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Abstract
Background  The aberrant expression of stromal gene signatures in breast cancer has been widely studied. However, the 
association of stromal gene signatures with tumor immunity, progression, and clinical outcomes remains lacking.
Methods  Based on eight breast tumor stroma (BTS) transcriptomics datasets, we identified differentially expressed genes 
(DEGs) between BTS and normal breast stroma. Based on the DEGs, we identified dysregulated pathways and prognostic 
hub genes, hub oncogenes, hub protein kinases, and other key marker genes associated with breast cancer. Moreover, we 
compared the enrichment levels of stromal and immune signatures between breast cancer patients with bad and good clinical 
outcomes. We also investigated the association between tumor stroma-related genes and breast cancer progression.
Results  The DEGs included 782 upregulated and 276 downregulated genes in BTS versus normal breast stroma. The path-
ways significantly associated with the DEGs included cytokine–cytokine receptor interaction, chemokine signaling, T cell 
receptor signaling, cell adhesion molecules, focal adhesion, and extracellular matrix–receptor interaction. Protein–protein 
interaction network analysis identified the stromal hub genes with prognostic value in breast cancer, including two oncogenes 
(COL1A1 and IL21R), two protein kinases encoding genes (PRKACA​ and CSK), and a growth factor encoding gene (PLAU). 
Moreover, we observed that the patients with bad clinical outcomes were less enriched in stromal and antitumor immune 
signatures (CD8 + T cells and tumor-infiltrating lymphocytes) but more enriched in tumor cells and immunosuppressive 
signatures (MDSCs and CD4 + regulatory T cells) compared with the patients with good clinical outcomes. The ratios of 
CD8 + /CD4 + regulatory T cells were lower in the patients with bad clinical outcomes. Furthermore, we identified the tumor 
stroma-related genes, including MCM4, SPECC1, IMPA2, and AGO2, which were gradually upregulated through grade I, 
II, and III breast cancers. In contrast, COL14A1, ESR1, SLIT2, IGF1, CH25H, PRR5L, ABCA6, CEP126, IGDCC4, LHFP, 
MFAP3, PCSK5, RAB37, RBMS3, SETBP1, and TSPAN11 were gradually downregulated through grade I, II, and III breast 
cancers. It suggests that the expression of these stromal genes has an association with the progression of breast cancers. These 
progression-associated genes also displayed an expression association with recurrence-free survival in breast cancer patients.
Conclusions  This study identified tumor stroma-associated biomarkers correlated with deregulated pathways, tumor immu-
nity, tumor progression, and clinical outcomes in breast cancer. Our findings provide new insights into the pathogenesis of 
breast cancer.
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Background

The tumor microenvironment (TME) consists of hetero-
geneous components including borders, blood vessels, 
lymph vessels, extracellular matrix (ECM), immune and/
or inflammatory cells, secretomes, coding or non-coding 
RNAs, small organelles, tumor cells, and surrounding asso-
ciated or regulatory cells [1]. Among the tumor-associated 
regulatory cells, stromal cells playing various crucial onco-
genic roles in the TME. In the TME, heterogeneous stromal 
cells are associated with tumor growth, invasion, progres-
sion, and metastasis [2, 3]. These tumor-associated stromal 
cells promote various dysregulated biological functions 
including extracellular matrix remodeling, cellular migra-
tion, neoangiogenesis, and evasion of immunosurveillance 
through the production of several types of onco-regulators 
including cytokines, chemokines, matrix metalloproteinases 
(MMPs), extracellular matrix (ECM), and growth factors 
[4]. It is recently demonstrated that the tumor-associated 
stromal cells playing pivotal roles in the resistance of cancer 
therapy [5]. The oncogenic intrinsic properties of stromal 
cells substantially regulated the genotype and phenotype of 
surrounding cancer cells in the TME [6].

In the breast cancer TME, tumor-associated stromal cells 
are associated with cancer initiation, development, progres-
sion, angiogenesis, metastasis, recurrence, and therapeutic 
resistance [7]. Survival of breast cancer patients is cor-
related with stromal biology including the reorganization 
of the extracellular matrix (ECM) to promote cancer inva-
sion and migration, changes in the phenotypes of stromal 
cell, variability in the stromal gene expression profiles, and 
changes in cellular signaling cascades to aid surrounding 
cancer cells [8]. Various parts of stromal compartments have 
crucial effects on breast cancer TME. The tumor-promoting 
intrinsic properties of the stroma are associated with the 
tumorigenesis of breast cancer [7]. Finak et al. reported that 
the expression of stromal gene signatures is correlated with 
the clinical outcomes of breast cancer patients [9]. Winslow 
et al. identified stromal gene signatures that are associated 
with clinical features in different types of molecular sub-
types of breast cancer [10]. Altogether, these studies provide 
the clue that the stromal cells have substantial onco-regula-
tory roles in the TME of breast cancer.

Herein, we performed comprehensive bioinformatic anal-
yses to identify molecular alterations in breast tumor stroma 
versus normal stroma. We identified differentially expressed 
genes (DEGs), hub genes from the interactions of DEGs, and 
regulatory transcription factors (TFs), and kinases and path-
ways associated with the DEGs. We also identified stromal 
genes having a significant link with recurrence-free survival 
in breast cancer patients. Moreover, we found certain tumor 
stromal genes, which were gradually dysregulated through 

the three different grades of breast cancer, and their dys-
regulation was associated with poor prognosis in patients.

