cataloged in the miRNA database (miRBase [7]). A single 
miRNA can target multiple mRNAs and the untranslated 
regions of an mRNA can have several miRNA binding sites, 
forming a complex network that controls mRNA translation 
[7]. This complexity is reflected in the multifaceted roles of 
miRNAs, such as miR-21 and miR-140-5p, in the diagnosis, 
staging, treatment, survival, and recurrence of cancer [8]. To 
address these complexities, methodologies leveraging artifi-
cial intelligence, machine learning, deep learning, and web 
tools have been developed and employed, facilitating com-
prehensive searches of miRNA data using machine learning 
algorithms [9].

miRNAs are involved in malignant tumor dysregulation 
through gene amplification, deletion, transcriptional anoma-
lies, and epigenetic modifications. miRNAs functioning as 
cancer promoters are termed oncomiRs, while miRNAs with 
tumor-suppressive functions also exist [10]. For instance, 
miR-761 in breast cancer acts as an oncogene and is involved 
in the colony formation, migration, invasion, and promotion 

of lung metastasis. Moreover, miRNAs specific to brain, 
liver, bone, and lymph node metastases have been identi-
fied [10].

miRNAs are pivotal in regulating immune responses, 
influencing the development and differentiation of immune 
cells. They modulate interactions between immune and can-
cer cells within the tumor microenvironment (TME), affect-
ing tumor-promoting and anti-tumor immune responses [11]. 
miRNAs have promising therapeutic potential as they can 
inactivate target genes and regulate multiple genes. They 
may offer a synergistic effect by concurrently targeting a 
range of oncogenes and cancer-promoting pathways. Thera-
peutic strategies involving miRNAs include inhibiting can-
cer-promoting miRNAs and introducing tumor-suppressing 
miRNAs. These approaches could be potent therapies for 
various cancer stages and pathologic conditions [12].

Long non‑coding RNA

Among the various types of ncRNA, long ncRNAs (lncR-
NAs) are receiving significant attention in research. These 
molecules form intricate networks and interact with other 
nucleic acids and proteins. Their role in mediating intracel-
lular processes, such as transcription, post-transcriptional 
modifications, and signal transduction, considerably influ-
ences cancer survival and progression [13]. As they are more 
stable than miRNAs in body fluids, lncRNAs have emerged 
as promising targets for liquid biopsy (LB) [13].

One of the functions of lncRNAs is to act as a “sponge,” 
absorbing miRNAs and inhibiting their activity. For 
instance, lncRNA H19 exhibits a “sponge effect” on miR-
NAs, regulating epithelial-mesenchymal transition and mes-
enchymal-epithelial transition, which potentially promotes 
distant metastasis in breast cancer [14]. lncRNAs involved 
in evading anti-tumor immune responses have also been 
identified [15].

Table 1  Types of ncRNA and their roles

ncRNA Length Role Application

miRNA Approximately 22 nucleotides Regulates gene expression at the post-transcrip-
tional level, mainly by modulating mRNA 
expression

Useful in diagnosing cancer, predicting progno-
sis, and monitoring therapeutic responses

lncRNA Over 200 nucleotides Participates in chromatin modification, tran-
scriptional regulation, and mRNA stability 
regulation

Helpful in cancer diagnosis, progression assess-
ment, and evaluating therapeutic responses

circRNA Variable (ranging from hundreds 
to thousands of nucleotides)

Acts as sponges for miRNAs and engages in 
interactions with other RNA molecules and 
proteins

Aids in identifying cancer types and progres-
sion, and in monitoring therapeutic responses

siRNA Approximately 20–25 nucleotides Involved in RNA interference (RNAi), leading 
to the degradation of specific mRNAs

Expected to become significant as a therapeutic 
target or biomarker
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The lncRNA HOTAIR (HOX transcript antisense 
intergenic RNA) is particularly noteworthy and has been 
extensively studied since its association with breast cancer 
progression was first reported in 2010 [16]. Extracellular 
vesicles containing HOTAIR found in the plasma of patients 
with breast cancer are associated with high ErbB2 expres-
sion levels and an increased incidence of lymph node metas-
tasis [17]. These findings suggest potential applications for 
HOTAIR in breast cancer management.

