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Abstract
Purpose  Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental pollutants associated with multiple can-
cers, including female breast cancer. Several xenobiotic metabolism genes (XMGs), including the CYP450 family, play an 
important role in activating and detoxifying PAHs, and variations in the activity of the enzymes they encode can impact this 
process. This study aims to examine the association between XMGs and breast cancer, and to assess whether these variants 
modify the effects of PAH exposure on breast cancer risk.
Methods  In a case–control study in Vancouver, British Columbia, and Kingston, Ontario, 1037 breast cancer cases and 
1046 controls had DNA extracted from blood or saliva and genotyped for 138 single nucleotide polymorphisms (SNPs) and 
tagSNPs in 27 candidate XMGs. Occupational PAH exposure was assessed using a measurement-based job-exposure matrix.
Results  An association between genetic variants and breast cancer was observed among six XMGs, including increased risk 
among the minor allele carriers of AKR1C3 variant rs12387 (OR 2.71, 95% CI 1.42–5.19) and AKR1C4 variant rs381267 (OR 
2.50, 95% CI 1.23–5.07). Heterogeneous effects of occupational PAH exposure were observed among carriers of AKR1C3/4 
variants, as well as the PTGS2 variant rs5275.
Conclusion  Our findings support an association between SNPs of XMGs and female breast cancer, including novel genetic 
variants that modify the toxicity of PAH exposure. These results highlight the interplay between genetic and environmental 
factors, which can be helpful in understanding the modifiable risks of breast cancer and its complex etiology.

Keywords  CYP450 · Metabolism · Polycyclic aromatic hydrocarbons · Occupational exposure · Breast cancer · Gene–
environment interaction · Effect modification

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are one of the 
most widespread organic pollutants, with exposure occur-
ring through multiple routes, including diet, air pollution, 

smoking, and the workplace [1]. Evidence from several 
epidemiological studies suggests that exposure to PAHs 
is a risk factor for several cancer sites, including breast 
cancer in women [2–5].
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PAH carcinogenicity occurs through the metabolic 
activation of PAH by cytochrome P450 (CYP450), which 
consists of a superfamily of hemoproteins that coordinate 
the metabolism of numerous endogenous and exogenous 
chemicals. CYP450 enzymes are present in most tissues of 
the body and function to metabolize potentially toxic com-
pounds [6, 7]. However, this process can produce DNA-
binding “ultimate carcinogenic” metabolites that include 
diol-epoxides, radical cations, and quinones [8–13]. PAH 
exposure can also trigger both estrogenic and antiestro-
genic responses [14–16] through the increase of estradiol 
metabolism that in turn increases the formation of qui-
nones [13].

Several studies investigated the association of CYP 
and other metabolism-related genes with breast cancer 
risk, many of which are also involved in PAH metabo-
lism [17–20]. CYP1B1 is an important activator of PAH 
in mammary glands [17] and certain genotypes have 
been linked to increased breast cancer risk [21]. Despite 
their involvement in PAH metabolism, little research has 
explored the interplay between xenobiotic metabolism 
genes (XMGs) and PAH exposure and its modifying 
effects on breast cancer risk. Several studies offered evi-
dence of interactions between PAH–DNA adduct levels 
and XMGs [22–26], and PAH–DNA adduct levels have 
been associated with increased breast cancer risk [27]. 
Among the few studies that have explored interactions 
between these genes and PAH exposure, the sources 
of PAH exposure are typically smoking [28, 29] and 
diet [21, 30]; however, interactions with occupational 
sources have rarely been studied, despite the fact that 
exposure levels from occupational sources can be orders 
of magnitude higher and consist of different mixtures of 
PAHs. Previous research into the effects of occupational 
PAH exposure provide support of an interaction between 
occupational PAH exposure and family history of breast 
cancer [5].

Our objective was to investigate associations between 
XMG variants and breast cancer risk in women, and 
potential interactions between these genetic variants and 
occupational PAH exposure. We hypothesize that inter-
actions between XMG variants and occupational PAH 
exposure can modify PAH-related breast cancer risk.