Materials and methods

Data selection and pre‑processing

We systematically searched for the gene expression omnibus 
(GEO) database using keywords “breast cancer,” “stroma,” 
and “tumor stroma”. Ultimately, we identified eight data-
sets: GSE9014 (sample size n = 123) [9], GSE83591 (n = 53) 
[11], GSE31192 (n = 17) [12], GSE26910 (n = 12) [13], 
GSE10797 (n = 33) [14], GSE8977 (n = 22) [15], GSE33692 
(n = 22) [16], and GSE14548 (n = 34) [17] (Supplementary 
Table S1). We combined the eight datasets into a single data-
set (including stromal data and excluding other data) using 
the NetworkAnalyst software [18]. The ComBat method was 
utilized to remove batch effects from the eight datasets [19] 
(effects of batch removal shown in Supplementary Fig. S1). 
Each dataset was normalized by base-2 log transformation 
or quantile normalization. The combined dataset included 
240 tumor stroma and 76 normal stroma samples. We also 
downloaded the dataset of gene expression profiles (RSEM 
normalized) in TCGA breast cancer cohort (n = 1212) from 
the genomic data commons (GDC) data portal (https://​
portal.​gdc.​cancer.​gov/). We further normalized the RSEM 
gene expression values by base-2 log transformation [20]. In 
addition, we used the clinical data of a breast tumor stroma 
cohort (GSE9014) to evaluate the survival time differences 
in breast cancer patients [9].

Identification of DEGs between breast tumor stroma 
and normal stroma by a meta‑analysis

We employed the R package “limma” to identify the DEGs 
between BTS and normal stroma [21]. A meta-analysis of 
the eight datasets was performed using Cochran’s combina-
tion test [22]. The false discovery rate (FDR), calculated by 
the Benjamini–Hochberg method [23], was used to adjust 
for multiple tests. We selected the all DEGs with a threshold 
of absolute value with combined effect size (ES) > 0.41 and 
FDR < 0.05.

Pathway and functional enrichment analysis

We performed pathway enrichment analysis of the set of 
genes that were differentially expressed between BTS and 
normal stroma using the GSEA software [24]. The KEGG 
pathways [25] significantly associated with the set of genes 
upregulated and downregulated in BTS versus normal 
stroma were identified, respectively, using a threshold of 
FDR < 0.05.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Identification of TFs, protein kinases, and master 
transcriptional regulators (MTRs) that are 
significantly associated with the DEGs

To link gene expression signatures to upstream cell signal-
ing networks, we used the eXpression2Kinases algorithm 
[26] to identify the upstream TFs and kinases that regulate 
the DEGs. In the eXpression2Kinases algorithm, we used 
a threshold of hypergeometric P value ≤ 0.05 for identi-
fying upstream TFs and kinases. Besides, we utilized the 
Cytoscape plug-in iRegulon [27] to identify the MTRs for 
the upregulated and downregulated DEGs, with a threshold 
of the minimum normalized enrichment score (NES) > 3.0 
which corresponds to an approximate FDR between 3 and 
9%.

Protein–protein interactions (PPIs)

We constructed PPI networks of the DEGs using STRING 
(version v11 [28]). We input all DEGs into STRING. The 
rank of genes was identified by the Cytoscape plugin cyto-
Hubba [29]. Hub nodes were identified using a threshold of 
medium interaction score ≥ 0.40 and we selected the degree 
of interaction ≥ 25 for identifying most interacted genes in 
the PPI. We identified hub genes, protein kinases, onco-
genes, and tumor suppressor genes (TSGs) by comparing 
the hub nodes with TFs, protein kinases, oncogenes, and 
TSGs obtained from GSEA (https://​www.​gsea-​msigdb.​org/​
gsea/​index.​jsp). The online tool “Calculate and draw cus-
tom Venn diagrams” (http://​bioin​forma​tics.​psb.​ugent.​be/​
webto​ols/​Venn/) was used to identify common TF encoding 
genes, protein kinase encoding genes, oncogenes, and TSGs 
between different groups. We visualized the PPI networks 
using Cytoscape (version 3.6.1) [30].

Evaluation of immune scores, stromal scores, 
and tumor purity in stromal breast cancer subtypes

We utilized the “ESTIMATE” R package to calculate 
immune score representing the enrichment levels of immune 
cells, stromal score representing content of stromal cells, and 
tumor purity for each breast tumor sample [31] in (GSE9014 
[9]). We compared immune scores, stromal scores, and 
tumor purity between the patients without disease recur-
rence and the patients with disease recurrence. We consider 
the Wilcoxon sum rank test P value ≤ 0.05 for identifying 
significant difference between both groups.

Quantification of the enrichment levels of immune 
and stromal signatures

We used the single-sample gene-set enrichment analysis 
(ssGSEA) to quantify the enrichment scores of immune and 

stromal signatures in tumors based on the expression levels 
of their marker genes [32]. We defined the ratio of immune 
signatures in a tumor sample as the ratio of the average 
expression levels of their marker genes. The immune and 
stromal signatures analyzed included B cells, CD8 + T cells, 
CD4 + regulatory T cells, macrophages, neutrophil, natural 
killer (NK) cells, tumor-infiltrating lymphocytes (TILs), 
regulatory T cells (Tregs), cytolytic activity, T cell activa-
tion, T cell exhaustion, T follicular helper cells (Tfh), M2 
macrophages, tumor-associated macrophage (TAM), mye-
loid-derived suppressor cell (MDSC), endothelial cell, and 
cancer-associated fibroblasts (CAFs). Their marker genes 
are shown in Supplementary Table S2.

Survival analysis

We used the clinical data of a BTS cohort (GSE9014) which 
involved 53 breast cancer patients with clinical information 
available [9] (Supplementary Table S3) for survival analysis. 
We compared the recurrence-free survival (RFS) between 
breast cancer patients classified based on gene expression 
levels (expression levels > median versus expression lev-
els < median). Kaplan–Meier survival curves were used to 
show the survival time differences, and the log-rank test was 
utilized to evaluate the significance of survival time differ-
ences between both groups. We used the function “survfit” 
in the R package “survival” to perform survival analysis and 
the function “coxph” in the R package “survival” for the 
univariate and multivariable Cox regression analyses [33].

