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Abstract
Background  Breast cancer is the most common and aggressive tumor causing injury to women world wide. Although gene 
expression analysis had been performed previously, systemic co-expression analysis for this cancer is still lacking to date. 
We attempted to identify the critical modules of breast cancer.
Methods  Co-expression modules were established with the help of WGCNA and the interactions among them were per-
formed by R language. Biological process and pathways analysis of co-expression genes were figured out by GO and KEGG 
functional enrichment analysis using DAVID dataset.
Results  In this study, expression data of 4,000 genes from 136 samples with breast cancer was used for the establishment 
of co-expression modules. And nine modules were identified. There was much higher scale independence among different 
modules by interactions analysis. Moreover, there was an obvious difference in adjacency degree among different modules. 
The most enriched pathways as immune response and ubiquitin-mediated proteolysis were identified as the most critical 
modules of breast cancer by GO and KEGG enrichment analysis.
Conclusion  Our result demonstrated that immune response and ubiquitin-mediated proteolysis could serve as prognostic 
and predictive markers for the occurrence of breast cancer, providing evidence for further analysis in the prognosis and 
treatment of breast cancer.

Keywords  Breast cancer · Co-expression modules · Metabolic pathways

Introduction

Breast cancer is the most common and aggressive tumor 
causing great injury to women physically and mentally 
[1]. This disease largely affects women in their 40s to 60s. 
Women before or after the period of menopause were more 
prone to be affected. It is the second most cancer now, just 
after lung cancer, the principal cause of death from cancer 
among women both in developing and developed countries 
[2]. However, the mechanisms of critical pathways and their 
interactions involved in the occurrence and development of 
breast cancer, remain largely unknown. Up to now, early 
diagnosis is still the key to improving the curative effect in 

the clinical treatment of breast cancer [3, 4]. Therefore, in 
this study, we aimed to explore the molecule mechanism in 
the development of breast cancer and thus provide evidence 
for further research.

Weighted Gene Co-expression Network Analysis 
(WGCNA) is a method frequently used in the co-expres-
sion module correlation analysis by microarray samples [5]. 
Besides, it is a comprehensive collection of R functions, 
which is commonly used in various aspects of weighted cor-
relation network analysis. It’s widely used in various biologi-
cal processes, such as cancer, genetics, and brain imaging 
data analysis [6], which is quite helpful for the identification 
of candidate biomarkers or therapeutic targets. Not only can 
it help in the process of comparing differentially expressed 
genes, but also help in figuring out the interactions among 
genes in different co-expression modules [7]. It is reported 
that WGCNA analysis had been performed on publicly avail-
able microarray data covering a genome-wide scale of genes. 
WGCNA was proven to be a promising and reliable tool for 
clinical diagnosis of breast cancer. In this study, a total of 
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nine co-expression modules were constructed by WGCNA. 
In this study, the WGCNA analysis identified nine modules 
of genes with high topological overlap in total.

Kyoto Encyclopedia of Genes and Genomes (KEGG) [8], 
a bioinformatics resource for better understanding of high-
level functions and utilities of the biological system, such as 
the cell, the organism and the ecosystem, was widely used 
in the mechanism research. The result of KEGG analysis in 
this study showed that the enriched pathways of hsa04120 
(ubiquitin-mediated proteolysis) in co-expression module 
nine were quite meaningful in the occurrence of breast can-
cer. We hope our study will help in better understanding the 
discovery of biomarker in the clinical diagnosis of breast 
cancer.

Materials and methods

Expression value analysis of microarray data 
of breast cancer samples

Probe values were downloaded from GEO dataset at the 
https://www.ncbi.nlm.nih.gov/geo/ of NCBI with the key 
word “breast cancer”. Annotation information of microar-
ray data was used to match probes with corresponding gene 
information. Probes matching with more than one gene were 
eliminated and the average expression values were calcu-
lated out for genes matching with more than one probe. The 
number of genes was calculated with different expression 
threshold value of genes so as to determine the appropriate 
threshold value. WGCNA algorithm was used to evaluate 
the expression value of genes. What is more, flashClust tool 
package in R language [9] was used to conduct the cluster 
analysis of samples at the appropriate threshold value.