Some lncRNAs affect the cell cycle via the CCND1/
CDK4-6 complex [13]. lncRNA TMPO-AS1 plays a sig-
nificant role in the proliferation of hormone receptor-posi-
tive breast cancer and resistance to hormone therapy [18]. 
LINC00673 is implicated in the EMT (epithelial–mesen-
chymal transition) [19] and phosphatidylinositol 3-kinase/
protein kinase B (PI3K/AKT) signaling pathway [20]. The 
growth arrest-specific transcript 5 (GAS5) regulates the 
PI3K/AKT pathway [15, 21]. These and several other lncR-
NAs are increasingly recognized for their contributions to 
the growth, progression, and metastasis of breast cancer.

Circular RNA

Circular RNAs (circRNAs) are distinguished by their cova-
lently closed continuous loop structure without a 5′ cap or 
a 3′ poly(A) tail. This configuration renders them resistant 
to exoribonuclease degradation and more stable than their 
linear RNA counterparts. Notably, the plasma half-life of 
circRNAs is > 48 h, significantly longer than the average 
10-h half-life of miRNAs, and they are abundant in body 
fluids [22, 23]. CircRNAs are implicated in regulating 
miRNA function, acting as RNA sponges, gene splicing, 
transcription, RNA-binding protein sponges, and protein/
peptide translation. The ability of circRNAs to affect the 
TME via intercellular signaling has garnered substantial 
interest, highlighting their importance in oncologic research 
[23, 24]. An analysis of circRNA expression levels in breast 
cancer tissues and patient-derived extracellular vesicles 
revealed > 1000 circRNAs with altered expression levels, 

highlighting their potential significance in the pathophysi-
ology of breast cancer [25].

Extracellular vesicles and ncRNA (Table 2)

Extracellular vesicles (EVs) can be categorized based on 
their size and origin: small EVs (50–150 nm) arise from the 
fusion of multivesicular bodies with the plasma membrane, 
large EVs (100–1000 nm) bud directly from the plasma 
membrane, and apoptotic bodies (500–5000  nm) form 
during cell death. Once regarded merely as cellular waste-
disposal mechanisms, EVs are now recognized for their 
crucial functions and are the subject of extensive research 
[26]. According to the Minimal Information for Studies of 
Extracellular Vesicles (MISEV) 2018 guidelines, EV sub-
types are classified by physical characteristics such as size, 
density, and biochemical composition [27]. EVs are found in 
all body fluids, including urine, breast milk, saliva, cerebro-
spinal fluid, and blood [28]. Both normal and tumor cells 
intensify EV secretion, particularly under stress conditions 
such as hypoxia or heat shock, with tumor cells showing a 
marked increase [29].

EVs encapsulate and convey RNA, proteins, and lipids 
between cells, transmitting biologic information within nor-
mal cellular contexts, among tumor cells, and within the 
TME [30]. Moreover, EVs package cytokines such as inter-
leukin, transforming growth factor-β (TGF-β), and tumor 
necrosis factor-α, which can modulate the physiologic and 
pathologic activities of target cells [31]. The migration and 
invasion of cancer cells are essential for metastasis. EVs 
secreted by invasive breast cancer cells can influence neigh-
boring normal epithelial cells and other breast cancer cells, 
promoting proliferation, migration, and invasion. These EV 
components may suppress apoptosis and autophagy [32]. 
They also contribute to metastatic processes such as abnor-
mal angiogenesis, the degradation of the vascular wall for 
intravascular invasion, and the alteration of the pre-meta-
static niche for targeted organ invasion [32].

Extracellular-vesicle-mediated miRNAs (EV-miRNAs) 
transport propagates drug resistance [33]. This signaling is 

Table 2  Extracellular vesicles impact on the tumor microenvironment

Function Details

Alteration of the tumor environment Extracellular vesicles, secreted by tumor cells, influence the surrounding normal cells. This alteration in 
the tumor microenvironment aids in tumor cell survival and growth

Acceleration of metastasis These extracellular vesicles are packed with various factors that contribute to metastasis. They impact cells 
in distant organs, carrying enzymes that degrade the extracellular matrix and neoangiogenic factors

