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Abstract
Purpose of review This article summarises the pharmacologic rationale for therapeutic drug monitoring (TDM) of azoles 
in the management of invasive fungal disease (IFD), explores practical recommendations for TDM guided dosing, discusses 
barriers to TDM and highlights future directions and challenges to incorporating azole TDM into routine clinical practice.
Recent findings Pharmacokinetic studies have demonstrated that significant inter- and intra-patient variability exists in the 
exposure of azole antifungal agents. This variability can affect treatment success and contribute to toxicity. TDM has been 
proposed as a tool to individualise azole dosing to optimise efficacy and reduce toxicity. Accounting for significant hetero-
geneity, there is evolving evidence that TDM improves clinical outcomes for itraconazole, voriconazole and posaconazole. 
TDM for fluconazole and isavuconazole requires further evaluation.
Summary There remains ambiguity over the optimal approach to performing, interpreting, and utilising TDM to improve 
patient outcomes. This is attributable to a relative lack of literature, operational and logistical challenges to performing TDM.

Keywords Antifungal agents · Pharmacokinetics · Pharmacodynamics · Dose-exposure relationships

Introduction

Invasive fungal diseases (IFD) are associated with signifi-
cant morbidity and mortality [1]. At-risk populations include 
patients with solid-organ or stem-cell transplantation, malig-
nancies, chronic lung disease and critically ill intensive 
care unit patients; however, IFD can occur in patients with 
numerous other comorbidities [1]. Triazole antifungal agents 
(triazoles) play a key role in the management of IFD. Stud-
ies have demonstrated considerable intra- and inter-patient 

variability in azole pharmacokinetics (PK) [2, 3]. Such alter-
ations in PK can lead to variability in azole exposure [4••]. 
This variability in exposure can pose the risk of toxicity or 
treatment failure [4••, 5••].

Therapeutic drug monitoring (TDM) by way of measur-
ing serum azole concentrations and subsequent dose adjust-
ment to achieve desired target concentrations is a useful tool 
in overcoming this variability. TDM has been shown to be 
particularly useful in the context of triazoles with narrow 
therapeutic indices and/or unpredictable PK parameters 
such as voriconazole, posaconazole and itraconazole [6, 7•, 
8]. Significant institutional and inter-physician variability 
exists in the application, interpretation, and utilisation of 
azole TDM [9]. This is driven by the lack of robust prospec-
tive data on the clinical outcomes [9]. Moreover, the utility 
of TDM for other triazoles such fluconazole and isavucona-
zole remains to be explored. Other barriers include lack of 
assays, unfavourable testing and turnaround times and lack 
of expertise and infrastructure [7•]. In this review we will 
discuss the PK and pharmacodynamic (PD) properties of 
azole antifungals with a specific focus on triazoles and dis-
cuss the evidence and rationale for triazole TDM.
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Azole antifungal agents

Azole antifungals are divided into two subclasses. The 
imidazoles (ketoconazole, clotrimazole) contain a hetero-
cyclic five-member ring with two nitrogen atoms. The tria-
zole group contain three nitrogen atoms. Azole antifungals 
exert their fungistatic activity by inhibiting the enzyme, 
14-α-demethylase enzyme, which is required for the con-
version of lanosterol to ergosterol leading to accumulation 
of toxic precursors. The 14-α-demethylase enzyme belongs 
to the cytochrome-P-450 (CYP) family. Azoles also inhibit 
other isoenzymes of the CYP system resulting in numer-
ous drug interactions [10•]. Triazoles approved for use in 
the management of IFD include fluconazole, itraconazole, 
voriconazole, posaconazole and isavuconazole.

Azole antifungals with most evidence 
for therapeutic drug monitoring

Itraconazole, posaconazole and voriconazole have the most 
evidence for TDM currently. The indications, target con-
centrations and toxicity thresholds are discussed in Table 1

Itraconazole

Spectrum of activity

Itraconazole is active against numerous dermatophytes, 
yeasts, and Aspergillus spp. [13]. It is indicated in the treat-
ment of onychomycosis, blastomycosis, histoplasmosis, 
coccidioidomycosis and as salvage therapy for aspergillosis 
[32]. Pertinent side-effects include gastrointestinal (GIT) 
symptoms, hepatotoxicity, peripheral neuropathy and should 
be avoided in congestive heart failure [33].