Materials and methods

Study population

A multi-centre, population-based case–control study was 
conducted in the greater metropolitan area of Vancou-
ver, British Columbia (BC) and Kingston, Ontario (ON) 
between 2005 and 2010. Ethics approval was provided by 

the University of British Columbia/BC Cancer Research 
Ethics Board and the Queen’s University Health Sciences 
Research Ethics Board. Detailed information on the methods 
has been previously published [5, 31]. In Vancouver, cases 
were recruited from the BC Cancer Registry and included 
women 40–80 years of age, diagnosed with either in situ or 
invasive breast cancer, no previous history of cancer except 
for non-melanoma skin cancer, and living in the greater Van-
couver metropolitan area at the time of diagnosis. Controls 
were women recruited from the BC Cancer Breast Screening 
Program and were frequency matched to cases by 5-year age 
group. In Kingston, both cases and controls were recruited 
from the Hotel Dieu Breast Assessment Program. Cases 
were women 40–80 years diagnosed with either in situ or 
invasive breast cancer. Controls had either normal mammo-
gram results or benign breast disease and were frequency 
matched to cases by 5-year age group. Following exclusions 
according to eligibility criteria, 1130 cases and 1069 con-
trols were included. Participants completed a questionnaire 
and provided either a blood or saliva sample for genotyp-
ing; DNA was extracted from blood (n = 1980) or saliva 
(n = 204).

Questionnaire and PAH exposure assessment

The questionnaire, which was either self-completed and 
mailed or administered through telephone interview, 
included education, ethnicity, medical and reproductive 
history, lifetime tobacco consumption, and lifetime occupa-
tional history. Lifetime work history, including industry, job 
title, length of employment, work hours (e.g., part-time or 
full-time), as well as tasks performed and materials handled 
was collected on all jobs held for at least 6 months. PAH 
exposure assessment was performed using a job-exposure 
matrix [5, 32] and the total number of years employed in 
jobs with risk of exposure above the permissible exposure 
limit (0.2 mg·m−3) [33] was calculated for each individual.

Gene and variant selection

Twenty-seven genes related to endogenous or exogenous 
(xenobiotic) metabolism were identified from the literature. 
The majority of genes are members of the CYP450 super-
family (CYP1A1, CYP1A2, CYP1B1, CYP2C19, CYP2E1, 
CYP19A1). The remaining genes are grouped by function: 
modulation of the PAH metabolism response (AHR, AHRR, 
ARNT, AIP), formulation (or activation) of carcinogenic 
intermediates during metabolism (AKR1A1, AKR1C1-
AKR1C4, DHDH, EPHX1, PTGS2, NAT1, NAT2), and 
detoxification of metabolites (COMT, NQO1, GSTP1, NRF2, 
PON1) into their final inactive, excretable forms. Additional 
genes selected are related to estradiol metabolism (ESR1, 
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ESR2) [34], which is influenced by PAH metabolism [14–16, 
35]. For each gene, a set of tagSNPs were selected using 
the CEU (European) population from HapMap release 28 
using Tagger [36] and the program Haploview [37] using 
a minimum minor allele frequency (MAF) of 0.10 and an 
r2 threshold of 0.8. A total of 158 SNPs associated with the 
XMGs described above were submitted for genotyping.

Genotyping

SNPs included in the analysis were initially part of a larger 
Illumina GoldenGate genotyping assay (768 SNPs) that 
included SNPs related to other potential pathways for breast 
cancer. SNPs that failed initial assay design were replaced 
with equivalent tagNPs. Genotyping was performed at the 
McGill University and Genome Quebec Innovation Centre 
in Montreal, QC, Canada.

Quality control procedures

Genotype quality control for the 768 SNP set was performed 
in Genome Studio v2011.1 (Illumina, San Deigo, CA, USA), 
PLINK v1.07 [38], GRR [39], and Excel 2007 (Microsoft, 
Redmond, WA, USA). Figures 1 and 2 summarize the rea-
sons for exclusion of SNPs and samples, respectively.

SNP

SNP exclusion was based on recommendations by Illumina 
(Illumina User Guide, Illumina, Part #11319113): GenCall 
Score < 0.25, GenTrain score < 0.40, poor clustering, mono-
allelic variants, genotype discrepancies in replicate samples 

in any SNP (n = 124), call rate < 95%, unexpectedly low 
MAF in European controls compared to HapMap CEU data, 
or out of Hardy–Weinberg equilibrium (p < 0.001) in Euro-
pean-ancestry controls. Call rate was examined separately 
for saliva samples. If an SNP had a call rate < 95% for saliva 
samples, but > 95% for blood samples, participants that pro-
vided samples through saliva only were excluded (i.e., the 
sample size for that SNP was reduced in comparison to the 
other SNPs). Genotyping of XMGs included 158 SNPs, of 
which 20 were excluded: 6 by the genotyping center, 8 due 
to poor clustering, 2 that were monoallelic within the study 
population, 3 with a low call rate, and 1 with a lower MAF 
compared to the HapMap CEU population; a total of 138 
SNPs were included in the analysis.