Modulation of the immune response Extracellular vesicles affect the immune system by suppressing immune cell functions. This allows tumor 
cells to evade immune surveillance, continuing their survival and proliferation

Development of drug resistance Extracellular vesicles also play a role in mediating chemotherapy drug resistance. They contain pumps that 
expel drugs and factors that reduce drug effectiveness and are exchanged between drug-resistant cells
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bidirectional; breast cancer cells can transform normal fibro-
blasts into cancer-associated fibroblasts (CAFs) by transfer-
ring miRNAs via EVs [34]. Conversely, CAFs may enhance 
the proliferation of breast cancer cells by introducing miR-
NAs into the cells through EVs [35]. Hence, extracellular-
vesicle-mediated signaling is pivotal in regulating the EMT, 
proliferation and motility of malignant cells, metastatic pro-
cesses, angiogenesis stimulation, immune system evasion, 
cell growth, chemotherapy resistance, and modulation of the 
TME [28, 29, 36].

EVs containing tumor-derived material are potential LB 
candidates for disease diagnosis, prognosis, and therapeu-
tic management [29, 37]. EVs are also implicated in the 
pathogenesis of brain metastases in breast cancer. The detec-
tion of characteristic EVs-miRNAs in patients with breast 
cancer experiencing brain metastases [38] and the evidence 
that EVs can disrupt tight junctions in brain microvascular 
endothelial cells, facilitating passage across the blood–brain 
barrier, underscore their role in establishing metastasis [39].

While EVs have been primarily studied as carriers of 
tumor-derived miRNAs, they themselves can be analyzed to 
diagnose cancer using specific markers [40], including heat 
shock protein 70 (HSP70), which is abundantly expressed 
on the membranes of tumor-derived EVs. HSP70 is a bio-
marker for breast cancer diagnosis, staging, prognosis, and 
therapeutic response [41].

Using ncRNAs and extracellular vesicles 
in breast cancer therapies (Table 3)

Early diagnosis

In addition to imaging, LB is a promising approach for early 
breast cancer diagnosis. Shimomura et al. [42] demonstrated 
that combining five miRNAs (miR-1246, miR-1307-3p, 
miR-4634, miR-6861-5p, and miR-6875-5p) can accurately 
detect breast cancer, yielding a sensitivity of 97.3%, specific-
ity of 82.9%, and an overall accuracy of 89.7%. Notably, the 
sensitivity for Stage 0 and Stage I early-stage breast cancer 
is particularly high. Similar studies have been reported, as 
well as research focusing on miRNAs within exosomes [43, 
44]. Studies have also been conducted with biofluids other 
than blood, specifically focusing on urine, saliva, and tears 
[45–47]. Further, ncRNAs other than miRNAs have also 
been explored. Particularly, 2300-bp lncRNA H19 is crucial 
in genomic imprinting and is linked with various malignan-
cies, including breast cancer; it has potential as a biomarker 
in early breast cancer diagnosis [48, 49].

A 2021 meta-analysis on breast cancer diagnosis using 
circRNAs reported nine tumor-promoting (circ_0008673, 
circIFI30, circSEPT9, circAGFG1, circ_0001785, 

circ_0108942, circ_006054, circ_100219, and circ_406697) 
and twelve tumor-suppressing circRNAs (circVRK1, 
circ_0104824, circ_0043278, circ_0001073, circ_0068033, 
circAHNAK1, circTADA2A‐E6, circTADA2A‐E5/E6, 
circ_0068033, circ_103110, circ_104689, circ_104821). 
The overall sensitivity and specificity are 77% and 71%, 
respectively [50].

Yu et  al. [51] showed that three circRNAs (hsa_
circ_0001785, hsa_circ_0108942, and hsa_circ_0068033) 
aid early breast cancer diagnosis with a sensitivity of 97.1%, 
specificity of 90.2%, and AUC (area under the curve) of 
0.974. Combining the most accurate circRNA, hsa_
circ_0001785, with a tumor marker (CEA/CA15-3) resulted 
in a sensitivity of 75.8%, specificity of 90.4%, and an AUC 
of 0.839 (95% confidence interval 0.572–0.773), indicating 
high accuracy [52].

