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Abstract
Purpose of Review There is global increase in the incidence of mucormycosis. However, a sudden increase in the COVID-
associated mucormycosis (CAM) was noted, particularly in India, during the second wave of the COVID-19 pandemic. The 
interplay of factors involved in the pathogenesis is complex. In this review, the influence of pre-existing disease, exaggerated 
risk factors, altered milieu due to COVID-19 itself and the consequences of its treatment on the host pathogen interactions 
leading to the disease and morphology of the fungus will be highlighted.
Recent Findings Hyperglycemia, acidosis, available free iron, lowered host defenses, and the fungal virulence factors promote the 
growth of Mucorales. There is a high background prevalence of diabetes mellitus (DM) in India. Uncontrolled or undiagnosed DM, 
COVID-19 itself, and inappropriate administration of corticosteroids in high doses and for prolonged periods result in hypergly-
cemia. Diabetic ketoacidosis (DKA) and metabolic acidosis due to hypoxia or renal failure contribute to acidic pH and dissociate 
bound iron from serum proteins. The host defenses are lowered due to COVID-19-induced immune dysregulation, hyperglycemia 
itself, and administration of corticosteroids and immune suppressants for the treatment of COVID-19. The altered metabolic milieu 
in the local microenvironment of nose and paranasal sinuses (PNS) promotes specific interaction of glucose-regulated protein-78 
(GRP-78) on host cells with spore coat protein homologue (CotH 3) on Mucorales resulting in rhino-orbito-cerebral mucormy-
cosis (ROCM) as the predominant clinical form in CAM. The pathology is extensive soft tissue involvement with angioinvasion 
and perineural invasion. Melanized hyphae and sporangia were seen on histopathology, which is unique to CAM. While many 
factors favor the growth of Mucorales in CAM, hyperglycemia, hyperferritinemia, and administration of hyperbaric oxygen result 
in reactive oxygen species (ROS) and inadequate humidification results in dehydration. Melanization is possibly the adaptive and 
protective mechanism of Mucorales to escape the unfavorable conditions due to the treatment of COVID-19.
Summary High background prevalence of DM, inappropriate administration of corticosteroids and immune dysregulation 
due to COVID-19 favor the growth of Mucorales in CAM. Melanization of Mucorales hyphae and sporangia on histopathol-
ogy probably represent adaptive and protective mechanism due to the treatment with hyperbaric oxygen with inadequate 
humidification as well as the metabolic alterations.

Keywords COVID-associated mucormycosis · Diabetes mellitus · Corticosteroids · Melanization of Mucorales hyphae · 
Sporangia on histopathology

Introduction

Mucormycosis was once considered a rare disease. How-
ever, the incidence is on the rise globally in the past few 
decades [1–10, 11••, 12•, 13]. The incidence of risk factors 

varies in different geographical regions contributing to the 
variation in the prevalence between developed and devel-
oping countries [8–10, 11••, 12•, 13]. In India, the preva-
lence is nearly 80 times higher and it is attributed to the high 
prevalence of diabetes mellitus (DM) [7, 11••, 12•, 13–15]. 
In the recent coronavirus disease 2019 (COVID-19) pan-
demic, caused by severe acute respiratory syndrome virus 
2 (SARS-CoV-2), during the second wave, there was a sud-
den increase in the number of cases of mucormycosis, par-
ticularly in India, which could not be explained by the high 
prevalence of DM alone [16–18, 19••, 20, 21•, 22, 23••, 
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24••]. The Government of India declared COVID-associated 
mucormycosis (CAM) an epidemic in many states and ter-
ritories. In a multi-center study from India, the prevalence of 
CAM was reported to be 0.27% (range 0.05–0.57%) [19••].

The pathophysiology of COVID-19 and the associated 
secondary infections were described by many authors [19••, 
25–30, 31•, 32]. Several publications described the epide-
miology, risk factors, pathogenesis, and outcome of CAM 
[17, 18, 19••, 20, 21•, 23••, 24••, 33].

Uncontrolled DM, specifically ketoacidosis and admin-
istration of corticosteroids, were the key factors involved in 
the pathogenesis of CAM [19••, 24••]. Uncontrolled DM 
and newly diagnosed DM at the evaluation for CAM were 
reported in several series [19••, 24••, 34]. DKA and acute or 
chronic renal dysfunction were reported in 20% of patients 
with COVID-associated ROCM [35]. Corticosteroids were 
indicated for the treatment of hospitalized patients with 
COVID-19 pneumonia who required supplemental oxygen 
and higher levels of respiratory support [36]. Prolonged 
(> 3 weeks) high-dose use of corticosteroids was known to 
increase the risk to develop mucormycosis [37, 38]. Inappro-
priate and indiscriminate use of corticosteroids was reported 
in 63.3% of patients during the second wave of COVID-19 
in India [19••, 34].