Samples

Samples were excluded if heterozygosity was greater than 
three standard deviations compared to other samples within 
the same ethnicity, call rate < 0.95, genotypes at Y chromo-
some markers indicated the sex was male, unrelated sam-
ples had identical genotypes, and if there were discrepan-
cies between genotype-estimated and self-reported ethnicity. 
Comparison between self-reported and genotype-estimated 
ethnicities was done by calculating the identity by state and 
multi-dimensional scaling plots [38] with HapMap samples 
in the CEU, CHB, CHD, JPT, TRI, and TSI populations 
[40]. Associations between case status and ethnicity were 
detected through calculation of the genomic inflation factor 
(λ = 16.99) using ancestral informative markers after SNP 
quality control [41–43]. Reanalysis using European-only 
samples resulted in no discernible inflation (λ = 1.0), indi-
cating there is no population structure or genotyping error 

768 SNPs

689 SNPs

138 SNPs

24 failed Illumina assay design
5 GenTrain < 0.4

34 bad clusters
5 monoallelic
1 discrepancies in replicate sample
6 call rate < 95%
2 low MAF in Caucasian controls
2 failed HWE

Metabolism-related pathway

Fig. 1   Quality control flowchart for SNPs

2,318 samples

2,275 samples

2,151 samples

2,090 samples

16 failed samples
2 gender discrepancies
5 excess heterozygosity
6 (3 pair) identical genotypes
9 pairs familial related (1 per pair excluded)
5 ethnicity discrepancies

Merge replicate genotype (n = 124)

Exclusion criteria (n = 61)

Fig. 2   Quality control flowchart for samples
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[44]. Nine samples were identified as having a familial rela-
tionship, which was verified using questionnaires. If both 
pairs were cases, the individual with the earlier diagnosis 
was included (n = 4); if both pairs were controls, the oldest 
of the pair was included (n = 3); and if one of the pair was a 
case and the other a control, the case was included (n = 2). 
Following sample quality control and inclusion criteria, a 
total of 2083 samples (1037 cases and 1046 controls) were 
retained.

Statistical analysis

Multivariable logistic regression was used to calculate 
adjusted odds ratios (OR) and 95% confidence intervals (CI) 
to examine the relationship between the SNPs and breast 
cancer risk; all regression models were adjusted for age 
and study center. To investigate the associations between 
xenobiotic metabolism-related SNPs and breast cancer, we 
used an SNP-specific inheritance model (i.e., one of three 
inheritance models: additive, dominant, or recessive) based 
on the two-step approach described below. To control for 
confounding due to population stratification, all analyses 
were restricted to women of European ethnicity [45, 46]. 
Results for women of (East) Asian descent (defined as Chi-
nese, Japanese, or Korean ancestry) are in Supplementary 
Tables (see Appendix); other ethnic groups were excluded 
due to small sample sizes. Differences in risk by menopausal 
status were examined through stratified analysis and inclu-
sion of an interaction term in the logistic models.

Multiple testing was corrected through a two-step gene-
based process similar to that of Schuetz et al. [47] with 
modifications for the different inheritance models. Each 
SNP went through a set-based permutation (10,000 per-
mutations) where, for each permutation, case status was 
randomly assigned. For each inheritance model, a p-value 
was calculated for the permutation resulting in three inher-
itance model-specific p-values for each SNP. An adjusted 
p-value for each SNP was calculated using the number of 
times a more extreme (i.e., smaller) p-value, compared to 
the original inheritance model-specific pvalue, was observed 
during the 10,000 permutations. Within each gene, the mini-
mum adjusted inheritance model-specific p value was used 
to select the inheritance model and the gene-representative 
SNP. Benjamini–Hochberg procedure [48] was applied to 
control the false discovery rate (FDR) to obtain a corrected 
p-value for the gene-representative SNP (n = 27).

SNPs that displayed any evidence of association with 
breast cancer (permutation adjusted p-value < 0.1) were 
examined for potential gene–environment interactions 
(GxEs) with PAH exposure. Exposure metrics were defined 
as: (1) duration at “high” PAH exposure, (2) average prob-
ability of exposure, and (3) weighted duration of exposure, 
as described in Lee et al. [5] G×E analyses were examined 

through a genotype-exposure interaction term in the logistic 
models. For some of the genotypes-exposure strata, insuf-
ficient sample sizes required PAH exposure to be dichoto-
mized into an ever-never categorization. All interaction 
term p-values were corrected for the FDR [48]. In the situ-
ation where the homozygous minor allele genotype group 
had insufficient sample size to test for interactions using 
the recessive inheritance model (minimum requirement: 
n = 50), the additive model was used to allow stable esti-
mates. Education and smoking were identified as potential 
confounders of the PAH association in previous analysis [5], 
therefore all G×E analyses were adjusted for education and 
smoking (pack-years), in addition to age and center. Analy-
ses involving duration at “high” PAH exposure included a 
nuisance variable {1 if maximum level of exposure was low 
or medium, 0 = other} to ensure that the referent exposure 
group was truly unexposed [5]. Statistical analyses were 
conducted using the statistical software R (version 2.14.2, 
R Foundation for Statistical Computing, Vienna, Austria).