Pharmacokinetics and pharmacodynamics 
of itraconazole

Itraconazole is available in capsule, oral suspension, tab-
let and intravenous (IV) formulations. These formulations 
are not interchangeable. The absolute oral bioavailability is 
40–60% [10•]. Absorption from capsules is dependent on 
gastric acidity, food intake and gastric transit times [13]. 
Itraconazole is highly lipophilic and protein-bound (99.8%), 
has a large volume of distribution  (Vd) of 11 L/kg, and has a 
 t1/2 of ~ 30 h [10•]. The variable absorption, non-linear PK, 
poor solubility, off-putting taste, and GI intolerance can lead 
to variability of serum concentrations [12•, 13]. Its active 
metabolite, hydroxy-itraconazole, has comparable in vitro 

antifungal activity to itraconazole [10•, 34]. Although this 
bears little clinical significance, the presence of hydroxy-
itraconazole may result in measurement discrepancies of 
serum itraconazole concentrations. The newest capsule for-
mulation called SUBA (Super-bioavailable), has a superior 
relative bioavailability of 173% compared to conventional 
capsules and less inter-patient variability [35]. The PD drug 
exposure target is quantified in terms of trough concentration 
 (Cmin) rather than AUC (or AUC/MIC ratio). A  Cmin range 
of 0.5–1 mg/L (measured using HPLC/mass spectrometry) 
is generally accepted [12•]

Drug–drug interactions

All formulations undergo extensive hepatic metabolism by 
the CYP3A4 isoenzyme, and CYP3A4 is inhibited by itra-
conazole itself. Thus, altered hepatic metabolism and co-
administration of CYP inducers/inhibitors may contribute 
to variabilities in exposure and efficacy [14].

Itraconazole therapeutic drug monitoring

Although inter- and intra-patient variability of serum itra-
conazole has been demonstrated, the clinical impact of 
performing TDM is sparse [36]. Clinically relevant drug 
exposure–response relationships and exposure–toxicity rela-
tionships are recognized for itraconazole [17].

Clinical efficacy

Improved outcomes have been noted with trough con-
centrations of 0.25–0.5  mg/L when using itraconazole 
as prophylaxis for IFD in neutropenic patients and target 
of > 0.25 mg/L for prophylaxis is supported by two meta-
analyses [5••, 15]. This finding differs from the target 
thresholds of 0.5–1.0 mg/L suggested in published guide-
lines [11•, 12•, 37–39].

For IFD treatment, a meta-analysis demonstrated that a 
target trough concentration of > 0.5 mg/L was associated 
with increased treatment success [5••], whilst a concentra-
tion of > 1 mg/L was deemed appropriate in an alternate 
study [16]. Similar targets are recommended by the British 
Society for Medical Mycology (BSMM); higher threshold 
of > 1 mg/L is supported in other published guidelines [12•, 
37, 38]. The IDSA Aspergillosis guideline uniquely identi-
fies an additional treatment goal of combined itraconazole 
and hydroxyl-itraconazole trough > 1.5 mg/L [40]. These 
targets have been derived almost exclusively from immu-
nocompromised populations and evidence for their other 
populations is limited [13].
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Clinical toxicity

A retrospective cohort study conducted on 216 patients iden-
tified that 45.8% experienced an adverse event, of whom 
33% required cessation of therapy [17]. A logistic regression 
analysis revealed a progressive increase in the probability 
of toxicity with increasing concentration and identified that 
86% of patients with serum concentrations > 17.1 mg/L (via 
bioassay) developed toxicity [17]. Based on this study, the 
upper limit for toxicity has been identified to range between 
3-5 mg/L (via HPLC) [12•, 40]

Issues and barriers with itraconazole TDM

The studies conducted to establish ideal concentration tar-
gets are predominantly retrospective with small case num-
bers, did not have standardized reasons or methods for 
obtaining concentrations and were not inherently designed 
to establish the ideal concentration targets [13]. These issues 
highlight the heterogeneity of publications in the field and 
limit the results of these studies from being generalizable. 
The measured concentration is dependent on the assay 
method i.e., bioassays typically measure both hydroxy-
itraconazole and itraconazole and consequently the con-
centrations can be 2–sevenfold higher than those measured 
by HPLC alone [41]. Itraconazole concentrations should be 
measured independent of its metabolites, via high perfor-
mance liquid chromatography (HPLC) assays [12•, 37, 38, 
40, 42]. The therapeutic targets for TDM of itraconazole 
evolved when there was little established triazole resistance 
[4••]. The appropriate  Cmin targets for isolates with non-
wild-type MICs is unknown. It is unclear if isolates with 
elevated MICs can be treated with dosage escalation in clini-
cal settings [43]. Further research in this area is warranted 
[39]. Finally, evidence for TDM for newer formulations for 
SUBA capsules needs to be established.