Identification of DEGs between breast cancer 
patients with different tumor grades, clinical 
outcomes, and survival prognosis

In the GSE9014 database [9], we identified the DEGs 
between the breast cancer patients without and with disease 
recurrence and the DEGs among the breast cancer patients 
with different grades (grade I, grade II, and grade III) (Stu-
dent’s t test, P < 0.05). We then identified the common genes 
between both groups of DEGs. We further analyzed the 
association of the expression of these common genes with 
the RFS of breast cancer patients. To identify the DEGs 
among the breast cancer patients with different grades, we 
utilized the R package “multcomp” [34].

Statistical and computational analysis

We used the two-tailed Student’s t test to compare two 
classes of normally distributed data, including gene expres-
sion levels and the ratios of immune signatures, and the one-
tailed Mann–Whitney U test to compare two classes of data 
that were not normally distributed, including immune scores, 

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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stromal scores, tumor purity, and ssGSEA scores. The FDR 
evaluated by the Benjamini–Hochberg method [23] was used 
to adjust for multiple tests. We used the R package “ggplot2” 
to visualize the plots. For multiple probes of a single gene, 
we averaged the expression values of all probes into a single 
value by NetworkAnalyst [18]. The online tool “Calculate 
and draw custom Venn diagrams” (http://​bioin​forma​tics.​
psb.​ugent.​be/​webto​ols/​Venn/) was used to identify common 
genes between the different groups.

Results

Identification of DEGs between BTS and normal 
stroma

We identified 1058 DEGs between BTS and normal 
stroma. Among these DEGs, 782 were upregulated (Sup-
plementary Table S4) and 276 were downregulated (Sup-
plementary Table S5) in BTS. The top 25 upregulated (the 
highest ES) genes included COL10A1, SULF1, INHBA, 
NOX4, COMP, COL11A1, RAB31, IFI30, COL8A1, CTSB, 
LRRC15, SDC1, WISP1, LAMP5, LEF1, ASPN, MSR1, 

MNDA, SLAMF8, UNC5B, SLA, TYROBP, C3AR1, 
ITGAX, and COL8A2 (Table 1). Among them, the upreg-
ulation of COL11A1 and IFI30 was associated with a 
worse prognosis in breast cancer patients (Fig. 1A–C). In 
addition, the top 25 downregulated (the lowest ES) genes 
included FIGF, SPRY2, DLK1, SFRP1, TGFBR3, HLF, 
CD36, GPC3, LIFR, CAPN6, RELN, AKR1C3, CAV1, 
PLP1, MATN2, SDPR, SOCS2, ITM2A, LDB2, SYNM, 
EGFR, NACA, NOVA1, SPTBN1, and SEMA3G in the 
BTS (Table 1). Among these genes, the downregulation 
of SPRY2, CAV1, SOCS2, ITM2A, LDB2, and NACA​ in 
BTS was associated with worse prognosis of breast cancer 
patients (Fig. 1A, D–I).

Identifications of pathways significantly associated 
with the breast tumor stromal DEGs

GSEA [24] identified 82 KEGG pathways [25] signifi-
cantly associated with the DEGs upregulated in BTS 
(Fig. 2A and Supplementary Table S6). Among them, 
the top 20 (the lowest FDR) pathways are displayed 
in Fig.  2A. These pathways were mainly involved in 
immune, stromal signatures, including cytokine–cytokine 

Table 1   Top 25 upregulated and top 25 downregulated genes in breast tumor stroma

Top 25 upregulated stromal genes Top 25 downregulated stromal genes

Entrez ID Gene symbol Combined ES Adjusted P value Entrez ID Gene symbol Combined ES Adjusted P value

1300 COL10A1 4.07 2.35E–09 2277 FIGF − 2.61 2.74E–02
23213 SULF1 3.41 0.00E+00 10253 SPRY2 − 2.41 0.00E+00
3624 INHBA 3.09 1.37E–06 8788 DLK1 − 2.40 1.41E-11
50507 NOX4 2.61 4.21E–07 6422 SFRP1 − 2.35 0.00E+00
1311 COMP 2.52 3.36E–08 7049 TGFBR3 − 2.32 1.73E–11
1301 COL11A1 2.44 1.04E–05 3131 HLF − 2.03 7.16E–05
11031 RAB31 2.38 5.18E–08 948 CD36 − 1.94 2.83E–02
10437 IFI30 2.37 4.35E–09 2719 GPC3 − 1.86 3.29E–02
1295 COL8A1 2.36 6.03E–10 3977 LIFR − 1.82 1.38E–09
1508 CTSB 2.22 1.48E–05 827 CAPN6 − 1.78 4.72E–02
131578 LRRC15 2.21 1.67E–09 5649 RELN − 1.75 1.42E–05
6382 SDC1 2.16 1.69E–04 8644 AKR1C3 − 1.71 5.79E–04
8840 WISP1 2.14 1.15E–04 857 CAV1 − 1.71 1.24E–02
24141 LAMP5 2.11 2.46E–10 5354 PLP1 − 1.69 1.75E–03
51176 LEF1 2.10 9.45E–08 4147 MATN2 − 1.66 4.19E–03
54829 ASPN 2.02 2.30E–13 8436 SDPR − 1.64 3.71E–05
4481 MSR1 2.01 3.18E–11 8835 SOCS2 − 1.63 9.21E–04
4332 MNDA 2.00 5.89E–06 9452 ITM2A − 1.62 1.83E–04
56833 SLAMF8 1.97 4.34E–07 9079 LDB2 − 1.60 3.85E–02
219699 UNC5B 1.97 1.43E–06 23336 SYNM − 1.60 8.76E–07
6503 SLA 1.92 2.27E–07 1956 EGFR − 1.56 1.88E–04
7305 TYROBP 1.90 8.43E–12 4666 NACA​ − 1.54 2.35E–09
719 C3AR1 1.90 3.77E–10 4857 NOVA1 − 1.53 4.56E–02
3687 ITGAX 1.89 5.01E–09 6711 SPTBN1 − 1.52 2.28E–05