Comparison of studies on mucormycosis in pre-COVID 
times and CAM suggests that diabetic patients with COVID-
19, receiving corticosteroids were at great risk of developing 
CAM [10, 11••, 19••, 24••, 33]. The outcome is poor with 
cerebral or pulmonary involvement and disseminated form 
of CAM [21•, 24••, 33]. Table 1 summarizes the demo-
graphic details, pre-existing disease, site of involvement, and 
outcome of pre-COVID-mucormycosis and CAM.

However, the interplay of factors involved in the patho-
genesis and pathology of CAM are not completely under-
stood. In this review, the influence of pre-existing disease, 
exaggerated risk factors, altered milieu due to COVID-19 
itself, and the consequences of its treatment on the host path-
ogen interactions leading to the disease and morphology of 
the fungus will be highlighted.

Secondary Infections in COVID‑19

COVID-19 causes immune dysregulation involving both 
innate and adaptive immunity and hence COVID-19 patients 
are more susceptible to develop secondary infections [19••, 
27]. The rate of in-hospital secondary bacterial and fungal 
infection has been reported to be approximately 8% [25, 26, 
28, 30, 32]. Severe COVID-19 disease, prolonged stay in 
intensive care unit (ICU), requirement of mechanical ven-
tilation, treatment with broad-spectrum antibiotics, immu-
nosuppressive agents along with pre-existing disease like 
DM, and de-compensated pulmonary function predispose to 

secondary infections by bacteria, viruses, and fungi [19••, 
25–27, 39–41].

In a systematic review and meta-analysis of co-infections 
and super-infections with SARS-CoV-2, fungal infections 
were reported as co-infection in 4% and super-infection in 
8% [31•]. Fungal infections were more likely to develop 
during the more advanced stages of COVID-19 infection 
[29]. CAM is the most common fungal infection reported 
from India, which is at variance to other countries where 
Aspergillus, Pneumocystis jiroveci, and Candida have been 
reported to be the major secondary fungal pathogens [23••, 
27, 29, 42–46]. The other reported fungi causing disease in 
COVID-19 include Histoplasma spp., Cryptococcus spp., 
Fusarium spp., and Pneumocystis jiroveci [27, 29, 42–46].

Etiologic Agents

Mucormycosis is caused by fungi of the order Mucorales. 
The most common etiologic agents are Rhizopus spp., 
Mucor spp., and Lichtheimia spp., followed by Rhizomu-
cor spp., Cunninghamella spp., Apophysomyces spp., and 
Saksenaea spp. [1, 9, 11••, 12•, 13, 47]. In CAM, Rhizo-
pus spp. (Rhizopus arrhizus, Rhizomucor pusillus) were the 
most common agents isolated, followed by Apophysomyces 
variabilis, Lichtheimia corymbifera, and others [19••, 24••]. 
Rhizopus arrhizus was the predominant agent causing CAM 
in India [19••].

Pathogen Factors

Rhizopus spp. is aerobic, thermo-tolerant, fast-growing, 
saprotrophic, fungus, and has an optimal growth tempera-
ture of 39 °C under conditions of low pH and high glucose 
concentration [48]. The genome of Rhizopus spp. indicates 
an ancestral whole-genome duplication event, related to 
cell growth, signal transduction, and cell wall synthesis that 
facilitate its adaptation to different environmental conditions 
[49]. The virulence factors of Rhizopus spp. include the fol-
lowing [48, 50–55, 56••]:

1. The cell wall characters: The precise structure of the 
Mucorales cell wall for both the sporangiospores and 
hyphal form is not yet fully characterized, but the cell 
wall has been shown to consist of chitin/chitosan, β-1,3-
glucans, mannan, mannose, extracellular polysaccha-
rides (EPS), and other polysaccharides, e.g., mucoran 
and mucoric acid (hyphae) [54]. The cell wall is vital 
for integrity and viability and protects the fungus from 
harsh environment. The cell wall components are highly 
antigenic and elicit both humoral and cell-mediated 
immunity during infection and permits passage of nutri-
ents [50, 52].
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2. Growth conditions: Rhizopus spp. have optimal growth 
conditions at low pH and high glucose concentration, 
and are thermo-tolerant.

3. Nutrients: Rhizopus spp. elaborate enzymes required for 
iron acquisition by siderophores and iron permeases, and 
secrete proteases to digest extracellular matrix for inva-
sion.

4. Host defenses: Rhizopus spp. cause infection when host 
defenses are lowered, particularly neutropenia, and 
evade host immune response, as Rhizopus spp. are able 
to survive within macrophages by the arrest of phago-
lysosome maturation.