Voriconazole

Spectrum of activity

Voriconazole portrays a broad spectrum of antifungal activ-
ity and remains the first-line option for invasive aspergillosis 
[40]. An AUC/MIC > 25–32 or a trough/MIC 1–5 are associ-
ated with clinical efficacy and patient survival [44, 45]. It is 
available in tablet, solution, and intravenous formulations.

Pharmacokinetics and pharmacodynamics 
of voriconazole

Voriconazole bioavailability amounts to 96% and is inde-
pendent of gastric pH [10•]. However, its absorption is 

significantly decreased in disease states, such as in the lung 
transplant population where bioavailability ranges from 
24–63% due to the gastrointestinal complications expe-
rienced post-transplant [46]. Considerable variability in 
serum concentrations were also seen in critically ill patients 
[47]. 58% is protein-bound, whilst  Vd measures ~ 4.5 L/
kg. It undergoes hepatic phase I biotransformation involv-
ing CYP2C9, CYP2C19 and CYP3A4. Genetic polymor-
phisms of CYP2C9 and 2C19 lead to ultra-rapid and poor-
metabolizer phenotypes, further contributing to variations in 
serum concentrations [10•, 48]. Due to non-linear, saturable 
metabolism, the half-life is dose-dependent with an appar-
ent  t1/2 of ~ 6 h at standard dosage that increases with the 
serum concentration [10•, 49]. Patients with liver disease 
may experience altered metabolism of voriconazole thereby 
prolonging the  t1/2 [50]. An AUC/MIC ratio > 25–32 is the 
key PK/PD parameter that underpins clinical efficacy [19, 
21••].

Drug–drug interactions

Voriconazole is a strong inhibitor of CYP2C19, CYP2C9 
and a moderate inhibitor of CYP3A4 but also a substrate for 
CYP2C19, CYP2C9 and CYP3A4. Proton pump inhibitors, 
glucocorticoids and rifampicin are all implicated in increas-
ing or decreasing voriconazole concentrations [51].

Voriconazole therapeutic drug monitoring

Voriconazole exhibits a clear exposure–response relation-
ship, has a narrow therapeutic range, and has substantial 
interpatient PK variability [52]. In addition, genetic factors, 
gastrointestinal absorption, and drug interactions impact 
clinical response [49]. Its non-linear PK result in a dispro-
portionate increase in serum level at higher doses [45]. Con-
sistent adoption of guidelines is required to improve ordering 
and interpretation of voriconazole TDM [53, 54].

Clinical efficacy

Studies on voriconazole TDM have been limited and largely 
observational with significant methodological variations 
[20••, 21••, 55, 56]. An RCT of 110 patients demonstrated 
that patients in the TDM arm had greater rates of complete 
or partial response (81% vs 57%) and lower rates of drug 
discontinuation (4% vs 17%) when compared with controls 
[57]. This result was replicated in a retrospective comparison 
of 216 critically ill patients, with the TDM group having a 
significantly higher rate of response than the control arm 
[58••]. A meta-analysis of 24 studies identified that 72.4% of 
patients had a successful outcome if therapeutic concentra-
tions of voriconazole were achieved [21••]. Targeting trough 
concentrations of 1.5–4.5 mg/L has led to similar outcomes 

59Current Fungal Infection Reports (2022) 16:55–69



1 3

as targeting AUC/MIC parameters on three previous meta-
analyses and a systematic review [18, 19, 20••, 21••]. A 
multi-centre, retrospective cohort analysis identified that 
concentrations < 1.7 mg/L were associated with treatment 
failure [2]. An observational study of 52 patients established 
that TDM was paramount in maintaining therapeutic trough 
concentrations [59], whilst a retrospective cohort study 
observed a 42% decrease in treatment failure when trough 
concentrations were maintained through TDM [60].