Analysis of co‑expression modules of breast cancer

Power values were screened out by WGCNA [5] algorithm 
in the construction of co-expression modules. Scale inde-
pendence and average connectivity analysis of modules 
with different power value were performed by gradient test 
(power value ranging from 1 to 20). Appropriate power 
value was determined when the scale independence value 
was equal to 0.8. WGCNA algorithm was then used to con-
struct the co-expression modules and extract the gene infor-
mation in each module. The smallest number was set as 50 
for the reliability of the result.

Interaction analysis of co‑expression modules 
of breast cancer

WGCNA algorithm was used to analyze the interaction rela-
tionship among different co-expression modules. Heatmap 

tool package in R language was used to describe the strength 
of the relationship (strong or weak degree).

Functional annotation analysis of co‑expression 
genes of breast cancer

Co-expression modules were ranging from the most to the 
least by the number of genes. Then, functional enrichment 
analysis was performed on the genes in these modules. Cor-
responding gene information was mapped to the DAVID 
dataset (https://david.ncifcrf.gov/summary.jsp) [10]. Gene 
ontology (GO) [11] and KEGG [8, 12] enrichment analysis 
were performed. Therefore, the enriched biological pro-
cesses and metabolic pathways were obtained. The analysis 
was conducted with the condition of P < 0.05. If there were 
more than five records, then the top five were selected for 
the further analysis.

Results

Expression values analysis of microarray data 
of breast cancer

A total of 136 typical breast cancer samples were obtained 
from NCBI with the accession number of GSE12903 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12903) 
[13]. The sequencing platform was GPL96 ([HG-U133A] 
Affymetrix Human Genome U133A Array) and the number 
of cancer samples was from GSM305129 to GSM30526. 
This dataset was larger and much newer. These 136 tumors 
were from Breast cancer patients who had received adjuvant 
tamoxifen therapy only. Frozen tumor specimens source and 
clinical information for breast cancer patients are listed in 
Table 1 [13]. The microarray data was transformed to genes 
expression information using the original data. On one hand, 
probes matching with more than one gene were eliminated 
and the average value of expression value of genes match-
ing with more than one probe was calculated out as the final 
expression value of the gene. Besides, genes with the nega-
tive values were eliminated. As a result, a total of 12,389 
expression values of genes were obtained. Then, 4000 genes 
with the highest average expression value were selected for 
the cluster analysis by flashClust tool package of WGCNA 
algorithm (Fig. 1). As can be seen in Fig. 1, 136 breast can-
cer samples were divided into two clusters, GSM305262 
and GSM305263, on the whole. Two samples were included 
in Cluster I, and 134 samples were included in Cluster II, 
which can be divided into two sub-clusters, including 124 
samples (Sub-Cluster I) and 10 samples (Sub-Cluster II), 
respectively.

https://www.ncbi.nlm.nih.gov/geo/
https://david.ncifcrf.gov/summary.jsp
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12903
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12903
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Construction of co‑expression module of breast 
cancer

Co-expression modules were constructed by the expression 
values of 4000 genes in 136 breast cancer samples using 
the WGCNA algorithm. Power value was one of the most 
critical parameters in the construction process, which mainly 
affected the scale independence and average connectivity of 
co-expression modules. Firstly, we screened the appropriate 
power value. When power value was equal to 8, the scale 
independence can be up to 0.8 (Fig. 2a) and was with higher 
average connectivity meanwhile (Fig. 2b). Therefore, power 
value equal to 8 was determined for further analysis. 4000 
genes with highest expression value in 136 breast cancer 
samples were used for the construction of co-expression 
modules (Fig. 2c). As a result, a total of nine co-expression 
modules were constructed by the screened power value (8) 
and each module was manifested in different colors. These 
modules were numbered from the most to the least by the 
number of genes. There were 996 genes in module 1 (gray), 
607 genes in module 2 (turquoise), 563 genes in module 3 
(blue), 553 genes in module 4 (brown), 403 genes in module 

5 (yellow), 371 genes in module 6, (green), 305 genes in 
module 7 (red), 120 genes in module 8 (black) and 82 genes 
in module (pink). The average number of genes in these nine 
modules was 444. The information of module each gene 
belongs to was listed in supplement Table 2.