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/


545Breast Cancer (2022) 29:541–561	

1 3

receptor interaction, Toll-like receptor signaling, antigen 
processing and presentation, chemokine signaling, T cell 
receptor signaling, B cell receptor signaling, natural killer 
cell-mediated cytotoxicity, leukocyte transendothelial 
migration, hematopoietic cell lineage, complement and 

coagulation cascades, Fc gamma R-mediated phagocy-
tosis, Fc epsilon RI signaling pathway, NOD-like recep-
tor signaling, Jak-STAT signaling pathway, cytosolic 
DNA-sensing, RIG-I-like receptor signaling, cell adhe-
sion molecules (CAMs), focal adhesion, ECM–receptor 

Fig. 1   Expression levels of eight prognostic genes in BTS and their 
associations with survival prognosis in breast cancer. A Expression 
of eight prognostic genes in BTS versus normal stroma. We investi-
gated the survival of top 25 upregulated and top 25 downregulated 

genes. The upregulation of COL11A1 and IFI30 (upregulated in BTS) 
is associated with a worse prognosis (B, C). The downregulation of 
SPRY2, CAV1, SOCS2, ITM2A, LDB2, and NACA​ (downregulated in 
BTS) is associated with a worse prognosis (D–I)
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Fig. 2   KEGG pathways are 
significantly associated with 
the upregulated and down-
regulated genes in BTS versus 
normal stroma identified by 
GSEA [24]. A Top 20 pathways 
significantly associated with the 
DEGs upregulated in BTS. B 
Top 20 pathways significantly 
associated with the DEGs 
downregulated in BTS. FDR: 
false discovery rate
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interaction, regulation of actin cytoskeleton, adherens 
junction, tight junction, and gap junction. Moreover, 
many cancer-associated pathways were included in the 
82 pathways, including MAPK signaling, TGF-beta, 
VEGF signaling, calcium signaling, mTOR signaling, 
and apoptosis. Besides, we identified 67 KEGG path-
ways [25] associated with the DEGs downregulated in 
BTS. The top 20 (the lowest FDR) pathways are displayed 
in Fig. 2B and Supplementary Table S7. The downregu-
lated pathways are mainly associated with metabolism 
(propanoate metabolism, tryptophan metabolism, valine, 
leucine and isoleucine degradation, lysine degradation, 
beta-alanine metabolism, limonene and pinene degrada-
tion, arachidonic acid metabolism, butanoate metabolism, 
fatty acid metabolism, histidine metabolism, metabolism 
of xenobiotics by cytochrome P450, drug metabolism-
cytochrome P450, pyruvate metabolism, glycerolipid 
metabolism, arginine and proline metabolism, steroid 
hormone biosynthesis, retinol metabolism, ascorbate and 
aldarate metabolism, linoleic acid metabolism, glycine, 
serine and threonine metabolism, alanine, aspartate and 
glutamate metabolism, ether lipid metabolism, glycolysis/
gluconeogenesis, etc.), cancers (pathways in cancer, small 
cell lung cancer, endometrial cancer, non-small cell lung 
cancer, bladder cancer, thyroid cancer, pancreatic cancer, 
renal cell carcinoma, prostate cancer, acute myeloid leu-
kemia, colorectal cancer, etc.), and cellular signaling and 
development (ribosome, PPAR signaling pathway, neu-
rotrophin signaling pathway, insulin signaling pathway, 
spliceosome, p53 signaling pathway, Wnt signaling path-
way, etc.). Altogether, our pathway analysis underlines 
that the stromal gene signatures are associated with the 
alteration of pathways that regulating tumor immunity, 
cellular signaling, metabolism, and cancers.

Upstream TFs, kinases, and MTRs regulating 
the DEGs

The eXpression2Kinases algorithm identified 20 
upstream TFs playing a significant regulatory role toward 
the DEGs (Supplementary Table S8). These TFs included 
IRF8, NFE2L2, TP63, RUNX1, SPI1, SMAD4, TRIM28, 
GATA2, AR, SUZ12, EGR1, KLF4, GATA1, RELA, 
TCF3, PPARD, RCOR1, TP53, SALL4, and NANOG. 
Interestingly, among the 20 upstream TFs, the genes 
encoding IRF8, PPARD, and RUNX1 were significantly 
upregulated in BTS and the gene encoding KLF4 was 
significantly downregulated in BTS (Supplementary Fig. 
S2A). IRF8 is a tumor suppressor involved in the regu-
lation of the signaling of breast cancer cells [35]. Dys-
regulation of NFE2L2 is correlated with poor outcomes 
in breast cancer patients [36]. In the harsh metabolic 
conditions of the TME, PPARD promotes the survival 

of breast cancer cells [37]. In triple-negative breast can-
cer (TNBC), the expression of RUNX1 is correlated with 
the poor survival prognosis [38]. One of the isoforms 
of KLF4 is associated with the carcinogenesis of breast 
cancer [39]. Besides, we identified 116 upstream protein 
kinases, including CDK1, LYN, CSNK2A1, MAPK3, 
RPS6KA1, PRKACA, and TGFBR2 (Supplementary 
Table  S9). Among these kinases, the genes encoding 
DYRK2, LYN, ERBB2, RPS6KA1, and PRKACA​ were 
significantly upregulated in BTS and the gene encod-
ing PKD1, RPS6KA5, EGFR, and FOXO3 were signifi-
cantly downregulated in BTS (Supplementary Fig. S2B). 
CSNK2A1 expression levels are significantly higher in a 
basal subtype of breast cancer [40].