Clinical toxicity

Published guidelines suggest an upper limit of 4-6 mg/L to 
minimize toxicity [11•, 12•, 18, 37, 40]. This is supported by 
a meta-analysis that identified patients with supratherapeutic 
voriconazole serum concentrations (4.0–6.0 mg/L) were at 
increased risk of toxicity (OR 4.17; 95% CI 2.08–8.36) with 
a threshold > 6.0 mg/L on a pooled analysis being most pre-
dictive of toxicity (OR 4.60; 95% CI 1.49–14.16) [21••]. A 
retrospective study of critically ill patients on voriconazole 
identified that the incidence of adverse events was lower 
when TDM was performed (19.8% vs 9.6%; P = 0.033) 
[58••]. Whilst visual disturbances are dose-dependent, neu-
rotoxicity has been commonly seen with trough concentra-
tions greater than 4–5.5 mg/L [2, 55, 59]. Although hepato-
toxicity is common and appears dose-dependent, there are 
no consensus threshold to predict its risk [55]. TDM directed 
dose adjustment has resulted in improvement of hepatotoxic-
ity in two studies [61, 62]. The above highlights the utility 
of TDM in reducing drug toxicity.

Issues and barriers with voriconazole TDM

Clinical application

Although voriconazole TDM has been shown to improve 
efficacy and toxicity outcomes as above, the findings of 
above studies are variably incorporated into published guide-
lines [12•, 18, 37, 40]. Given the methodological incon-
sistencies across these studies, some experts have cautioned 
against universal utilisation of TDM and instead reserve use 
for those experiencing therapeutic failure or toxicity [56, 
63]. Additionally, there is limited evidence to suggest rou-
tine TDM for voriconazole prophylaxis [64]. However, a 
prospective study has shown improvement in target concen-
tration attainment through TDM and consequently low rates 
of breakthrough infection [22•].

Clinical resistance and treatment failure

An array of mutations conferring azole resistance have 
been described and commonly involve modification of the 
cyp51A gene [65]. Higher exposures to voriconazole are 

required to achieve the same clinical outcomes compared 
with wild type Aspergillus fumigatus [65]. The elucidation 
of optimal AUC/MIC ratios to predict treatment success in 
azole-resistant strains remains a challenge [66]. Trough/
MIC ratios  (Cmin/MIC) have been suggested instead of 
trough concentrations in azole-resistant isolates [45, 59]. 
Population PK studies have identified a  Cmin/MIC of 2–5 to 
be associated with a near-maximal probability of response 
[45, 52, 59]. Treatment failure can occur despite therapeutic 
concentrations due to various confounders of disease sever-
ity, host physiology and variable target tissue penetration 
[49]. Further, poor compliance with guidelines for voricona-
zole dosing and monitoring have been reported, reflecting 
habitual prescribing [54].

Genotype polymorphisms

A meta-analysis identified 10 studies examining the asso-
ciation between genetic polymorphisms and therapeutic 
outcomes. Overall, no significant relationship was found 
between CYP2C19 polymorphisms and efficacy or with 
toxicity [20••, 67]. A prospective study of 263 patients with 
acute myeloid leukaemia was CYP2C19 genotyped before 
receiving prophylactic voriconazole. Higher prophylac-
tic doses were recommended for rapid metabolisers. This 
approach led to avoidance of subtherapeutic concentrations 
but had no impact on efficacy or toxicity [68]. Higher rates 
of treatment success (78% vs 54%, P < 0.001) were observed, 
in comparison with historical controls, in a study where 
the dosing regimen was guided based off an individuals’ 
CYP2C19 genotype [69]. Recommendations for managing 
patients with CYP2C19 mutations and for CYP2C19-guided 
voriconazole dosing exist [70, 71]. However, validation of 
these recommendations is pending [20••].

Posaconazole

Spectrum of activity

Posaconazole has a wide spectrum of activity and is licensed 
for prophylaxis in high-risk haematological populations and 
for treatment of invasive aspergillosis [72–74].