Interaction relationship among co‑expression 
modules of genes

Interaction relationship among the nine co-expression mod-
ules of genes was further analyzed (Fig. 3). As can been 
from the result, there was not any obvious difference of the 
interaction relationship, on the whole, indicating the rela-
tive independence expression of genes in each module and 
the much higher scale independence among different mod-
ules. What is more, the connectivity degree of eigengenes 
was analyzed for the better understanding of interaction 
relationship among the constructed co-expression mod-
ules. First, cluster analysis was performed on these critical 
genes (Fig. 4a) and we found that these nine modules were 
enriched in two clusters, one included six samples (mod-
ule 1, 3, 5, 7, 8, 9) while the other included three samples 

Table 1   Tumor characteristics 
for breast cancer patients in the 
present study

Characteristics Information Sample number 
(tamoxifen-treated, 
n = 136)

Source
Institute of Oncology, Ljubljana, Slovenia 36 (26%); 1997−1999
National Cancer Institute, Bari, Italy 28 (21%); 1990−1998
Technische Universitaet Muenchen, Germany 9 (7%); 1992−1999
one US institution, Cleveland Clinic Foundation 63 (46%); 1987−2000

Age (years)
Mean (SD) 64 (9)
≤ 40 4 (3%)
41–55 23 (17%)
56–70 80 (59%)
> 70 29 (21%)
Unknown 0

T stage
T1 63 (46%)
T2 65 (48%)
T3/4 7 (5%)
Unknown 1 (1%)

Tumor grade
Poor 30 (22%)
Moderate 43 (32%)
Good 43 (32%)
Unknown 55 (40%)

Metastasis within 5 years
Yes 12 (9%)
No 124 (91%)
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(module 2, 4 and 6). Furthermore, there was an obvious dif-
ference in the effect of connectivity degree of different mod-
ules. Three pairs of module combination had much higher 
adjacency degree besides the highest self-comparison and 
adjacency degree. The three pairs had much stronger effects, 
and they are module 2 and module 6, module 3 and module 
5, module 7 and module 8.

Functional enrichment analysis of critical modules

GO and KEGG enrichment analysis was performed on the 
genes in the constructed nine modules. We found that there 
was much difference in the enriched functions among dif-
ferent modules by the result of biology process analysis. 
The enriched GO terms in module 1 were mainly about the 
cell division and adherence and DNA repairing, including 
GO:0098609 (cell–cell adhesion), GO:0051301 (cell divi-
sion) and GO:0006260 (DNA replication). The GO terms 
in module 2 were mainly enriched in the splicing and regu-
lation of mRNA, mainly including GO:0000398 (mRNA 
splicing, via spliceosome) and GO:0043488 (regulation of 
mRNA stability). Genes in module 3 were similar to that in 

module 2, mainly enriched in the splicing process of mRNA, 
mainly including GO:0000398 (mRNA splicing, via spliceo-
some) and GO:0008380 (RNA splicing). Genes in module 4 
were significantly enriched in rRNA processing and transla-
tion inhibition, mainly including GO:0006364 (rRNA pro-
cessing) and GO:0006413 (translational initiation). Genes 
in module 5 were mainly enriched in the process of the 
mitochondrion, which was associated with energy supply-
ing, mainly including GO:0006120 (mitochondrial electron 
transport, NADH to ubiquinone). Module 6 and module 7 
were similar to module 1, mainly enriched in GO:0098609 
(cell–cell adhesion). Module 8 was mainly enriched in 
immune/defend reactions, including GO:0006955 (immune 
response), GO:0006954 (inflammatory response) and 
GO:0051607 (defense response to virus). In module 9, genes 
were mainly enriched in the process of protein ubiquitina-
tion and instability, mainly including GO:0031648 (protein 
destabilization) and GO:0016925 (protein sumoylation). The 
result of KEGG enrichment analysis of genes in the nine 
constructed modules was shown in Fig. 5. The result showed 
that there were significant enriched metabolic pathways in 
each module and the enriched degree of metabolic pathways 