Staging and subtype evaluation

While imaging studies such as mammography, ultrasonogra-
phy, contrast-enhanced mammography, magnetic-resonance 
imaging, and contrast-enhanced computed tomography are 
traditionally utilized for staging breast cancer using the 
TNM classification, implementing LB may potentially 
enhance the precision of this approach. Hosseinpour et al. 
[53] identified miRNAs with characteristic expression levels 
corresponding to each cancer stage, from Stage I to Stage 
IV. Specifically, the expression levels of hsa-miR-592, hsa-
miR-449a, and hsa-miR-1269a are characteristic in Stage I, 
hsa-miR-3662, Hsa-miR-429, and hsa-miR-1269a in Stage 
II, hsa-miR-3662 in Stage III, and hsa-miR-429, has-miR-
23c, and hsa-miR-449a in Stage IV.

Numerous potential indicators of metastatic recurrence 
are documented. Sueta et al. [54] distinguished differences 
in serum miRNA expression between patients with meta-
static and non-metastatic breast cancer, revealing variations 
in 11 distinct miRNAs: miR-338-3p, miR-340-5p, and miR-
124-3p were significantly upregulated, and miR-29b-3p, 
miR-20b-5p, miR-17-5p, miR-130a-3p, miR-18a-5p, miR-
195-5p, miR-486-5p, and miR-93-5p were downregulated. 
Additionally, the expression of miR-93-5p during breast 
cancer diagnosis may serve as a prognostic marker for recur-
rence. lncRNA H19 is overexpressed in lymph nodes and 
distant metastases but decreases post-surgery [48]. Con-
tinuous monitoring of lncRNA expression could potentially 
forecast cancer progression.

The minimally invasive and real-time assessment of 
miRNA subtypes through LB is ongoing. Souza et al. [55] 
identified 19, 8, 10, 4, and 1 miRNAs associated with the lumi-
nal A subtype, luminal B, luminal HER2, HER2-enriched, and 
TNBC (triple negative breast cancer), respectively (see Table 3 
for details on the combination of subtypes and miRNA expres-
sion). Additionally, in patient samples from the GeparSixto 
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study, miRNAs with differing expression levels in TNBC and 
HER2-positive breast cancer were demonstrated (miR-27a, 
miR-27b, miR-335, miR-365, miR-376c, miR-382, miR-422a, 
miR-433, and miR-628) [56].

One limitation of LB-based cancer diagnostics, including 
miRNA assessment, is their lack of reproducibility. Meta-
analyses [57] have been performed to evaluate the sensitivity 
and specificity of miRNA-based diagnostics for breast can-
cer. From 658 screened studies, seven were included in the 
meta-analysis. The results indicated a combined sensitivity 
of 67%, specificity of 81%, and diagnostic odds ratio of 10.2. 
Although the sensitivity of LB was not consistently high, it 
may be beneficial in combination with mammography and 
breast ultrasound.

Prognostic biomarkers

Hormone receptor-positive HER2-negative breast cancer 
generally has a favorable prognosis. However, identifying 
the subgroups that require chemotherapy and predicting late 
recurrences remain challenging. Additionally, patients with 
TNBC have a high risk of recurrence despite perioperative 
chemotherapy. Hence, accurately predicting these outcomes 
has significant clinical relevance.

Mitobe et al. [18] demonstrated that high expression lev-
els of lncRNA TMPO-AS1, which correlates with the prolif-
eration marker, Ki67, and proliferating cell nuclear antigen, 
indicate a worse prognosis in terms of disease-free survival 
and overall survival (OS). The study findings suggest poor 
outcomes for patients with elevated TMPO-AS1 expression 
levels. Moreover, miRNAs associated with trastuzumab resist-
ance correlate with event-free survival in patients with early-
stage breast cancer and progression-free survival in those with 
metastatic recurrent breast cancer [58].

Prognostic models for breast cancer utilizing EVs have been 
recently proposed; Long et al. [59] suggested a combination of 
10 RNAs and proteins within EVs (HLA-DQB2, COL17A1, 
miR-324-5p, P2RX1, miR-99a-5p, SLC1A5, LINC01055, 
AURKA, RTCA, and C3), which provide prognostic insights. 
A test panel comprising three genome instability (GI)-related 
miRNAs (miR-421, miR-128–1, and miR-128–2) in EVs has 
shown predictive capability for cases with poor OS [60]. GI is 
a driving force behind both inter- and intra-tumor heterogene-
ity and is crucial for the survival, proliferation, and metastasis 
of cancer cells. Hence, LB assessments may enhance prognos-
tic precision, complementing traditional clinicopathological 
risk evaluations.