Pharmacokinetics and pharmacodynamics 
of posaconazole

Posaconazole was previously available only as an oral 
suspension displaying highly variable absorption, with 
bioavailability limited by gastric pH and requiring intake 
of high-fat meals [75, 76]. This formulation experiences 
saturable enteral absorption therefore requiring increased 
frequency and split dosing regimens [77]. More recently, 
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gastro-resistant, and delayed-release tablet/capsule (DRT) 
formulations and IV solutions are available. Compared to 
the suspension, DRT eliminates the need for food or multiple 
daily dosing to achieve adequate systemic exposure and its 
bioavailability is unaffected by gastric pH or motility [78, 
79]. Compared to suspension, DRT had substantially higher 
exposure and less variability in bioavailability with mean  t1/2 
values being similar (23.1 h for DRT and 29.2 h for suspen-
sion), whilst clearance was slower (~ 9 l/h versus ~ 34L/h) 
[80]. Intake of high-fat meals with DRT did not result in a 
significant change in exposure [81]. Both formulations are 
highly protein-bound [75]. The IV solution needs to central 
line access for administration and meets the exposure targets 
with its PK being dose-proportional [82].

Drug–drug interactions

Posaconazole is barely metabolised by the CYP P450 path-
ways. ~ 17% undergoes glucuronidation by UDP-glucuro-
nyl-transferase (UGT) 1A4 with the remainder eliminated 
unchanged [83]. Posaconazole can be impacted by drugs that 
interact with UGT enzymes like phenytoin and rifampicin. 
Posaconazole is a substrate for P-glycoprotein and co-admin-
istration of inducers (e.g., rifampicin) or inhibitors (e.g., 
verapamil) may affect serum concentrations. Posaconazole 
remains a potent inhibitor of CYP3A4 [24].

Posaconazole therapeutic drug monitoring

A lack of consensus guidelines regarding posaconazole 
TDM results in frequent misinterpretation, inconsistent 
follow-up of concentrations and is compounded by inap-
propriate requesting highlighting the need for a standardized 
approach [84].

Clinical efficacy

The recommended target concentrations are > 0.5–0.7 mg/L 
for prophylaxis and > 1–1.25 mg/L for treatment of IFD 
using Posaconazole [11•, 25, 39, 42, 66, 85]. TDM is recom-
mended for oral suspension formulation particularly in the 
case extremes of body weight or if toxicity or drug interac-
tion is suspected [25, 86, 87].

While current recommendations, supported by a recent 
meta-analysis, do not recommend routine posaconazole 
TDM with DRT/IV formulation used for prophylaxis [42, 
88, 89], a cohort analysis of 77 HSCT patients revealed 
significant intra- and inter-patient variability of DRT 
trough concentrations [90••]. An additional longitudinal 
analysis revealed posaconazole concentrations were fre-
quently outside the therapeutic window [31]. A further 
study highlighted that exposure may remain variable in 
those weighing > 90 kg and in patients with diarrhoea [91]. 

Exposure–response relationship for treatment has been dem-
onstrated in previous studies with average concentrations 
 (Cavg) correlating with clinical efficacy [25]. A single centre 
study has identified significant interpatient variability with 
DRT when utilized for treatment in a lung transplant popu-
lation with 73% requiring dose adjustments to reach targets 
[92]. The sum of the above suggests that there remains a 
role for performing TDM even when newer formulations of 
posaconazole are utilized.

Clinical toxicity

Gastrointestinal side effects, hepatotoxicity, pseudo-hyperal-
dosteronism, alopecia, and QTc-interval prolongation have 
been described with posaconazole [29, 75, 93]. However, 
no clear exposure–toxicity relationship has been established 
[27, 66]. A retrospective analysis identified 19% of patients 
with grade 3 or 4 liver injury secondary to posaconazole 
[30••]. Amongst those who had TDM performed in this 
study, there was no statistical difference in the median posa-
conazole concentrations for patients with or without hepa-
totoxicity (1.765 mg/L versus 1.310 mg/L; P = 0.06). On 
classification and regression analysis, serum concentrations 
of ≥ 1.83 mg/L was found to correlate with hepatotoxicity 
(odds ratio [OR], 5.6 [95% confidence interval [CI], 1.7 to 
18.3]; P = 0.005) [30••]. A retrospective cohort analysis 
identified posaconazole induced pseudo-hyperaldosteron-
ism (PIPH) in 23% of patients on prophylaxis. Patients with 
PIPH had significantly higher median serum posaconazole 
concentrations than patients without PIPH (3.0 vs 1.2 µg/
mL, P <  = 0.000; all patients with posaconazole concentra-
tions ≥ 4.0 µg/mL were diagnosed with PIPH. Development 
of PIPH in patients with serum posaconazole concentra-
tions < 2.0 µg/mL was uncommon [29]. Further study is 
warranted to clarify exposure–toxicity relationships.