Results

Cases were more likely to have ever been pregnant, tended 
to be older at time of first mammogram, more likely to be 
overweight or obese, and more likely to have a family history 
of breast cancer (Table 1). Among current or previous smok-
ers, cases smoked more pack-years than controls. Controls 
were more likely to be of European descent and to have a 
higher socioeconomic status (i.e., family income greater than 
$80,000 and/or have a graduate/professional school degree).

Table 2 shows adjusted ORs from the logistic models 
for the main genetic analysis involving women of European 
decent. Following the permutation step of the gene-based 
approach, 12 SNPs were observed to have associations with 
breast cancer risk and 6 SNPs still showed evidence of 
an association after FDR adjustment: rs12387 (AKR1C3), 
rs3812617 (AKR1C4), rs12248560 (CYP2C19), rs7845127 
(NAT1), rs4646243 (NAT2), and rs2813543 (ESR1). Dif-
ferences in associations between genotype and breast 
cancer risk among pre- and postmenopausal women were 
observed for SNPs associated with AKR1A1, AKR1C3, 
AKR1C4, CYP1B1, and NQ01; however, none remained 
significant after FDR adjustment (padj value > 0.2) (see 
Appendix: Supplementary Table A1). Among women of 
Asian descent, the same 27 SNPs and SNP-specific inher-
itance models were assessed; no evidence of association 
with breast cancer was observed (see Appendix: Supple-
mentary Table A2). Minor differences by ethnicity were 
observed for SNPs associated with COMT, CYP19A1, and 
NAT2; however, none remained noteworthy following FDR 
adjustment (padj value > 0.2).	



42	 Breast Cancer (2022) 29:38–49

1 3

Table 1   Descriptive statistics of 
the study population

Variable Cases (%) (n = 1037) Controls (%) (n = 1046)

Age
 Mean (SD) 56.87 (10.26) 56.43 (10.01)

Center
 Vancouver, BC 949 (91.5) 974 (93.1)
 Kingston, ON 88 (8.5) 72 (6.9)

Education
 High school or less 349 (33.7) 260 (24.9)
 College/trade certificate 312 (30.1) 308 (29.4)
 University degree 251 (24.2) 272 (26.0)
 Graduate or professional school degree 124 (12.0) 206 (19.7)

Income
 Less than $15,000 60 (05.8) 27 (02.6)
 $15,000–$29,999 127 (12.2) 77 (07.4)
 $30,000–$59,999 258 (24.9) 232 (22.2)
 $60,000–$79,999 130 (12.5) 147 (14.1)
 $80,000 or more 325 (31.3) 420 (40.2) ptrend < 0.01
 Not stated 137 (13.2) 143 (13.7)

Ethnicity
 European 641 (61.8) 803 (76.8)
 Chinese 220 (21.2) 109 (10.4)
 South Asian 29 (02.8) 30 (02.9)
 Filipino 57 (05.5) 38 (03.6)
 Japanese 22 (02.1) 14 (01.3)
 Other 47 (04.5) 39 (03.7)
 Mixed 21 (02.0) 13 (01.2) p < 0.01

BMI
 Mean (SD) 25.50 (5.12) 24.94 (4.69) p = 0.01
 Underweight (less than 18.5) 24 (02.3) 24 (02.3)
 Normal (18.5–24.9) 544 (52.5) 604 (57.7)
 Overweight (25–29.9) 311 (30.0) 277 (26.5)
 Obese (30 and higher) 151 (14.6) 132 (12.6) ptrend = 0.03

Reproductive history
 Menopausal status
  Pre-menopausal 394 (38.0) 419 (40.0)
  Post-menopausal 642 (62.0) 627 (60.0) p = 0.37

 Ever pregnant
  Never 177 (17.1) 224 (21.4)
  Ever 858 (82.9) 821 (78.6) p = 0.01

Lifestyle
 Age at first mammogram
  Mean (SD) 44.50 (8.77) 42.64 (7.57) p < 0.01

 Family history of breast cancer
  Never 829 (79.9) 900 (86.0)
  Ever 208 (20.1) 146 (14.0) p < 0.01