5. Interaction with host: Rhizopus spp. interact with host 
epithelial cells by a specific recognition through GRP78 
and Cot H proteins, which are exclusive to Mucorales, 

especially Rhizopus spp. and not found in Candida spp. 
and Aspergillus spp.

The pathophysiology of DM and the hyper-inflamma-
tory state in COVID-19, along with the administration of 
corticosteroids offer favorable conditions for the success-
ful replication of Rhizopus spp.

Risk Factors

The main risk factors for mucormycosis are the following 
[1, 6, 11••, 15, 57, 58•]:

 i. Neutropenia due to hematopoietic stem cell transplan-
tation (HSCT), solid organ transplantation (SOT), 

Table 1  Demographic details, pre-existing disease, site of involvement, corticosteroid administration and outcome of pre-COVID- and COVID-
associated mucormycosis

Abbreviations: DM, diabetes mellitus; DKA, diabetic ketoacidosis; ROM, rhino-orbital mucormycosis; ROCM, rhino-orbito-cerebral mucormy-
cosis; GIT, gastrointestinal tract

Parameter Pre-COVID mucormycosis COVID-associated mucormycosis

Authors Patel et al. 2020 
[11••]
n = 465 (India)

Jeong et al. (2019) [10]
n = 851 (31% Asia)

Patel et al. (2021) 
[19••]
n = 187 (India)

Hoenigl et al. (2022) 
[24••]
n = 80 (53% India)

Watanabe et al. (2022) 
[33]
n = 2312 (88.67% India)

Type of study Multi-center study Systematic review and 
meta-analysis

Multi-center study Review of cases from 
18 countries

Systematic review and 
meta-analysis

Study period 1 January 2016–
30 September 
2017

January 2000–January 
2017

1 September 2020–1 
December 2020

1 October 2019–12 
April 2021

Till 20 January 2022

Age in years 48 51 56.9 55 36–63
Male gender (%) 69.5 63 80.2 78 20–100
Pre-existing disease (%)
 DM (DKA in % of 

DM patients)
73.5 (14.6) 40 (21; status unknown 

in 248/851)
60.4 (8.6) 83 (49: available in 

55/66)
82 (2.71)

 Malignancy 09 32 1.1 06 2.6
 Transplantation 7.7 14 1.6 - -
 Chronic kidney 

disease
20 - 06 15

 Trauma 6.9 20 1.6 - -
 Others 0.6 03 2.7 19 -
 No predisposing 

disease
11.8 18 32.6 (COVID-19 only) 05 (COVID-19 only) -

Site of involvement (%)
 ROM (ROCM) 67.7 (32.7) 34 (9) 86.1 (27.33) 74 (37) 97 (25)
 Pulmonary 13.3 20 8.6 25 (includes 15% dis-

seminated)
2.7

 Cutaneous 10.5 22 2.7 -  < 1
 GIT 2.6 8.5  < 1
 Disseminated 2.8 13 2.1 -
 Others 03 03 0.5
 Corticosteroid 

administration (%)
3.7 - 78.7 79 77

 Mortality (%) 52 46 44 49 29
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immunosuppressive therapy (including corticoster-
oids) for malignancy, autoimmune diseases

 ii. Hyperglycemia due to uncontrolled/poorly controlled 
DM, administration of corticosteroids.

 iii. Acidosis due to DKA, chronic renal failure, decom-
pensated pulmonary function leading to hypoxemia 
and metabolic acidosis

 iv. Disruption of mucosal/skin barrier due to trauma, 
burns, combat related injuries, natural disasters

 v. Iron overload due to deferoxamine therapy, multiple 
transfusions

 vi. Prematurity, malnutrition, dehydration
 vii. Antifungal therapy with voriconazole, posaconazole
 viii. Others

The most important risk factors in CAM were hyper-
glycemia due to uncontrolled DM, administration of corti-
costeroids for the treatment of COVID-19 and COVID-19 
itself [19••, 24••, 58•].

In non-COVID mucormycosis, DM is the most com-
mon pre-existing disease in Asian and African countries, 
especially India and China, whereas neutropenia due to 
HSCT and SOT are the common factors in Europe, North 
& South America, Australia, and New Zealand [10, 13]. 
In addition to uncontrolled DM and DKA, chronic kidney 
disease and pulmonary tuberculosis were also reported to 
be frequent diseases in countries like India [12•]. Jeong 
et al. reported use of corticosteroid at the time of presenta-
tion in 33% (pre-COVID time), followed by neutropenia 
and trauma [10].

In a systematic review and meta-analysis, Watanabe 
et al. reported DM as the underlying disease in 82% and 
administration of corticosteroids in 77% patients of CAM 
[33]. In a multi-center epidemiologic study from India, 
Patel et al. reported DM in 60.4% and administration of 
corticosteroids in 78.7% patients with CAM [19••].