MAPKs are associated with the downstream onco-
genic signaling pathways in breast tumorigenesis [41]. 
Furthermore, we identified 13 MTRs, including IRF8, 
ETV7, STAT2, SPI1, IRF1, RELA, STAT1, IKZF1, 
RUNX1, IRF7, NFKB1, NKX3-2, and BATF, which were 
involved in the regulation of the genes upregulated in 
BTS (Fig. 3A and Supplementary Table S10). We also 
identified 11 MTRs targeting the genes downregulated in 
BTS, including HLF, FOXP2, JUND, NANOS1, RBBP9, 
FOS, TAF1, FOSL1, JUN, HAND1, and FOXJ3 (Fig. 3B 
and Supplementary Table S10). Interestingly, the genes 
encoding the MTRs RUNX1, IRF7, ETV7, STAT2, and 
IRF8 were upregulated in BTS (Fig. 3A), and the genes 
encoding the MTRs HLF and FOXJ3 were downregulated 
in BTS (Fig. 3B). Altogether, these results indicate that a 
number of TFs and protein kinases play significant roles 
in regulating the breast cancer stromal gene signatures 
and are associated with the pathogenesis of breast cancer.

Identification of prognostic hub genes in breast 
tumor stroma

To identify the hub genes of the DEGs in BTS, we input 
all the DEGs into the STRING tool [28]. We identified 233 
hub genes (degree ≥ 25), including 194 upregulated and 39 
downregulated genes in BTS (Supplementary Table S11 
and Supplementary Fig. S3). Finally, we displayed the top 
50 hub genes (EGFR, TLR4, ITGAM, IL10, TLR2, CD86, 
IL1B, MMP9, ITGB2, TLR8, TLR7, ITGAX, MYC, CXCL10, 
TYROBP, CXCR4, IRF8, TLR3, CASP3, CTLA4, CSF1R, 
PLEK, LCP2, CD80, C3AR1, MYD88, IL10RA, PIK3R1, 
CYBB, SYK, SELL, FCGR2A, CXCL9, CCR7, CCR1, LYN, 
IRF7, CXCL1, PTGS2, RAC2, ERBB2, FCER1G, ISG15, 
HCK, CXCR3, CD4, IL7, FCGR2B, COL1A1, and OASL) 
in Fig. 4A. We found that the upregulation of hub genes 
MMP9, FCER1G, CD86, ITGAM, TLR2, and COL1A1 
(upregulated DEGs in BTS) was significantly associated 
with poor RFS (Fig. 5A–F). These data indicate that the 
dysregulation of breast cancer stromal hub genes is likely 
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to be associated with poor prognosis in breast cancer 
patients.

Hub oncogenes, protein kinases encoding genes, 
and cytokines and growth factor‑encoding genes 
are associated with poor survival prognosis in BTS

We identified the hub genes belonging to four gene 
families, including oncogenes, genes encoding protein 
kinases, genes encoding cytokines and growth factors, 
and tumor suppressor genes (Supplementary Fig. S3). We 
found 17 oncogenic hub genes, including CD74, CIITA, 

CLTC, COL1A1, ERBB2, FCGR2B, IL21R, MUC1, 
SYK (upregulated in BTS), and EGFR, EPS15, FOXO3, 
MET, MYC, PPARG, RPL22, ZBTB16 (downregulated in 
BTS). Also, we found 11 protein kinases encoding genes 
(CSF1R, CSK, EIF2AK2, HCK, LYN, PRKACA, RNA-
SEL, SYK, and ERBB2 (upregulated in BTS) and EGFR 
and MET (downregulated in BTS), 20 cytokines and 
growth factors encoding genes (CCL11, CCL7, CMTM6, 
CXCL10, CXCL11, CXCL9, IL10, IL16, IL1B, IL1RN, 
IL7, OSM, PLAU, PMCH, and TNFSF4 (upregulated in 
BTS) and CAT, CCL27, CXCL1, CXCL2, and CXCL3 

Fig. 3   Regulatory networks of the master transcriptional regulators 
(MTRs) and their targeted differentially expressed genes (DEGs) 
between BTS and normal stroma. A Regulatory network of the MTRs 
and their targeted upregulated genes in BTS. B Regulatory network 

of the MTRs and their targeted downregulated genes in BTS. In the 
center, green color octagon indicates MTRs, and purple color oval 
indicates DEGs
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(downregulated in BTS), and 2 tumor suppressors genes 
(upregulated TNFAIP3 and downregulated PIK3R1).

We investigated the association of these hub genes 
with survival prognosis. Besides, we investigated the 
specific gene-family-centric PPI of prognostic hub 
oncogenes (IL21R and COL1A1) (Fig. 4B), hub protein 
kinase genes (PRKACA​ and CSK) (Fig. 4C), and hub 
cytokines-and-growth-factor genes (PLAU) (Fig.  4D) 
with other stromal hub genes. We revealed that these 
families of genes were interacted with other stromal hub 
genes (Fig. 4B–D), indicating their regulatory roles in the 
TME of breast cancer. Survival analysis revealed that the 
upregulation of two oncogenes (IL21R and COL1A1), two 
protein kinase genes (PRKACA​ and CSK), and a cytokine 
and growth factor gene (PLAU) is associated with shorter 
RFS in breast cancer patients (Fig. 5F–J). Altogether, 
these results indicate that the dysregulation of many 
tumor stroma-derived gene signatures is associated with 
unfavorable clinical outcomes in breast cancer patients.