Issues and barriers with posaconazole therapeutic 
drug monitoring

Elevated MIC organisms

Posaconazole exposure correlates linearly with the dose; 
thus, a higher dose of the azole is required to achieve similar 
efficacy when azole-resistant strains are present [94]. A tar-
get trough level of > 1.8 mg/L has been suggested for resist-
ant isolates and TDM should be utilised to achieve these 
targets [94].

Tissue penetration and impact of TDM

Pulmonary alveolar posaconazole concentrations are 40-fold 
higher compared to serum concentrations [95]. This may 
explain the rates of breakthrough infections being only 
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1.9%–3.9% [27, 28, 72]. TDM still remains a useful inter-
vention in this scenario as it enables detection prolonged 
sub-therapeutic exposure that can be associated lowered 
intracellular and pulmonary concentrations [93].

Azole antifungals with emerging evidence 
for therapeutic drug monitoring

The indications, target concentrations and toxicity thresholds 
are poorly established for Fluconazole and Isavuconazole 
and shown in Table 2.

Fluconazole

Spectrum of activity

Fluconazole is cheap, well tolerated and remains a key agent 
in the treatment of infections with Candida spp. [10•, 37].

Pharmacokinetics and pharmacodynamics 
of fluconazole

Fluconazole is highly soluble in water, displays excellent 
bioavailability (> 90%) and enteral absorption is not sig-
nificantly influenced by food intake or gastric pH [10•]. It 

is poorly protein-bound (~ 12%) and has a  t1/2 of 30 h, thus 
taking 6 days to reach steady-state unless a loading dose is 
utilized. It has a small  Vd of 0.75L/kg and is extensively 
eliminated by the kidneys. It undergoes linear PK without 
a significant variability in dose exposure [99]. Fluconazole 
demonstrates a well-documented dose–response relationship 
with AUC/MIC > 50 associated with improved treatment 
outcomes [100, 101].

Drug–drug interactions

Fluconazole is a strong inhibitor of CYP 3A4 and CYP 2C9, 
thereby leading to numerous drug interactions [10•].

Fluconazole therapeutic drug monitoring

Fluconazole TDM is usually not pursued due to its excellent 
bioavailability, linear PK, and lack of exposure–response 
variability. Certain patient populations may still experience 
unpredictable exposure–response relationships [8, 97••]. 
However, pursuing TDM in these subsets of patients was 
limited by lack of clear targets to guide TDM, as most PD 
data establishing exposure–response relationships utilizes 
AUC/MIC, which is not a clinically practical parameter for 
use in TDM [100, 101].

More recently,  Cmin have been shown to correlate with 
AUC measurements for fluconazole [96••, 97••] with target 

Table 2  Azoles with emerging evidence for therapeutic drug monitoring

* Cmin: Minimum/trough concentration; **AUC/MIC: Area under the curve/Minimum inhibitory concentration; ^CNS: Central nervous system; 
#GvHD: graft versus host disease; ~ ECMO: Extracorporeal membrane oxygenation; ^^UGT: UDP-glucuronyl-transferase; mg/L = milligrams/litre

Agent and indications Altered PK Drug interactions Sample Target range Toxicity threshold Dose adaptation

Fluconazole
Consider in select circum-

stances for IFD treat-
ment: [8, 96••, 97••]

     •  Critically ill
     •  Renal replacement
     •  ^CNS infection
     •  Treatment failure

Only in select 
populations 
e.g., haemodi-
alysis, critically 
ill

Strong inhibitor 
of CYP 3A4 
and CYP 2C9

Optimal timing 
unclear

*Cmin of 10-15 mg/L 
(or **AUC/
MIC > 50). 
However, not well 
elucidated (102)

Nil established Nil established

Isavuconazole
Consider in select 

circumstances for IFD 
treatment [111, 112••]

    ο  Critically ill
    ο  Renal replacement
    ο  ^CNS infection
    ο  Treatment failure
    ο  #GvHD
    ο  ~ECMO
    ο  Obesity