Biomarkers for predicting treatment 
response

Although chemotherapy resistance occurs through various 
mechanisms, miRNA-related chemotherapy resistance is 
associated with changes in mRNA expression induced by 
miRNAs [61]. These miRNAs also affect sensitivity to 
radiotherapy [62].

Response-guided therapy is an approach where adju-
vant chemotherapy is tailored according to the response 
to NACT (Neoadjuvant chemotherapy). Predicting the 
pathologic complete response (pCR) is now considered 
crucial in managing early-stage breast cancer, highlighting 
the significance of NACT and pCR as key determinants of 
chemotherapy strategies. Han et al. [63] found that miR-
1275 levels measured before and after NACT containing 
anthracyclines and taxanes could predict treatment resist-
ance. This finding was corroborated by discovering that 
changes in miR-1275 expression indicate resistance. Sev-
eral reports have indicated the potential of using miRNAs 
for efficacy prediction [64, 65].

Efforts have been made to predict the efficacy of trastu-
zumab in HER2-positive breast cancer. Data from the Neo-
ALTTO trial has identified miRNAs that may predict the 
efficacy of trastuzumab, wherein pCR can be anticipated by 
assessing changes in two specific miRNAs (ct-miR-148a-3p 
and ct-miR-374a-5p) after trastuzumab treatment [66]. 
Zhang et al. [58] reported significantly increased levels of 
miR-1246 and miR-155 in patients resistant to trastuzumab.

The potential of RNAs within EVs to predict NACT 
efficacy has been explored; Sadovska et al. [67] analyzed 
miRNA and lncRNA expression levels pre- and post-
treatment in patients with Stages II–III breast cancer and 
identified ten nucleic acids (miR-12113, miR-190b-5p, 
miR-34b-5p, miR-152-5p, miR-132-5p, lnc-PARP806, lnc-
DPH7-1, lnc-KLF17-1, lnc-ALX1-2, and SNORD111) as 
predictors of drug therapy success. In a synthesis of studies 
on miRNAs and radiosensitivity [62], ten miRNAs (miR-7, 
miR-27a, miR-155, miR-205, miR-211, miR-21, miR-33a, 
miR-139-5p, and miR-210) have been associated with radio-
sensitivity and the outcome after RT(Radio therapy), poten-
tially modulating it through key pathways such as PI3K/
AKT/mTOR, RAS/MEK/ERK, and ATM/ATR, particularly 
in the context of DNA double-strand break repair.

Therapeutic applications

Since the discovery of miRNA silencing by small inter-
fering RNAs (siRNAs) in the 1990s, numerous studies 
on RNA interference have been conducted, with great 
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expectations for its application in cancer treatment. Mitobe 
et al. [68] introduced siRNAs targeting TMPO-AS1 (siT-
MPO-AS1) into a TNBC cell line, inhibiting cell cycle 
progression and apoptosis and impairing cell migration 
and metastasis via the TGF-β pathway. Similarly, deacti-
vating the lncRNA OLBC15, implicated in tumor cell pro-
liferation, migration, and metastasis, considerably reduces 
the survival of TNBC cell lines [21]. These findings pro-
vide optimistic prospects for developing novel cancer 
therapies utilizing siRNAs. However, many challenges 
must be overcome and further advancements in research 
are anticipated [62].

Several therapeutic strategies involving EVs have been 
explored [69]. Research into a drug-delivery system that 
encases therapeutic agents, nucleic acids, and proteins 
within EVs for transport to tumor cells is in progress [70], 
along with investigations into cancer vaccines employing 
EVs from immune cells with anti-tumor properties [71].

In conclusion, this review was conducted on breast cancer 
diagnostics and treatment using ncRNAs and exosomes. It is 
strongly anticipated that the use of ncRNAs and exosomes 
will significantly advance the field of breast cancer diagnos-
tics and treatment.
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