Smoking
 Current smoker
  No 969 (93.6) 983 (94.2)
  Yes 66 (06.4) 60 (05.8) p = 0.81

 Pack-years
  Mean (SD) 5.68 (12.10) 5.18 (11.15) p = 0.34

 Hormone replacement therapy
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After FDR adjustment, six SNPs that met the threshold 
for significance, along with six other SNPs that initially 
showed associations with breast cancer risk [rs5993882 
(COMT), rs10046 (CYP19A1), rs2470893 (CYP1A1), 
rs2854461 (EPHX1), rs854551 (PON1), and rs5275 

(PTGS2)], were assessed for interactions with PAH expo-
sure among women of European descent. Table 3 shows 
adjusted ORs by genotype-exposure stratum for select 
SNPs with potential modifying effects; for three SNPs, 
we observed evidence of an interaction with duration at 

Table 1   (continued) Variable Cases (%) (n = 1037) Controls (%) (n = 1046)

  Never 787 (69.8) 785 (66.6)
  Ever 340 (30.2) 393 (33.4) p = 0.11

Table 2   Genetic analysis using 
gene-based permutations under 
inheritance-specific models

ǂ Adjusted for age and center
‡ Additive model shows OR for each additional minor allele
⫧ Adjusted p value for the false discovery rate
Bolding indicates significance at p < 0.10

Gene SNP Europeans (cases: 641, controls: 803)

MAF Model OR 95% CI p valueǂ padj 
value⫧

Regulates PAH and xenobiotic metabolism
 AHR rs3757824 0.22 Dominant 0.87 (0.70–1.07) 0.185 0.307
 AHRR rs349583 0.42 Dominant 1.18 (0.94–1.47) 0.147 0.265
 AIP rs4084113 0.38 Dominant 0.93 (0.75–1.16) 0.532 0.537
 ARNT rs11204735 0.46 Recessive 1.23 (0.96–1.58) 0.105 0.217

Production of carcinogenic intermediates
 AKR1A1 rs2088102 0.46 Recessive 1.15 (0.89–1.47) 0.291 0.393
 AKR1C1 rs6650153 0.11 Recessive 0.59 (0.24–1.46) 0.278 0.393
 AKR1C2 rs11252867 0.24 Additive‡ 1.12 (0.95–1.33) 0.193 0.307
 AKR1C3 rs12387 0.18 Recessive 2.71 (1.42–5.19) 0.001 0.030
 AKR1C4 rs3812617 0.16 Recessive 2.50 (1.23–5.07) 0.005 0.057
 DHDH rs2270939 0.18 Dominant 1.07 (0.86–1.34) 0.537 0.537
 EPHX1 rs2854461 0.34 Dominant 1.23 (0.99–1.52) 0.052 0.155
 NAT1 rs7845127 0.32 Dominant 1.30 (1.06–1.61) 0.012 0.065
 NAT2 rs4646243 0.14 Recessive 3.33 (1.28–8.64) 0.008 0.057
 PTGS2 rs5275 0.36 Additive‡ 0.86 (0.74–1.01) 0.071 0.186

CYP450 superfamily
 CYP19A1 rs10046 0.47 Additive‡ 1.16 (1.00–1.35) 0.043 0.143
 CYP1A1 rs2470893 0.31 Recessive 1.33 (0.95–1.87) 0.092 0.207
 CYP1A2 rs2470890 0.34 Recessive 1.13 (0.83–1.55) 0.424 0.458
 CYP1B1 rs162558 0.21 Recessive 1.25 (0.79–1.99) 0.335 0.411
 CYP2C19 rs12248560 0.23 Dominant 1.33 (1.08–1.65) 0.009 0.057
 CYP2E1 rs2070673 0.16 Additive‡ 0.85 (0.69–1.05) 0.133 0.256

Detoxification of reactive intermediates during xenobiotic metabolism
 COMT rs5993882 0.24 Dominant 1.21 (0.98–1.49) 0.076 0.186
 GSTP1 rs1695 0.33 Recessive 1.17 (0.83–1.64) 0.365 0.428
 NFE2L2 rs1806649 0.25 Dominant 1.11 (0.90–1.37) 0.327 0.411
 NQO1 rs1800566 0.19 Dominant 0.91 (0.73–1.14) 0.410 0.458
 PON1 rs854551 0.21 Additive‡ 1.22 (1.02–1.46) 0.027 0.103