Comparisons of immune and stromal signatures 
between breast cancer patients with good 
and bad clinical outcomes

We found that stromal scores were lower in the breast 
cancer patients with bad clinical outcomes (Wilcoxon 
sum rank test, P ≤ 0.05) (Fig. 6A). In contrast, tumor 
purity was higher in breast cancer patients with bad clin-
ical outcomes (Fig. 6A). Interestingly, the enrichment 
scores (ssGSEA scores) of CD8 + T cells (P = 0.007), 
TILs (P = 0.03), and endothelial cells (P = 0.05) were 
lower in breast cancer patients with bad clinical outcomes 
than in those with good clinical outcomes (Fig. 6B). In 
contrast, MDSCs (P = 0.05) is more highly enriched in 
the breast cancer patients with bad clinical outcomes 
(Fig. 6B). The ratios of CD8 + /CD4 + regulatory T cells 
were lower in the breast cancer patients with bad clini-
cal outcomes (Student’s t test, P = 4.5 × 10–05) (Fig. 6C). 

Fig. 3   (continued)
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These results indicate that increased immune-promoting 
signatures are associated with better prognosis in breast 
cancer, while increased immunosuppressive signatures 
are associated with worse prognosis. This is consistent 
with the findings of previous studies [42–46].

Stromal gene signatures significantly altered 
with the grades, clinical outcomes, and survival 
prognosis

We found 1955 DEGs among three grades (grade I, II, and 
III) of breast cancers (F-test, P < 0.05) (Fig. 7 and Supple-
mentary Table S12). Besides, we found 1471 DEGs between 
the good clinical outcome (patients without disease recur-
rence) and bad clinical outcome (patients with disease 
recurrence) groups (Student’s t test, P < 0.05) (Fig. 7 and 
Supplementary Table S13). There were 124 common genes 
between both groups of DEGs (Fig. 7 and Supplementary 

Table S14). Furthermore, we found 20 of the 124 genes 
(MCM4, SPECC1, IMPA2, AGO2, COL14A1, ESR1, SLIT2, 
IGF1, CH25H, PRR5L, ABCA6, CEP126, IGDCC4, LHFP, 
MFAP3, PCSK5, RAB37, RBMS3, SETBP1, and TSPAN11) 
whose expression had a significant association with RFS 
prognosis (Fig. 7 and Supplementary Table S14).

MCM4, SPECC1, IMPA2, and AGO2 were gradually 
upregulated through grade I, II, and III of breast cancers, and 
their elevated expression was associated with the worse clini-
cal outcomes RFS (Fig. 8A). In contrast, COL14A1, ESR1, 
SLIT2, IGF1, CH25H, PRR5L, ABCA6, CEP126, IGDCC4, 
LHFP, MFAP3, PCSK5, RAB37, RBMS3, SETBP1, and 
TSPAN11 were gradually downregulated through grade I, II, 
and III of breast cancers and their reduced expression were 
associated with worse clinical outcomes and RFS (4 genes are 
shown in Fig. 8B and 12 genes in Supplementary Fig. S4).

The univariate Cox regression analyses identified 23 
genes (out of the 38 prognostic genes) were significant 

Fig. 4   Protein–protein interactions of prognostic hub genes in BTS. 
A Protein–protein interaction network of top 50 hub genes. The hub 
genes in yellow are associated with poor prognosis in breast cancer. 
B Two prognostic hub oncogenes (IL21R and COL1A1) interact with 

other hub genes. C Interactions of two prognostic protein kinases 
encoding genes (PRKACA​ and CSK) with other hub genes. D Prog-
nostic growth factor encoding gene PLAU is a hub gene that interacts 
with other stromal hub genes
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prognostic factors. These genes included COL11A1, CAV1, 
ITM2A, LDB2, CD86, TLR2, COL1A1, SPECC1, IMPA2, 
AGO2, COL14A1, SLIT2, IGF1, CH25H, PRR5L, ABCA6, 

CEP126, IGDCC4, LHFP, MFAP3, RAB37, SETBP1, and 
TSPAN11 (Supplementary Fig. S5). We further performed 
the multivariate Cox regression analysis with the expression 

Fig. 5   Protein–protein interaction network analysis identifies prog-
nostic hub genes in BTS. A–F High expression of the top hub genes 
is associated with poor prognosis in breast cancer. F–G The elevated 
expression of oncogenic hub genes COL1A1 and IL21R is associated 
with poor prognosis in breast cancer. H–I The elevated expression 

of protein kinases encoding genes (PRKACA​ and CSK) is correlated 
with poor prognosis in breast cancer. J The elevated expression of 
growth factor encoding gene PLAU is linked with poor prognosis in 
breast cancer. The survival analysis is performed in the breast cancer 
dataset GSE9014
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Fig. 6   Comparisons of immune 
and stromal signatures between 
breast cancer patients with good 
and bad clinical outcomes. A 
Comparisons of stromal scores 
and tumor purity between the 
bad and good clinical outcome 
groups of breast cancer patients. 
B The enrichment scores 
(ssGSEA scores) of CD8 + T 
cells, TILs, and endothelial cells 
are lower in the bad clinical 
outcome group. The enrichment 
scores of MDSCs is higher in 
the bad clinical outcome. C The 
ratios of CD8 + /CD4 + regula-
tory T cells are lower in the bad 
clinical outcome group
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levels of the 23 genes, breast cancer subtypes (including 
Her2 status, ER status, and PR status), and age being the 
predictor variables. We found that 19 prognostic genes 
(COL11A1, ITM2A, LDB2, CD86, TLR2, COL1A1, IMPA2, 
AGO2, COL14A1, SLIT2, CH25H, PRR5L, CEP126, 
IGDCC4, LHFP, MFAP3, RAB37, SETBP1, and TSPAN11), 
the three subtypes, and age were significant prognostic fac-
tors (Supplementary Fig. S6).