Fig. 1   Cluster analysis of breast cancer samples. The top 4000 genes 
with the highest average expression values were used for the analy-
sis by WGCNA and flashClust. All samples were divided into two 
clusters on the whole, cluster I (pale red) and cluster II (pale blue), 

including two samples and 134 samples, respectively. Two sub-clus-
ters were identified in cluster II. There were 124 samples in sub-clus-
ter I and ten samples in sub-cluster II (color figure online)
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was quite different. Metabolic pathways in module 8 had the 
highest enriched degree while module 1 was the lowest. The 
result of KEGG analysis was illustrated in Table 3. Genes 
in module 1 were mainly enriched in hsa01100 (metabolic 
pathways) and hsa04110 (cell cycle). Genes in module 2 
were mainly enriched in pathways as hsa03040 (spliceo-
some) and hsa00190 (oxidative phosphorylation). Genes in 
module 3 were mainly enriched in pathways as splicing and 
antibiotic synthesis, mainly including hsa03040 (spliceo-
some) and hsa01130 (biosynthesis of antibiotics). Genes in 
module 4 were mainly enriched in hsa03010 (ribosome) and 
hsa03040 (spliceosome) pathways. Genes in module 5 were 

mainly enriched in pathways of hsa00190 (oxidative phos-
phorylation) while genes in module 6 was mainly enriched 
in pathways as hsa04141 (protein processing in endoplasmic 
reticulum) and hsa01130 (biosynthesis of antibiotics). Genes 
in module 7 were mainly enriched in hsa04512 (ECM-
receptor interaction) and hsa04510 (focal adhesion) path-
ways. Genes in module 8 were mainly enriched in hsa04612 
(antigen processing and presentation) and hsa04145 (phago-
some) pathways, which are in accordance with the result of 
GO analysis about biological process of immune response. 
Genes in module 9 were mainly enriched in the biological 
process of immune response pathways.

Fig. 2   Construction of co-expression modules of breast cancer-
related genes. a The effect of different power values on the scale 
independence of co-expression modules of breast cancer genes. b The 
effect of different power values on the average connectivity degree 
of co-expression modules of breast cancer genes. c The construction 

of co-expression modules by WGCNA software. Each branch in the 
figure represented one gene and every color below represented one 
co-expression module. The icon M on the right stands for the module 
and number in the brackets represented the number of genes in this 
module (color figure online)
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Table 2   GO enrichment analysis of genes in the co-expression module

The icon M in the first row represented module

Term Count % P value

M1 GO:0098609 ~ cell–cell adhesion 38 3.815261 3.63E−07
GO:0051301 ~ cell division 36 3.614458 5.44E−04
GO:0090200 ~ positive regulation of release of cytochrome c from mitochondria 8 0.803213 6.68E−04
GO:0006260 ~ DNA replication 20 2.008032 9.60E−04
GO:0031145 ~ anaphase-promoting complex-dependent catabolic process 13 1.305221 0.001297

M2 GO:0002479 ~ antigen processing and presentation of exogenous peptide antigen via MHC 
class I, TAP-dependent

21 3.459638 9.04E−15

GO:0000398 ~ mRNA splicing, via spliceosome 36 5.930807 2.24E−14
GO:0038061 ~ NIK/NF-kappaB signaling 17 2.800659 4.04E−10
GO:0006521 ~ regulation of cellular amino acid metabolic process 15 2.47117 8.53E−10
GO:0043488 ~ regulation of mRNA stability 20 3.294893 1.39E−09