Route of Spread

The primary route of spread is by inhalation of the spores 
from the environment, which get deposited in the PNS. 
The other less common routes are by ingestion of con-
taminated food or inoculation of spores in skin or mucosa 
by trauma/injury or application of contaminated band-
ages/instruments. Although infection occurs usually in 
immunosuppressed hosts, cutaneous infections can occur 
in immunocompetent hosts [1, 9, 12•, 59]. In CAM, the 
predominant route of spread was inhalation and spread 
from PNS, most commonly resulting in rhino-orbital or 
rhino-orbito-cerebral mucormycosis (ROM or ROCM 
respectively) [19••, 24••].

Clinical Forms

The clinical forms described are (i) rhino-orbito-cerebral, 
(ii) pulmonary, (iii) cutaneous, (iv) gastrointestinal, (v) dis-
seminated, and (vi) miscellaneous including isolated organ 
involvement such as isolated renal mucormycosis [1, 9, 12•, 
59]. The clinical form depends on the risk factor and predis-
posing condition; ROCM is frequently observed in associa-
tion with uncontrolled DM and DKA, whereas pulmonary 
involvement is often observed in patients having neutrope-
nia, HSCT, SOT, and hematological malignancies, while 
gastrointestinal tract (GIT) gets involved more in malnour-
ished individuals and cutaneous form following trauma [1, 
10, 11••, 22]. The most common type of CAM was ROM or 
ROCM followed by pulmonary and others (cutaneous, renal, 
gastrointestinal, disseminated) [19••, 24••, 33].

Factors Favoring CAM

Hyperglycemia

Hyperglycemia in CAM may be due to uncontrolled or newly 
diagnosed DM, virus-induced damage to islets of pancreas 
or due to the administration of corticosteroids. SARS-CoV-2 
can cause hyperglycemia by causing damage to pancreatic 
islet cells bearing acetyl cholinesterase 2 (ACE 2) recep-
tors. The other mechanisms include insulin resistance due 
to cytokine storm and acute cortisol stress response [60–63]. 
Corticosteroids cause hyperglycemia by acting as a substrate 
for oxidative stress metabolism with lipolysis, proteolysis, 
and hepatic glucose production. They also increase insulin 
resistance in up to 60–80% of patients depending on the dose 
and type used [64].

Acidosis

Acidosis can occur due to the accumulation of ketone bod-
ies, particularly, beta hydroxyl butyrate (BHB) in DKA. 
BHB-related acidosis exerts a direct effect on the virulence 
of Mucorales, favoring their growth but ketoacidosis does 
not predispose to aspergillosis [65]. Acute/chronic renal 
dysfunction and pre-existing destructive parenchymal lung 
disease can predispose to metabolic acidosis. In addition, 
SARS-CoV-2 also has renal tropism and direct infection can 
lead to acute kidney injury and renal failure [66]. In addition 
to direct infection, uncontrolled cytokine release, thrombo-
sis, and ischemia, that occur in COVID-19, can also result 
in further kidney dysfunction, characterized by intra-renal 
inflammation, increased vascular permeability, and volume 
depletion [67]. Vitamin C, administered for treatment of 
COVID-19, if given in high doses and for prolonged periods, 
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can also cause acidosis, especially in COVID-19 patients 
with compromised renal function [23••].

Availability of Free Iron

Hyperglycemia induces excessive glycosylation of ferritin 
and transferrin, leading to their decreased affinity for iron. 
The acidic pH impairs the ability of transferrin to chelate 
iron. Hence, iron, which is normally bound to serum pro-
teins, gets dissociated in acidic pH leading to high serum 
concentrations of free iron [59]. Patients with renal failure 
undergoing deferoxamine chelation also have increased 
serum-free iron. The cytokine response, particularly secre-
tion of interleukin-6 (IL-6), in COVID-19 stimulates ferritin 
and hepcidin synthesis and leads to sequestration of iron in 
macrophages. The resultant hyperferritinemia contributes 
to increased intracellular iron. Increased intracellular iron 
causes ROS, leading to tissue damage and release of free 
iron into circulation [68]. Vitamin C in excessive dose also 
increases intestinal absorption of iron [23••].

Hyperglycemia, acidosis, and availability of free iron 
increase the expression of GRP78 and its interaction with 
Cot H on the hyphae of Mucorales leading to growth and 
invasion of the fungus [65]. Moreover, Mucorales possess a 
ketone reductase enzyme and thus thrive in hyperglycemia 
and acidosis [69].

Immune Dysregulation

DM, along with COVID-19-induced systemic immune 
change and administration of corticosteroids and tocili-
zumab for the treatment of COVID-19, results in lowered 
host defenses and increases the risk for CAM [32, 70].