Only in select 
populations 
e.g., renal 
replacement, 
ECMO, obesity

Substrate for 
^^UGT and 
CYP3A4

Moderate CYP 
3A4 inhibitor

Single trough isavu-
conazole level once 
steady state has 
been reached

(2–3 weeks) [98]
Value of repeat test-

ing unclear [4••]

Not well elucidated 5 mg/L, however 
not consistently 
demonstrated

Nil established
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AUC/MIC > 50 corresponding to a  Cmin of 10-15 mg/L 
[102]. Additionally, there is significant inter and intra-patient 
variability in fluconazole serum concentrations, particularly 
in critically ill patients or those on dialysis where 30–50% 
of study population did not reach PK/PD targets, attributing 
to the altered volume of distribution and clearance in these 
patients [8, 96••, 97••]. Further, low trough concentrations 
(< 11 mg/L) were associated with negative treatment out-
comes in a cohort of high-risk liver transplant patients in a 
centre that utilized TDM guided dosing [103]. A cross-sec-
tional study identified a poor correlation between antifungal 
dosage and serum concentrations and showed that attaining 
the on-target serum antifungal concentrations was signifi-
cantly associated with a favourable clinical outcome [104]. 
Although it is usually well-tolerated, hepatotoxicity and 
prolonged Qtc interval are harmful adverse effects. There 
have been no accepted serum concentrations that consist-
ently correlate with systemic toxicity.

Currently, there are significant gaps in the literature with 
regards to the clinical utility of fluconazole TDM and its 
routine use is not recommended [11•]. Additionally, access 
to fluconazole assays is currently restricted to institutions 
where infrastructure and expertise exist [85]. Interpretation 
of concentrations and dose adaptation algorithms warrant 
further study.

Isavuconazole

Spectrum of activity

Isavuconazole has a chemical structure like fluconazole and 
voriconazole. The active drug is cleaved by serum ester-
ases from its water-soluble prodrug isavuconazonium sul-
phate [10•]. Isavuconazole has a broad-spectrum of activity 
against most yeasts and moulds [105]. Its toxicity profile is 
similar to fluconazole [105].

Pharmacokinetics and pharmacodynamics 
of isavuconazole

Isavuconazole is available in intravenous and oral formula-
tions. The oral bioavailability is ~ 98% and is extensively 
protein-bound (98–99%) with a large  Vd (300-500L) [10•]. 
Both formulations have considerably long half-lives that 
range from 56 to 98 h following oral dosing and 76 to 117 h 
post IV dosing. Time to steady-state is approximated at 
2–3 weeks without appropriate loading [105]. AUC appears 
to increase only slightly in proportion to the dose, which is 
suggestive of linear kinetics up to doses of 600 mg/day and 
exhibits low inter-patient variability in serum concentrations 
[106]. Trough concentrations have been shown to correlate 

with AUCs and represent a suitable measure of exposure 
[107].

Drug–drug interactions

Isavuconazole undergoes hepatic metabolism involving 
CYP3A4, CYP3A5, and subsequently UGT and is a mod-
erate CYP 3A4 inhibitor thus drug interactions must be 
considered.

Isavuconazole therapeutic drug monitoring

TDM is often not pursued for isavuconazole due to its 
dose-proportional PK, modest interpatient variability and 
lack of clear efficacy or toxicity thresholds [108]. Less than 
3% of patients from the SECURE trial had an average con-
centration outside a range of 1–7 mg/L, indicating that the 
recommended clinical dose resulted in serum concentra-
tions that were largely consistent and predictable [109••]. 
Similar concentration distributions were seen in other trials 
with > 85–90% of patients having concentrations > 1 mg/L 
[108, 110]. Thus, regular dosing of isavuconazole results in 
the achievement of concentrations and exposures that meet 
PD targets for therapeutic efficacy.

However, two studies have highlighted the need for TDM 
to monitor sub-therapeutic concentrations in those undergo-
ing renal replacement therapy, on extracorporeal membrane 
oxygenation circuits and in patients with high BMI [111, 
112••]. A case report identified that poor absorption attrib-
utable to gastrointestinal graft versus host disease can also 
interfere with serum concentration [113]. There is an addi-
tional role in conducting TDM for infections within drug 
sanctuary sites such as CNS disease where concentrations 
are consistently lower than serum concentrations [98, 105, 
114]. Co-administration of agents such as rifampicin and 
flucloxacillin can lead to drug–drug interactions. TDM may 
be required in this scenario. Evaluation of the impact of 
pharmacogenomics on isavuconazole PK is also required 
[115, 116].