Estradiol metabolism
 ESR1 rs2813543 0.23 Recessive 0.52 (0.30–0.90) 0.021 0.094
 ESR2 rs1271572 0.44 Recessive 0.84 (0.64–1.10) 0.210 0.315
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“high” PAH exposure, which remained noteworthy after 
FDR adjustment (padj-interaction < 0.10). One SNP is a 
member of the cytochrome c-oxidase (COX) family: rs5275 
(PTGS2) and the other two are from the aldo–keto reduc-
tase (AKR) superfamily: rs12387 (AKR1C3) and rs3812617 
(AKR1C4). As was the case for both AKR SNPs, an increas-
ing risk for breast cancer with increased duration of high 
exposure was observed within the homozygous major allele 
genotype stratum; within the heterozygous or homozygous 
minor strata, no associations were observed. Among the 
non-exposed group, there was an increasing risk with 
each minor allele. Similar effects as the AKR SNPs were 
observed for rs5275 (PTGS2) across duration of exposure 
within the homozygous major stratum; however, the effects 
were null among the non-exposed group and, as duration of 
exposure increased, there was an increasing protective asso-
ciation with the minor allele. For the remaining SNP results, 
see Supplementary Table A3. Evidence of interactions were 
observed for rs5275 (PTGS2) using the other two exposure 
metrics, average probability of PAH exposure and weighted 
duration of exposure, which remained significant after FDR 
adjustment (padj-interaction < 0.05); however, no evidence 
of an interaction was apparent among the AKR SNPs (see 
Supplementary Table A4 and Supplementary Table A5). 
Dichotomizing duration at “high” (see Table 4 and Sup-
plementary Table A6) and average probability of PAH 
exposure to ever-never exposed produced similar results as 
their original categorization (see Supplementary Table A7). 
Ever-never categorization for average probability of PAH 
exposure produces the same results as weighted duration 
of exposure (data not shown). No evidence of effect modi-
fication by PAH exposure on genotype-associated breast 
cancer risk was observed among women of Asian descent 
(data not shown).

Tobacco smoke is a known source of PAH exposure, and 
duration of smoking has been associated with increased risk 
of breast cancer [49, 50]. We observed no evidence of effect 
modification by smoking on genotype-associated breast 
cancer risk (see Supplementary Table A8), nor was there 
evidence of a three-way or two-way PAH exposure–smok-
ing interactions after FDR adjustment (see Supplementary 
Table A9 and Supplementary Table A10); due to sample size 
issues, smoking was dichotomized.

Discussion

In this population-based case–control study, we observed 
evidence of associations between various XMG variants 
and breast cancer. Among 12 SNPs that were observed to 
have associations with breast cancer, there was evidence 
to suggest an association with 6 SNPs after FDR adjust-
ment. Among these variants, heterogeneous effects of PAH Ta
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exposure on breast cancer risk were observed for three of 
these SNPs, including two members of the AKR superfamily 
(AKR1C3, AKR1C4), which are involved in the production 
of carcinogenic intermediate o-quinone during PAH metabo-
lism [51–53].

AKR1C3 regulates receptor access of androgens and 
estrogens and is involved in the biosynthesis of prosta-
glandins, and the overexpression of AKR1C3 in steroid 
hormone-dependent breast tumors [54] highlights its 
potential role in the etiology of breast cancer [55]. For the 
SNP rs12387, which is a missense variant (Lys → Asn), 
we observed an increased risk of breast cancer among the 
homozygous major allele genotype that was limited to ever 
users of HRT (phetero-value = 0.09). Under a similar mode 
of inheritance, the increased risk with carriers of the G 
allele was consistent with those observed by Reding [56] 
(HRT-ever: OR = 1.42 (0.99–2.05), HRT-never: OR = 1.01 
(0.76–1.34), phetero-value = 0.16). AKR1C4 is also involved 
in the metabolic activation of PAHs, and although its role 
in the breast cancer etiology is less clear because it is 
predominantly liver specific [57], it is also involved in 
estrogen metabolism. The SNP rs3812617, which is 
a splice-region variant, could disrupt RNA splicing by 
skipping exons, thereby resulting in an altered protein-
coding sequence. Alternatively, the SNP is in high link-
age disequilibrium (LD) with rs3829125 (r2 = 0.9), which 
is a missense variant (Cys → Ser), previously associated 
with prostate cancer through hormone-mediated effects on 
estrogen receptor α and β [58]. Several PAHs can occupy 
estrogen receptor (ER) binding sites through a similar 
endocrine disrupting mechanism, thereby allowing ERs 
to serve as a pathway to transport an ultimate carcinogen 

directly to specific DNA regulatory sites [15, 59] that can 
influence estrogen-mediated breast cancer risk.