Hyperglycemia impairs innate immunity by the inhibition 
of neutrophil migration, chemotaxis, and phagocytosis. The 
diabetes-induced immune dysregulation may exacerbate the 
virus-activated hyper-inflammatory “cytokine storm,” which 
in turn leads to complications like adult respiratory distress 
syndrome (ARDS), shock, multiorgan failure, and death seen 
in severe COVID-19 [71].

COVID-19 causes immune dysregulation by involving 
both innate and adaptive immunity. It causes relative neu-
trophilia and lymphopenia, particularly involving CD4 + , 
CD8 + T cells, and natural killer cells [23••]. It causes 
overexpression of inflammatory cytokines, particularly 
secretion of IL-6 [72]. IL-6 promotes synthesis of ferritin 
and the hyperferritinemic state sustains a feed-forward loop 
of hyperinflammation and also modulates the lymphocyte 
response [73]. It interferes with T cell expansion, causes 
apoptosis of lymphocytes leading to T cell exhaustion. Lym-
phocytes are crucial to maintain immune homeostasis [74]. 
Severely infected individuals showed increased expression 
of activation and exhaustion markers of T cells. Hence, a 

prolonged period of immune dysregulation after SARS-
CoV-2 infection persists and this may alter immune respon-
siveness to subsequent infections [75]. This also explains 
the occurrence of mucormycosis, in the post-COVID time 
period.

Platelets have antimicrobial and antifungal properties 
and suppress growth and dissemination of Mucorales. 
They inhibit germination of spores, produce cytokines/
chemokines, promote phagocytosis, and activate B and T 
cells [76–78]. Thrombocytopenia in COVID-19 impairs 
the antifungal immune functions of platelets. In addition, 
the prothrombotic state associated with COVID-19 helps 
to propagate angio-invasive complications associated with 
CAM such as cavernous sinus thrombosis or stroke [79].

Corticosteroids impair immune mechanisms mainly 
through interaction with glucocorticoid receptors by caus-
ing functional impairment of neutrophils and macrophages 
by inhibiting chemotaxis, leukocyte migration, phagocy-
tosis, and killing. They also impair phagolysosome fusion 
in macrophages. They downregulate the expression of 
proinflammatory cytokines such as tumor necrosis factor 
(TNF)-α, IL-1β, IL-6, IL-8, and IL-12; interferon (IFN) 
α/β; and granulocyte–macrophage colony-stimulating fac-
tor (GM-CSF), chemokines, and the inflammatory enzymes 
(iNOS and COX2) secreted by macrophages [80–82, 83••]. 
Corticosteroids cause lymphopenia and T cell dysregulation 
[16]. They inhibit dendritic cell (DC) maturation, interfere 
with T cell signaling, thereby leading to immunosuppression 
[80–82, 83••].

Tocilizumab, an anti-IL-6 receptor monoclonal antibody, 
is used in COVID-19 patients with hypoxia and who are 
critically ill. It causes immune suppression and neutropenia 
and increases the risk of secondary infections [84].

Microenvironment of Nose/PNS

The portal of entry for both Mucorales and SARS-CoV-2 is 
through nasal cavity. Nasal epithelial cells were shown to 
express the highest levels of ACE 2 receptors and cellular 
serine protease TMPRS, which are the main entry receptors 
for SARS-CoV-2 following interaction with viral (S) pike 
protein [85]. Several variants of concern of SARS-CoV-2 
(B.1.1.7 and B.6.177) were reported during the second wave 
globally and in India, which could use GRP78 as an alternate 
entry point for SARS-CoV-2 [86].

GRP78 is a heat shock protein present in the endoplas-
mic reticulum (ER) and helps in protein folding, maturation, 
and assembly [87–89]. Under stressful conditions, this is 
trans-located from ER to cell surface. Viral replication in the 
cell leads to the accumulation of excessively high number 
of unfolded viral structural proteins in ER leading to over 
expression of GRP78, at the cell surface [35]. GRP78 is also 
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the receptor used by Mucorales, especially Rhizopus spp. 
for fungal invasion [65, 90]. Vascular endothelial injury and 
endothelitis caused by COVID-19-associated inflammation, 
also increases the susceptibility to mucormycosis [24••].

The intact mucosa of nose and PNS and the muco-ciliary 
action clear the inhaled spores of Mucorales and prevent 
their germination. Nasal epithelial damage can occur due to 
DM or chemotherapy. The other putative factors implicated 
in delay for muco-ciliary clearance include administration of 
broad-spectrum antibiotics and home remedies like repeated 
hot water steaming for COVID-19 (SARS-CoV-2). Nasal 
epithelial damage facilitates adherence of Mucorales spores 
to extracellular matrix proteins, laminin and collagen IV, and 
the spores begin to germinate [65, 90, 91].