Analysis of the dysregulated stromal genes in TCGA 
BRCA cohort

We further analyzed the expression of the stromal prog-
nostic upregulated and downregulated genes in the TCGA 
breast invasive carcinoma (BRCA) cohort. Interestingly, 
we found that the stromal upregulated prognostic genes 
COL11A1 and IFI30 were significantly upregulated in 
BRCA than in healthy tissue (Fig. 9A). Also, the down-
regulated stromal prognostic genes SPRY2, CAV1, SOCS2, 

ITM2A, LDB2, and NACA​ were significantly down-
regulated in BRCA (Fig. 9A). Moreover, we compared 
the expression levels of stromal prognostic hub genes 
(COL1A1, MMP9, CD86, FCER1G, ITGAM, and TLR2), 
oncogenes (COL1A1 and IL21R), protein kinases encoding 
genes (PRKACA​ and CSK), and chemokines and growth 
factors encoding gene (PLAU) between TCGA BRCA 
and healthy tissue. We found that the expression levels of 
COL1A1, MMP9, CD86, FCER1G, ITGAM, IL21R, CSK, 
and PLAU genes were consistently upregulated in BRCA 
(Fig. 9B). Only PRKACA​ and TLR2 were slightly down-
regulated in BRCA. Finally, we investigated the expression 
levels of prognostic stromal genes whose expression levels 
gradually altered among the three grades of tumor stroma 
and also altered between breast cancer patients with bad 
and good clinical outcomes. Interestingly, we found that 
MCM4, SPECC1, and AGO2 genes were upregulated, and 
ABCA6, CEP126, CH25H, COL14A1, IGDCC4, IGF1, 
MFAP3, PCSK5, RBMS3, SLIT2, TSPAN11, LHFP, and 

Fig. 7   20 genes which are significantly and gradually upregulated 
(MCM4, SPECC1, IMPA2, and AGO2) or downregulated (COL14A1, 
ESR1, SLIT2, IGF1, CH25H, PRR5L, ABCA6, CEP126, IGDCC4, 

LHFP, MFAP3, PCSK5, RAB37, RBMS3, SETBP1, and TSPAN11) 
through grade I, II, and III of breast cancers, deregulated in the bad 
clinical outcome group, and associated with poorer survival prognosis
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Fig. 8   Stromal genes signifi-
cantly altered among the grades 
(grade I, II, and III), clinical 
outcomes, and their associa-
tion with survival prognosis. A 
Gradually upregulated genes 
among three grades and their 
association with bad clinical 
outcome. B Gradually down-
regulated genes among three 
grades and their association 
with bad clinical outcome (Only 
4 genes are shown)
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Fig. 8   (continued)
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SETBP1 were downregulated in BRCA (Table 2). These 
results confirmed that the stromal transcriptomes contrib-
ute to breast tissue carcinogenesis.

Discussion

Since stromal cells control various types of tumor pheno-
types, including tumor growth, invasion, progression, metas-
tasis, and angiogenesis [2, 3], identification of novel molecu-
lar features in BTS is significant. In this study, by analyzing 
a combined dataset composed of eight breast tumor stromal 
transcriptomic datasets, we identified the deregulated stro-
mal gene signatures and their associated cellular signaling 
pathways and PPIs, as well as their associations with antitu-
mor immunosuppression, poor clinical outcomes, and tumor 
progression in breast cancer (Fig. 10). Our meta-analysis 
identified 782 upregulated and 276 downregulated stromal 
genes in BTS versus normal stroma. The previous studies 
have shown that COL10A1, COL11A1, NOX4, and COL8A1 
were upregulated in the TME of breast cancer, and their 
upregulation was associated with the progression of aggres-
sive breast cancers [17]. Overexpression of COL11A1 is 
associated with worse clinical outcomes, including overall 
survival and disease-free survival [47]. SULF1, elevated 
with the second-highest ES in the BTS, is associated with 
the remodeling of extracellular matrix during the progres-
sion of breast cancer [48]. Elevated expression of COMP was 
found in the epithelial and stromal cells of invasive breast 
carcinomas [49]. Another bioinformatics study revealed 
that IFI30, INHBA, and CTSB were upregulated in breast 
cancer [50]. A previous study showed that FIGF, SFRP1, 
and SPRY2 were consistently downregulated in multifocal 
invasive lobular breast tumors [51]. In breast cancer reactive 
stroma, ITM2A downregulation is associated with shorter 
survival of patients [13]. Matrix-producing stromal LDB2 
has prognostic value in breast cancer [52]. Among the down-
regulated genes in BTS, many have been associated with 
breast cancer onset, invasion, progression, and metastasis 
[53–58]. It was also reported that the expression levels of 
DLK1 and CD36 were downregulated in breast cancer [53]. 
The type III TGF-beta receptor (TGFBR3), a tumor suppres-
sor gene, is associated with breast cancer progression and 

metastasis [54]. Silencing of GPC3 expression is associated 
with the growth, invasion, and metastasis of MCF-7 human 
breast cancer cells [55]. Altogether, many of the aberrantly 
expressed genes in BTS have been associated with breast 
cancer pathogenesis and carcinogenesis.

Based on these dysregulated genes, we identified 
pathways upregulated and downregulated in BTS. The 
upregulated pathways were mainly involved in immune 
signatures, stromal signatures, oncogenic signatures, and 
metabolism. Many of these pathways were involved in 
cancer initiation, progression, angiogenesis, and metas-
tasis in breast cancer [59–61]. For example, the group of 
cytokines and their receptors are associated with breast 
cancer growth and progression [59]. The ECM–receptor 
interaction pathway, a major stromal signaling pathway, is 
involved in breast cancer development [62]. The downreg-
ulated pathways were mainly associated with the alteration 
of metabolisms. In fact, deregulated cellular metabolisms 
in glucose, amino acid, and other nutrients, are major hall-
marks of cancers [63]. The ribosome pathway is one of the 
major targeting pathways in cancer therapeutic [64]. As a 
tumor-suppressive signaling, the p53 signaling pathway is 
a crucial target in cancer therapy [65]. These results indi-
cate that the transcriptional signatures of BTS are asso-
ciated with the alteration of numerous cancer-associated 
pathways.