M3 GO:0016032 ~ viral process 26 4.634581 5.06E−06
GO:0000398 ~ mRNA splicing, via spliceosome 21 3.743316 1.51E−05
GO:0008380 ~ RNA splicing 17 3.030303 4.72E−05
GO:0000209 ~ protein polyubiquitination 18 3.208556 4.73E−05
GO:0045454 ~ cell redox homeostasis 11 1.960784 1.08E−04

M4 GO:0006614 ~ SRP-dependent cotranslational protein targeting to membrane 46 8.318264 5.15E−43
GO:0000184 ~ nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 47 8.499096 1.11E−38
GO:0006413 ~ translational initiation 47 8.499096 1.97E−35
GO:0006364 ~ rRNA processing 56 10.12658 2.66E−35
GO:0019083 ~ viral transcription 42 7.594937 1.94E−33

M5 GO:0006120 ~ mitochondrial electron transport, NADH to ubiquinone 10 2.48139 1.17E−06
GO:1902600 ~ hydrogen ion transmembrane transport 10 2.48139 7.81E−06
GO:0043161 ~ proteasome-mediated ubiquitin-dependent protein catabolic process 16 3.970223 5.30E−05
GO:0006123 ~ mitochondrial electron transport, cytochrome c to oxygen 6 1.488834 6.36E−05
GO:0032981 ~ mitochondrial respiratory chain complex I assembly 9 2.233251 7.61E−05

M6 GO:0098609 ~ cell–cell adhesion 20 5.390836 3.53E−06
GO:0036498 ~ IRE1-mediated unfolded protein response 8 2.156334 1.98E−04
GO:0006094 ~ gluconeogenesis 7 1.886792 2.63E−04
GO:0043488 ~ regulation of mRNA stability 10 2.695418 2.71E−04
GO:0043161 ~ proteasome-mediated ubiquitin-dependent protein catabolic process 14 3.773585 3.01E−04

M7 GO:0030198 ~ extracellular matrix organization 38 12.45902 2.91E−28
GO:0007155 ~ cell adhesion 44 14.42623 3.34E−20
GO:0030574 ~ collagen catabolic process 18 5.901639 3.04E−16
GO:0002576 ~ platelet degranulation 15 4.918033 2.04E−09
GO:0016525 ~ negative regulation of angiogenesis 12 3.934426 6.32E−09

M8 GO:0060333 ~ interferon-gamma-mediated signaling pathway 14 11.66667 9.20E−16
GO:0051607 ~ defense response to virus 13 10.83333 9.22E−10
GO:0006955 ~ immune response 18 15 2.33E−09
GO:0006954 ~ inflammatory response 17 14.16667 3.83E−09
GO:0060337 ~ type I interferon signaling pathway 9 7.5 9.19E−09

M9 GO:0006368 ~ transcription elongation from RNA polymerase II promoter 5 6.097561 5.62E−04
GO:0015031 ~ protein transport 7 8.536585 0.007875
GO:0031648 ~ protein destabilization 3 3.658537 0.010377
GO:0016925 ~ protein sumoylation 4 4.878049 0.014931
GO:0043066 ~ negative regulation of apoptotic process 7 8.536585 0.015053
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Discussion

Breast cancer is the second most common tumors affecting 
people, especially women around the period of menopause 
worldwide. It is also one of the most principal causes of 
death of patients suffering from cancer [14]. Nowadays, 
there hasn’t been any effective treatment for patients with 
breast cancer and the most effective measure to this dis-
ease was prevention [3]. What is worse, patients at the 
same stage of disease can have quite different treatment 
responses and overall outcome, which makes the situation 
more complicated and thus the research on prognostic or 
predictive markers of breast cancer became more urgent. 
In this study, we aimed to explore the critical biomarker 
for a better understanding of the molecular mechanism, 
which can then be applied in the diagnosis or treatment 