Hyperglycemia, acidosis, and free iron alter the local 
microenvironment of nose and PNS and lead to overexpres-
sion of GRP78 on the nasal epithelial and endothelial cells 
as a response to stress. The hyphae of Mucorales specifically 
recognize the host receptor, GRP78 on endothelial cells, 
and this interaction is mediated by the fungal ligand CotH3 
for endocytosis of the fungus [65, 90]. Angioinvasion by 
Mucorales causes endothelial injury and death leading to 
thrombosis, dissemination, and tissue necrosis. The toxic 
metabolites produced by Mucorales (e.g., mucoricin) have 
been shown to induce inflammation, vascular permeability, 
and tissue necrosis [92].

The overexpression of GRP78 occurs on nasal epithelial 
cells and not alveolar epithelial cells [56••, 93•, 94]. Cot 
H3 is exclusively present in all Mucorales but absent from 
other opportunistic fungi like Candida spp. and Aspergillus 

spp. [94, 95••]. Cot H3 protein is mainly expressed in the 
germination of R. arrhizus and shows a greater capacity to 
adhere and invade nasal epithelial cells. In contrast, Rhizo-
pus spp. interact with alveolar epithelial cells by binding 
with integrin-β1 with CotH7 as the major ligand [93•]. GRP 
78-mediated interaction is unique to Mucorales and not to 
other fungi like Aspergillus spp. and Candida spp. These 
factors possibly explain CAM during the second wave, fre-
quency of infection with Mucorales over other fungi, and 
ROCM over other clinical forms and Rhizopus arrhizus as 
the most frequent etiological agent [96].

Other Putative Factors

The environmental conditions like temperature, humidity, 
and spore content of Mucorales in the air were also impli-
cated as possible contributing factors for CAM [83••, 97]. 
The contamination of masks and traditional medicine with 
hot water steaming possibly resulted in mucosal disruption 
and implantation of the spores. Due to the health crisis and 
inadequate health care facilities in resource-limited countries 
like India, unsupervised/indiscriminate use of steroids and 
antibiotics, administration of zinc and vitamin C in high 
doses for prolonged periods was done [23••, 83••]. These 
factors possibly contributed to CAM (Fig. 1).

Pathology

Mucormycosis is an invasive disease and ROCM is the most 
common form. The surgical specimens in ROCM, usually 
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Fig. 1  Interplay of pathogenic factors in CAM
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include biopsy from sinus, resected specimens of maxil-
lectomy, orbital exenteration, debrided soft tissues, or focal 
lesions in the brain (Fig. 2). In pulmonary mucormycosis, 
the samples are transbronchial/percutaneous biopsy, lobec-
tomy, or pneumonectomy. In cutaneous form, it is biopsy or 
debridement specimens.

The progression of disease is from nasal mucosa to 
PNS, orbital soft tissues, and to CNS [21•]. Pterygopala-
tine fossa is the largest reservoir for Mucorales hyphae [98]. 
Mucosal involvement is seen as edema and thickening. The 
sinus mucosa becomes ulcerated and necrotic. Both acute 
necrotizing inflammation and granulomatous response with 
multinucleate giant cells are seen in CAM (Fig. 2). Black, 
necrotic eschar on the palate indicates damage to the nasal 
turbinates, which is a significant clinical finding to suspect 
mucormycosis. Involvement of maxilla may occur as part 
of ROCM and the blackish necrotic material fills the sinus. 
The maxillary bone may show erosion, osteomyelitis, or 
infarction (Fig. 2). However, involvement of mandible with 
loosening and necrosis of teeth is uncommon but is reported 
in CAM [19••]. Osteomyelitis and infarction of the mandible 

either isolated or with concomitant involvement of maxilla 
in CAM were reported [99, 100].

The infection from the sinus erodes the bone and involves 
the orbital structures. Extensive soft tissue invasion and bone 
destruction occur in CAM. Orbital cellulitis, subperiosteal, 
and orbital abscess can occur. The fungus involves the blood 
vessels, nerves, and meninges. The peri-orbital adipose 
tissue shows either bland necrosis with numerous fungal 
hyphae or karyorrhexis and small neutrophilic infiltrates. 
The facial skin also shows ulceration and acute inflamma-
tory infiltrate with numerous fungal hyphae. The extraocular 
muscles show myonecrosis with giant cell transformation 
(Fig. 2). Though there is extensive peri-orbital soft tissue 
involvement, intra-ocular involvement is rare [101].