We identified 13 and 11 MTRs which regulate the upreg-
ulated stromal DEGs and downregulated stromal DEGs, 
respectively. Previous studies have shown that these MTRs 
are associated with breast carcinogenesis [13, 66–69]. For 

Fig. 9   Comparisons of the expression levels of stromal dysregulated 
prognostic genes between TCGA BRCA and healthy tissue. A Stro-
mal upregulated prognostic genes (COL11A1 and IFI30) are upregu-
lated in BRCA, and downregulated prognostic genes (SPRY2, CAV1, 
SOCS2, ITM2A, LDB2, and NACA​) are downregulated in BRCA. B 
The stromal hub genes (MMP9, COL1A1, CD86, FCER1G, ITGAM, 
and TLR2), oncogenes (COL1A1 and IL21R), protein kinases encod-
ing gene (CSK), and chemokines and growth factors encoding gene 
(PLAU) are significantly upregulated in BRCA. The Student’s t test P 
values and fold change are shown

◂

Table 2   Comparisons of the expression levels of the genes between 
TCGA BRCA and healthy tissue, whose expression levels gradually 
altered among breast cancers with three different grades and between 
breast cancers with bad and good clinical outcomes

SL. number Gene symbol log2FC P value

1 MCM4 1.47 4.06E–48
2 SPECC1 0.32 0.000388
3 AGO2 0.38 3.84E–05
4 ABCA6 − 3.33 4.75E–80
5 CEP126 − 1.64 1.16E–27
6 CH25H − 1.30 1.13E–19
7 COL14A1 − 2.35 4.32E–38
8 IGDCC4 − 0.64 1.28E–07
9 IGF1 − 2.87 5.9E–55
10 MFAP3 − 0.19 0.00179
11 PCSK5 − 1.87 5.61E–38
12 RBMS3 − 2.66 7.32E–81
13 SLIT2 − 1.93 5.82E–31
14 TSPAN11 − 1.57 7.59E–33
15 LHFP − 2.24 3.9E–99
16 SETBP1 − 1.17 6.19E–22
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example, ETV7 plays a substantial role in the oncogenesis 
of breast tissue [67]. In nodal positive breast cancer patients, 
another MTR, STAT2 is associated with RFS [66]. RELA 
is elevated in the CAFs derived from Her2 + breast cancer 
tissue [68]. Another study confirmed the altered expression 
of JUND, FOS, and JUN in breast cancer tissue [69]. These 
results indicate that these TFs may control the BTS-associ-
ated transcriptions in the TME of breast cancer.

We also identified key hub genes, especially oncogenes, 
protein kinases encoding genes, cytokines and growth 
factors encoding genes in BTS based on the PPI network 
analysis. PPI networks indicate cellular signaling, commu-
nication, and crosstalk between the cells [70]. These hub 
genes included adverse prognostic factors, such as MMP9, 
FCER1G, CD86, ITGAM, TLR2, COL1A1, IL21R, PRKACA​
, CSK, PLAU, MYC, and RNASEL. In luminal A breast can-
cers, the matrix metalloproteinase gene MMP9 is associated 
with poor clinical outcomes [10]. In addition, a previous 
study have shown that ITGAM and TLR2 act as hub genes in 
breast cancer [71]. IL21R is highly expressed in breast can-
cer cells and is associated with proliferation, invasion, and 
migration of breast cancer cells [72]. The elevated levels of 
COL1A1 are linked with shorter survival and chemotherapy 
resistance [73]. Moody et al. reported that PRKACA​ medi-
ated the therapy resistance in breast cancer [74]. Another 
prognostic stromal protein kinase, CSK, is associated with 
the cellular growth of hormone-independent breast cancer 
tissue [75]. In metastatic breast cancer, elevated PLAU is 

associated with poor survival prognosis [76]. However, we 
found that the upregulation of MYC (an oncogene down-
regulated in BTS) and downregulation of RNASEL (a protein 
kinase gene downregulated in BTS) were associated with 
worse survival in breast cancer patients. These data suggest 
that the deregulation of key molecules in PPI networks asso-
ciated with stromal signatures contributes to the aggressive 
TME compartment in breast cancer.

The BTS-specific molecules and their associated path-
ways and interaction networks are potential prognostic bio-
markers and therapeutic targets for breast cancer. For exam-
ple, the upregulation of COL11A1 and IFI30 could indicates 
a worse prognosis, while the downregulation of SPRY2, 
CAV1, SOCS2, ITM2A, LDB2, and NACA​ could indicates 
a better prognosis in breast cancer. The small molecule 
inhibitors targeting the kinases upregulated in BTS, such as 
CSF1R, CSK, EIF2AK2, HCK, LYN, PRKACA, RNASEL, 
SYK, and ERBB2, could be effective in controlling breast 
tumor progression.

This study has several limitations. First, the findings were 
obtained by the bioinformatics analysis but lack of experi-
mental validation. Second, the number of cancer samples 
with clinical data, such as survival time, tumor grade, and 
cancer subtypes, is limited in this study. Finally, we ana-
lyzed mRNA expression profiles which are not necessarily 
the same as protein expression profiles, due to some fac-
tors affecting the translation from mRNA level to protein 
level, such as post-translational modification. Therefore, 

Fig. 10   The overall flow of the study that identifying key genes and pathways in the BTS
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to translate our findings into clinical applications, further 
experimental and clinical validation would be necessary.

Conclusions

Our data provide pivotal molecular insights into breast 
tumor stroma characterization, which may have substantial 
effects on the stroma-based treatment recommendations for 
breast cancer patients.
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