of breast cancer. In this study, co-expression patterns in 
breast cancer and matched normal tissues were exam-
ined by WGCNA, a powerful method used to extract co-
expressed groups of genes from large expression data sets. 
As a result, a total of nine co-expression modules were 
screened out by WGCNA in the training dataset GSE12903 
from NCBI dataset. Besides, the critical co-expression 
modules and genes they included were identified by GO 
and KEGG functional enrichment analysis. Early studies 
on breast cancer most relied on gene expression profiles, 
which had some disadvantages. Although genome-wide 
gene expression breast cancer datasets were available and 
offered opportunities for translational advances and per-
sonalized medicines, the challenges still existed in data 
analysis. For example, the result of differential expressed 
gene analysis cannot be in accordance with another which 

Fig. 3   Interaction relationship 
analysis of co-expression genes. 
Different colors of horizontal 
axis and vertical axis repre-
sented different modules. The 
brightness of yellow in the mid-
dle represented the connectivity 
degree of different modules. 
There was not much difference 
in interactions among different 
modules, indicating the higher 
scale independence degree 
among these modules. The icon 
below represented the module 
and the number in the brack-
ets represented the number of 
genes in corresponding modules 
(color figure online)
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was obtained at different platforms, thus making the result 
unreliable.

However, WGCNA approach can well avoid this dis-
advantage by performing well across all types of data and 
focusing on a batch of gene modules rather than individ-
ual genes. Besides, it does not rely on a prior assumption 
about genes or covariates. Therefore, WGCNA can avoid 

biologically wrong assumptions about independence of gene 
expression levels since it can also transform gene expression 
profiles into functional co-expressed gene modules. Up to 
now, WGCNA method has been applied in many types of 
cancers, such as lung cancer, brain cancer, and breast can-
cer. In this study, we found the genes in two co-expression 
modules, module 8 and module 9, played an essential role 

Fig. 4   The connectivity analysis 
of critical genes in different 
module. a Cluster analysis of 
critical genes in modules. Two 
clusters were found out, which 
included six samples (module 
1, 3, 5, 7, 8 and 9) and three 
samples (module 2, 4 and 6), 
respectively. b The connectiv-
ity heatmap of critical genes 
in modules. The change of 
color from blue (0) to red (0) 
in the heatmap represented the 
connectivity degree of critical 
genes in different modules from 
weak to strong. The icon on the 
right represented the module 
and the number in the brackets 
represented the number of genes 
in this module (color figure 
online)
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Fig. 5   KEGG enrichment heatmap of genes in the co-expression module. Words on the right represented the number of metabolic pathways of 
KEGG and the words below represented the constructed modules in this study. The M icon represented the module (color figure online)
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in immune response and ubiquitin-mediated proteolysis 
process, and these two modules were recognized as the 
most important modules in the occurrence of breast cancer. 
GO analysis showed that genes in module 8 were mainly 
involved in pathways in response to the immune system, 
inflammatory, and defense. Similarly, we found that genes 
in module 9 played important roles in response to protein 

syntheses, such as ubiquitin-mediated proteolysis, protein 
destabilization, and protein sumoylation processes. Further-
more, KEGG analysis revealed that module 8 was mainly 
enriched in hsa01130 (Biosynthesis of antibiotics) and 
hsa00190 (Oxidative phosphorylation) pathways. Most co-
expression modules were in close association with immune 
reaction and ubiquitin-mediated proteolysis process, and 

Table 3   KEGG enrichment 
analysis of genes in the 
co-expression modules

The icon M in the first row represented module

Term Count % P value

M1 hsa00480: glutathione metabolism 11 1.104418 7.15E−04
hsa04978: mineral absorption 9 0.903614 0.005259
hsa01100: metabolic pathways 93 9.337349 0.008818
hsa03013: RNA transport 19 1.907631 0.013726
hsa04110: cell cycle 15 1.506024 0.015324

M2 hsa03050: proteasome 14 2.306425 3.18E−08
hsa05016: Huntington’s disease 27 4.448105 3.13E−07
hsa03040: spliceosome 20 3.294893 5.81E−06
hsa00190: oxidative phosphorylation 19 3.130148 2.19E−05
hsa05012: Parkinson’s disease 19 3.130148 5.36E−05