The infection spreads posteriorly to involve sphenoid 
sinus and laterally to retro-orbital soft tissues and cavern-
ous sinus, causing cranial nerve palsies [74]. The infection 
involves CNS through orbital apex or cribriform plate of 
the ethmoid bone [6]. In CAM, ROM was the most com-
mon form, whereas ROCM was reported in 21–37% cases 
[21•, 24••]. The spread also occurs through invasion of 
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Fig. 2  a The excised maxilla and the orbital exenteration specimen; 
b & c maxillectomy specimen showing black necrotic material filling 
the sinus and infarction of the bone; d & e the orbital structures show 
congested, unhealthy, brownish necrotic peri-orbital contents. Exter-
nal aspect shows brownish discolored necrotic tissue. On cut section 
of the specimen, the intra-ocular structures were uninvolved by infec-
tion; photomicrographs showing, f & g ulcerated and necrotic mucosa 
and acute inflammation; photomicrographs showing infarcted bony 

lamellae and invasion by numerous fungal hyphae: h maxilla; i man-
dible; j peri-orbital adipose tissue shows bland necrosis accompanied 
by numerous fungal hyphae; k both acute necrotizing inflammation 
and granulomatous response with multinucleate giant cells in soft 
tissue; l extensive myonecrosis of the extraocular muscles; m bland 
necrosis with minimal inflammation and numerous fungal hyphae in 
the soft tissues (H&E × 100)
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superior orbital fissure, ophthalmic vessels, cranial nerves, 
and carotid vessels [21•, 102, 103]. Cavernous sinus throm-
bosis is the most common route of CNS involvement in 
ROCM associated with COVID-19 [21•]. CNS parenchymal 
involvement is mainly in the diencephalic areas, sparing the 
infratemporal structures [104, 105].

Pulmonary involvement in CAM is as multiple large nod-
ules with extensive cavitation and thick walls, necrotizing 
pneumonia, large consolidation, or pleural effusion [6, 24••].

The hallmark of pathology is tissue necrosis and infarc-
tion due to angioinvasion [65]. The jugular veins and carotid 
artery may be involved. Thrombotic occlusion with nar-
rowed lumen due to invasion by fungal hyphae and acute 
vasculitis with fungal hyphae within media and intima 
are seen in CAM. Perineural involvement is seen in dis-
seminated infections along with angioinvasion [106–108]. 
Trigeminal and facial cranial nerve palsy can occur [104, 
107]. Even though dura around the optic nerve is a tough 
barrier, the optic nerve can also be involved in CAM. Optic 
nerve is infiltrated by the fungal hyphae, accompanied by 
neutrophilic infiltrate. In fulminant cases of CAM, micro-
abscesses have been noted within the optic nerve (Fig. 3).

CNS pathology is usually hemorrhagic infarct with cavi-
tation involving the white matter or diencephalic nuclei or 
in the form of abscess involving frontal lobes [105]. The 
inflammatory response is neutrophilic in majority, with sup-
purating granuloma or minimal to absent inflammation in 
others [106] (Fig. 4). In the chronic invasive form, small 
micro-abscesses are seen surrounded by epitheloid cells, 
giant cells, eosinophils, and neutrophils, sometimes with 

Splendore-Hopple phenomenon [105]. Skull base osteomy-
elitis with epidural or subperiosteal abscess may be seen.

Pulmonary involvement is seen as hemorrhagic infarct, 
cavitary lesion, or abscess (Fig. 4).

Histopathologic examination shows characteristic broad 
(3–25-µm diameter) thin-walled, hyaline aseptate/pauci-
septate hyphae with irregular or right-angle branching. 
The hyphae are highlighted by Gomori methenamine stain 
(GMS) (Fig. 5) and periodic-acid Schiff stains (PAS) [109]. 
The pale eosinophilic hyphae are seen on hematoxylin and 
eosin (H&E) in the necrotic material or in the walls of the 
blood vessels or perineurium of the nerves. In CAM, pig-
mented/melanized hyphae and sporangia were seen in tissue 
sections. The melanized walls of fungus may be faintly seen 
on H&E stain, but they are better demonstrated and con-
firmed by Masson Fontana histochemical stain which gives 
black color to the fungus (Fig. 5).

Sporangia are more commonly reported in colonizing 
Aspergillus spp. in lung cavities that have direct communi-
cation with environment and exposure to high oxygen ten-
sion [109]. Sporangia of Mucorales in tissues are extremely 
uncommon [110]. However, sporangia of Mucorales were 
seen in CAM, both in the sinus and lung tissues.

Possible Pathophysiology of Melanization of Mucorales 
Hyphae in CAM

Mucorales are classified as hyaline fungi, and this morphol-
ogy helps in making the diagnosis as well as differentiate 

ba c d
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Fig. 3  Photomicrographs showing a thrombotic occlusion with nar-
rowed lumen due to invasion by fungal hyphae; b acute vasculitis and 
fungal hyphae within media and intima; c & d perineural and intra-

neural invasion by fungus in the adjacent soft tissue; e involvement of 
the optic nerve by the fungal hyphae; f optic nerve with neutrophilic 
infiltrate; g micro-abscess in the optic nerve (H&E × 100)
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from other hyaline fungi like Aspergillus spp., Fusarium 
spp., or dematiaceous (pigmented) fungi in tissue sections 
stained with H&E [106, 109, 111]. However, melanin can 
appear under specific developmental phases (i.e., conidia) 
or can be induced in response to environmental queues or 
in vitro [112, 113]. Melanization represents a general adap-
tation mechanism to adverse conditions [114]. Melaniza-
tion of hyaline fungi was rarely reported [115••, 116]. The 
possible factors in CAM that may induce melanization of 
hyphae are considered here.