An association between breast cancer and CYP2C19 SNP 
rs12248560 was observed, with the results suggesting an 
increased risk for minor allele carriers. Justenhoven et al. 
suggested a protective effect [60]; however, no overall asso-
ciation with breast cancer risk was observed in a follow-up 
pooled analysis, although there was evidence of an asso-
ciation within the hormone replacement therapy subgroup 
(≥ 10 years on HRT) [61]. We found no protective associa-
tion within our study population that received HRT for at 
least 10 years (data not shown). ESR1 has been shown to 
play a major role in the development and treatment of breast 
cancer [62], and, similar to other polymorphisms, a protec-
tive effect against breast cancer was observed for carriers of 
the minor allele for SNP rs2813543 [63]. Given its location 
downstream of the gene, it is more likely that rs2813543 is 
in LD with another SNP that may have a functional effect. 
The NAT1/2 genes have established roles in detoxifying 
and/or bioactivating a variety of aromatic and heterocyclic 
amines [64, 65], and certain polymorphisms have dem-
onstrated associations with breast cancer [28, 64]. NAT1 
SNP rs7845127 and NAT2 SNP rs4646243, which are both 
upstream of the gene, were associated with increased risk for 
breast cancer among the heterozygous and/or homozygous 
minor allele carriers, respectively.

The study of gene–environment interactions in diseases 
like cancer may be pivotal in understanding their etiology, 
especially when risks from certain exposures are only detect-
able in those with certain genetic susceptibilities, which in 
turn prevents us from identifying the true impact of either 
unless both effects are considered together. We observed 
evidence of interactions between SNPs in XMGs (rs12387, 

Table 4   Breast cancer odds ratios by genotype-exposure (ever-never for duration at high PAH exposure) stratum based on co-dominant model 
for select SNPs with potential modifying effects

Adjusted for age, center, education, and smoking (pack-years)
Bolding indicates significance at p < 0.10

Gene SNP Genotype Exposure: never Exposure: ever Interaction

Case Control OR 95% CI Case Control OR 95% CI ptrend (p-FDR)

Production of carcinogenic intermediates
 AKR1C3 rs12387 AA 228 380 1.00 – 181 162 2.12 (1.57–2.88)

GA 115 140 1.42 (1.05–1.92) 74 90 1.45 (0.99–2.13)
GG 13 7 3.43 (1.33–8.84) 16 7 4.64 (1.85–11.7) 0.02 (0.08)

 AKR1C4 rs3812617 GG 233 395 1.00 – 189 168 2.17 (1.60–2.92)
AG 114 127 1.55 (1.14–2.11) 68 86 1.41 (0.96–2.09)
AA 9 5 3.27 (1.07–10.0) 14 7 4.14 (1.61–10.6)  < 0.01 (0.06)

 PTGS2 rs5275 AA 142 215 1.00 – 127 97 2.22 (1.54–3.19)
GA 172 248 1.05 (0.78–1.41) 122 124 1.65 (1.16–2.35)
GG 42 64 0.99 (0.63–1.56) 22 40 0.89 (0.50–1.59) 0.01 (0.08)
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rs3812617, and rs5275) and occupational PAH expo-
sure. The AKR SNPs rs12387 (AKR1C3) and rs3812617 
(AKR1C4) are involved in the production of quinones dur-
ing PAH metabolism [52, 66–68]. Exposure to PAHs is 
thought to trigger estrogenic and antiestrogenic responses 
[15] through increased metabolism of estradiol, which 
result in the increased formation of quinones [13]. Women 
with the homozygous major genotype were found to be at 
an increased risk for breast cancer in proportion to longer 
occupational PAH exposure; however, for both heterozygous 
and homozygous minor allele genotypes, the increased risks 
were attenuated. PTGS2 SNP rs5275 showed some evidence 
of a reduced risk of breast cancer for the minor allele car-
riers; however, similar to the AKR SNPs, women with the 
homozygous major genotype had an increased risk for breast 
cancer with duration of occupational PAH exposure. No 
association was observed in the heterozygous and homozy-
gous minor allele strata. The modifying effect of the PTGS2 
SNP on PAH exposure remained consistent across different 
metrics of PAH exposure. Other studies have also observed 
a decreased risk for breast cancer with this variant, including 
a pooled analysis of the Nurses’ Health Study 2 and Harvard 
Women’s Health Study [69, 70]. Like the AKR superfamily, 
the PTGS2 SNP may influence breast cancer risk through 
estrogen metabolism. PTGS2/COX-2 encodes a prostaglan-
din synthase enzyme (cyclooxygenase) that can increase the 
production of prostaglandins (e.g., PGE2), which in turn 
simulates estrogen production through steroidogenesis [71]. 
High levels of cyclooxygenase have been observed in human 
mammary tumor tissues [72, 73] and overexpression of the 
gene is capable of inducing mammary epithelial tumorigen-
esis in animal models [74].