Evidence of an exposure–toxicity relationship is evolv-
ing. A retrospective evaluation of 19 patients identified 
that 16% required discontinuation of isavuconazole due to 
adverse events, with concentrations > 5 mg/L correlating to 
toxicity [117]. Another study of 45 patients supported the 
target upper limit for toxicity of 5 mg/L [118]. Results from 
the post-hoc analysis of the SECURE trial and other stud-
ies found an inconsistent relationship between toxicity and 
serum concentrations [109••, 112••].

TDM for isavuconazole may be less critical com-
pared with other triazole antifungal agents. Further stud-
ies are required to identify a clear benefit for TDM with 
isavuconazole.

63Current Fungal Infection Reports (2022) 16:55–69



1 3

Future challenges

Triazole TDM is useful in establishing therapeutic exposure. 
However, further studies are required to establish the role 
of TDM on reduction in emergence of resistance, improved 
cure of infection within a sanctuary sites and treatment of 
infections with biofilms (bone and joint infections and endo-
vascular infections [4••, 10•].

An important limitation to the universal access of tria-
zole TDM is the high cost and personnel intensive infra-
structure required. With the exception of itraconazole, all 
other triazole monitoring needs the availability of mass 
spectrometry. Mass spectrometry machines have high 
acquisition and maintenance costs and are usually avail-
able in central laboratories. These assays are not performed 
daily in most instances due to competing priorities limit-
ing the turn-around time of results. The availability of and 
access to in-house assays can shorten time to achieving 
target concentrations and subsequently may contribute to 
improved outcomes [119]. Future research should focus on 
development of integrated assays capable of testing mul-
tiple assays, immuno-assays, and the use of alternate and 
accessible matrices such as dried blood spots (DBS) [26, 
119]. DBS for TDM addresses the issue of sample acquisi-
tion, particularly in the outpatient setting. In DBS sampling, 
blood is obtained using a finger prick allowing samples to 
be self-collected. DBS analysis has additional advantages of 
a smaller sampling volume, simple storage, and transfer of 
samples at room temperature without biohazard risks during 
shipment [26]. This technique shows excellent patient satis-
faction and allows TDM to be extended to hospitals without 
a bioanalytical infrastructure and to patients at home [26].

Development of effective algorithms and model-informed 
precision dosing (MIPD) software to enable precise dosing 
will help streamline the TDM process, increment its util-
ity, allow individualised prescribing, and enhance physi-
cian access to TDM. MIPD uses a population PK model 
and patient covariates to select anti-infective drug doses and 
has shown promise in optimising fluconazole exposures in 
the critically ill population [120]. Robust trials evaluating 
the utility of MIPD are lacking and are critically needed to 
prior to its incorporation into clinical practice [120, 121].

There is also a need for the development and evaluation 
of biomarkers with a prognostic value that can be used to 
follow disease course and hence inform clinical decisions 
alongside TDM. Serum galactomannan, 1,3 β-D- glucan and 
cryptococcal antigen for instance already have correlations 
with clinical outcomes and may be used to monitor thera-
peutic progress [122, 123]. Combining a clinical biomarker 
with concomitant TDM will allow early detection of treat-
ment failure, emerging resistance or highlight instances for 
dosing escalation or changes in the regimen.

Conclusions

Triazoles are a key part of the armamentarium available in 
the treatment of IFD. In the current era of rising antifun-
gal resistance, TDM-guided triazole dose optimisation is 
of particular benefit when susceptibility to antifungals is 
dose dependent. Utility of routine TDM for voriconazole, 
posaconazole and itraconazole in the treatment of IFD is 
well established. Further study is needed to establish the 
role of triazole TDM in antifungal prophylaxis. Prospec-
tive studies evaluating cost-effectiveness of triazole TDM 
as well as its utility in the context of other triazoles such as 
isavuconazole and fluconazole are needed. Triazole TDM 
plays an important role in dose optimisation and individuali-
sation to achieve therapeutic exposure in vulnerable patients 
with serious IFD at-risk of poor clinical and toxicological 
outcomes.
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