The factors like hyperglycemia, hypoxia, and acidosis 
promote the growth of Mucorales in the host. Hypergly-
cemia and hyperferritinemia, which are the key pathoge-
netic factors in CAM, produce ROS [117]. Hyperbaric 
oxygen therapy is a beneficial adjunct therapy for mucor-
mycosis and is known to boost phagocytosis, alleviate 
acidosis, and improve the function of antifungals [118, 
119]. The treatment of COVID-19 includes administration 

of oxygen under pressure to combat hypoxia. However, it 
causes oxidative stress and can induce ROS. Melanin, as 
a virulence factor, protects the fungus by scavenging the 
free radicals [120••, 121]. Melanin also protects against 
the high osmotic pressure. Inadequate humidification 
of oxygen was reported during the epidemic of CAM in 
India [30, 120••, 121]. Melanin exerts a protective effect 
to the resultant dehydration and dry microenvironment 
by altering the charge and hydrophobicity on the hyphae 
[122–125]. High doses of zinc were administered as part 
of treatment for COVID-19 [83••]. Administration of 
zinc in high doses and for prolonged periods enhances 
fungal virulence and promotes its growth [126]. Melanin 
also helps in the sequestration of iron and zinc, which 
are essential for the growth of fungus as well as to com-
bat ROS [23••, 126]. Melanin also protects against anti-
fungal drugs, which may be used in treatment of CAM 
[122–124]. Melanin as a virulence factor also helps the 

d

a b c

e

Fig. 4  Photomicrographs from lobectomy specimen of lung showing 
a hemorrhagic infarct; H&E × 100; b granulomatous inflammation 
with fungal hyphae within multinucleated giant cells H&E × 100; c 
photomicrograph showing numerous hyphae in bland necrotic tissue 

H&Ex100; Inset showing broad aseptate and folded hyphae Gomori 
methenamine silver × 400; photomicrographs of brain abscess with 
neutrophilic infiltrate and broad aseptate hyphae of Mucorales: d 
H&E × 100; e H&E × 400
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growth of the fungus by evading host immunity. It inhibits 
macrophage apoptosis and phagolysosome fusion, alters 
cytokine responses, and attenuates the host immune 
response [125]. The protective effects of melanin against 
the therapeutic measures in COVID-19, probably help in 
fungal development and conidiation [120••]. These fac-
tors possibly explain the melanization of the hyphae and 
sporangia in tissue sections in CAM (Fig. 6).

Conclusions

The pathogenesis of CAM is multi-factorial and complex. 
High prevalence of DM and undetected or newly detected 
DM during the pandemic was the most common pre-exist-
ing disease in CAM. Corticosteroid administration in high 

doses and prolonged periods is one of the known risk fac-
tors for mucormycosis and this was exaggerated by the 
indiscriminate use of steroids in this health crisis. COVID-
19 itself can result in impaired immune system as well 
as aggravate hyperglycemia. The treatment of COVID-19 
with corticosteroids and other immunomodulatory drugs 
contributes to immune dysfunction. Hyperglycemia and 
DKA make free available iron and, in the presence of 
lowered host defenses, promote specific interaction of 
host cells with Mucorales hyphae, resulting in CAM. The 
microenvironment of nose and PNS is affected by the anti-
biotics and metabolic alterations, contributing to CAM. 
ROCM was the most common clinical form of CAM with 
Rhizopus arrhizus as the most common etiologic agent. 
Extensive soft tissue involvement with angioinvasion 
and perineural invasion were seen in CAM. In addition, 

Fig. 5  Photomicrographs 
showing broad hyaline aseptate 
hyphae with irregular and right-
angle branching, a H&E × 400; 
b Gomori methenamine 
silver × 400; c & d melanized 
hyphae and sporangia in tissue 
section (H&E × 400); e & f mel-
anin pigment in the fungal cell 
walls and sporangia confirmed 
and highlighted on melanin 
stain (Masson Fontana × 400)
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melanization of hyphae and sporangia were seen on histol-
ogy in CAM, probably due to the virulence of Rhizopus 
spp. to protect it from ROS resulting from hyperglycemia, 
hyperferritinemia, hyperbaric oxygen, and the dehydra-
tion. CAM provided a unique opportunity to understand 
the pathogenesis of mucormycosis and virulence of Rhizo-
pus spp.
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