As our focus when selecting candidate genes was based 
on the use of tagSNPs, one limitation of this approach is 
there is no guarantee that the SNP tested for association is 
the contributing SNP. However, an intent of this study was to 
identify gene variants that are associated with breast cancer 
risk, which we have demonstrated. Furthermore, although 
the identity of the exact causal SNP may not be known, by 
using a tagSNP it can be surmised that there is a causal SNP 
in LD that could be identified through functional studies.

Another limitation of the study involves measurement 
error in assessed PAH exposure. Differential misclassifica-
tion is a potential limitation of using a job-exposure matrix 
for classifying exposure status that can either attenuate or 
accentuate the interaction estimates [75, 76]. This misclas-
sification in inferred exposure status also decreases the effi-
ciency of GxE studies [77]. It is worth noting that there are 
also circumstances where an observed association with a 
gene provides evidence of gene–environment interaction, 
even if the effect estimate of the interaction term in regres-
sion models is not strong. This occurs when measurement 
error in exposure dilutes the power of the test of interaction 

compared to the test of genetic association alone. In this 
case, the observed effect of a gene depends on its interac-
tion with the true exposure; thus, without even estimating 
exposure, the genetic effect can be used to detect (rather 
than quantify) the interaction [78]. We note that after FDR 
adjustment, of the six SNPs associated with breast cancer 
in our gene-only analyses that passed adjustment and of the 
other six SNPs that showed associations, but failed to meet 
our threshold after FDR adjustment, three had G × E esti-
mates that passed FDR adjustment. Consequently, it is plau-
sible that several of the other SNPs are providing evidence 
for gene–environment interactions, in part because of their 
role in modifying PAH toxicity. If these XMGs contribute 
to the risk of disease only in the presence of exposure, the 
existence of a G × E can be inferred from our mis-specified 
gene-only models. This approach has been effectively used 
to show evidence of G × Es when exposure is difficult to 
assess accurately [78].

Tobacco smoke is a known source of PAH exposure 
and is also a potential confounder, with some studies sug-
gesting that long duration of smoking can result in an 
increased breast cancer risk among women with certain 
genotypes [50, 79]. However, there is little evidence of a 
measurable effect of smoking on breast cancer risk or of 
an interaction between PAH exposure and smoking within 
this study population, as we observed null effects from 
smoking within genotype-specific strata and genotype-
exposure strata, i.e., two-way and three-way interactions. 
Moreover, we previously observed no heterogeneous effect 
of PAH exposure by smoking or menopausal status within 
this study population; however, among pre-menopausal 
women, we did report a large increased risk with PAH 
exposure, as well as smoking, albeit smoking was only 
marginally significant. Most importantly, these observa-
tions suggest that pre-menopausal occupational exposure 
to PAH make greater contribution to breast cancer risk 
[5] (data not shown). Furthermore, the potential effect of 
active smoking on breast cancer risk has been observed 
to be only modest in the range of 1–10% excess risk for 
ever-smoking, and related to smoking before menopause 
and the first birth, leading to an average 10–20% increase 
in risk per 20 pack-years in these women [80]; on the other 
hand, Xue et al. also report inverse association with smok-
ing after the menopause [80]. Among our study popula-
tion, we observed a similar average excess risk of 9% for 
ever-smoking, but our study population smoked substan-
tially less than those in Xue et al. Although the lack of 
effect modification from smoking by PAH-related genes 
may weaken our argument of a modified breast cancer 
risk by these XMGs, our results support the observations 
by Xue et al. [80], concurring with the observation of an 
increased risk of breast cancer by smoking identified only 
among pre-menopausal women, indicating that our two 
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studies are in agreement of a window of susceptibility for 
exposure to mixtures that contain PAHs and their impact 
on breast cancer. This issue of modification of breast can-
cer risk by genes depending on timing of environmental 
exposure, such as PAH and tobacco smoke, appears to be 
a promising avenue of future research.

In summary, an association between genetic variants 
and breast cancer was observed among six XMGs: two 
of the variants belonged to genes from the AKR super-
family, and four were novel variants of genes that have 
known associations with breast cancer. Modifying effects 
on breast cancer risk that differed among those exposed to 
occupational PAH exposure were observed among carriers 
of three genetics variants. The results of this study sup-
port previous evidence observed of interactions between 
PAH exposure and family history of breast cancer [5], and 
highlight the interplay of genetic and environmental risk 
factors, which can be helpful in understanding the modifi-
able risk factors of breast cancer.
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