M3 hsa03040: spliceosome 17 3.030303 1.95E−05
hsa01130: biosynthesis of antibiotics 21 3.743316 6.70E−05
hsa05210: colorectal cancer 10 1.782531 3.28E−04
hsa00620: pyruvate metabolism 8 1.426025 4.76E−04
hsa04141: protein processing in endoplasmic reticulum 16 2.85205 0.001043

M4 hsa03010: ribosome 44 7.9566 6.36E−30
hsa03060: protein export 6 1.084991 0.001152
hsa03040: spliceosome 13 2.350814 0.002943
hsa01200: carbon metabolism 11 1.98915 0.007356
hsa00510: N-glycan biosynthesis 7 1.265823 0.007863

M5 hsa00190: oxidative phosphorylation 26 6.451613 5.28E−14
hsa05012: Parkinson’s disease 23 5.707196 1.05E−10
hsa05016: Huntington’s disease 26 6.451613 2.46E−10
hsa04932: non-alcoholic fatty liver disease (NAFLD) 22 5.459057 2.21E−09
hsa05010: Alzheimer’s disease 23 5.707196 2.86E−09

M6 hsa04141: protein processing in endoplasmic reticulum 16 4.312668 1.25E−05
hsa01130: biosynthesis of antibiotics 13 3.504043 0.005116
hsa01200: carbon metabolism 9 2.425876 0.005858
hsa04142: lysosome 9 2.425876 0.00876
hsa04922: glucagon signaling pathway 8 2.156334 0.009818

M7 hsa04512: ECM-receptor interaction 18 5.901639 3.39E−13
hsa04510: focal adhesion 25 8.196721 5.24E−13
hsa04151: PI3K-Akt signaling pathway 26 8.52459 5.35E−09
hsa04974: protein digestion and absorption 14 4.590164 8.84E−09
hsa05146: amoebiasis 13 4.262295 6.83E−07

M8 hsa05150: Staphylococcus aureus infection 11 9.166667 4.58E−11
hsa04612: antigen processing and presentation 12 10 7.52E−11
hsa05152: tuberculosis 14 11.66667 6.77E−09
hsa05140: leishmaniasis 10 8.333333 1.53E−08
hsa04145: phagosome 12 10 1.40E−07

M9 hsa04120: ubiquitin-mediated proteolysis 4 4.878049 0.022857
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these two pathways were regarded as potential biomarkers 
in the mechanism study of breast cancer. The enrich path-
way of hsa04120 (ubiquitin-mediated proteolysis) was rec-
ognized as the most critical prognostic marker in the occur-
rence of breast cancer. Combined with the result of other two 
enriched pathways, that is, hsa01130 (biosynthesis of antibi-
otics) and hsa00190 (oxidative phosphorylation), enriched 
by more than one co-expression module, which were also in 
close association with the process of ubiquitin-mediated pro-
teolysis, we have reason to believe these enriched pathways 
can function as biomarkers in the diagnosis of breast cancer. 
It is reported that cell proliferation correlate with relapse 
rate in pre- and postmenopausal women with breast cancer 
[15], and women around this period experienced changes 
in hormone levels in vivo. The ubiquitin-mediated prote-
olysis was in close association with the protein syntheses 
required for the cell proliferation and hormone synthesis. 
For example, estrogen and progesterone, two main hormones 
in menopause period, were largely affected in women with 
breast cancer [16, 17], combined with their main component 
of protein, the profound meaning of critical biomarker of 
ubiquitin-mediated proteolysis pathway was more certain to 
believe, which required further investigations.

In summary, our study used systems biology-based 
WGCNA approach to construct co-expression modules, 
which played a critical role in breast cancer. Ubiquitin-medi-
ated proteolysis pathway, significantly enriched in module 
8 and module 9, could function as the prognostic and pre-
dictive marker in the clinical management of breast cancer.
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