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Abstract
Purpose of Review To perform an extensive review of recent literature and provide an update on the current epidemiology, clinical
features, and management of cryptococcal disease with a focus on the differences between patients depending on their immune status.
Recent Findings Emerging literature has highlighted the inflammatory pathophysiology and varied manifestations of cryptococcal
infections in patients who are apparently healthy but paradoxically have a more critical clinical course compared with their
immunosuppressed counterparts.
Summary Non-HIV cryptococcal meningitis has greater mortality compared with that seen in HIV patients. Basic science exper-
iments closely analyzing the underlying pathophysiological response to this infection have demonstrated the predominant role of T
cell–mediated inflammatory injury in causing worse clinical outcomes. Further studies are needed to define the need for immuno-
suppressive agents in the treatment of this illness.
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Introduction

Background

Cryptococcus is an encapsulated yeast causing infections in both
immunosuppressed and the previously healthy patients.
Infections surged in incidence during the AIDS era and continue
to persist in other immunosuppressive conditions including solid
organ transplant recipients and those subjected to chemotherapy
[1, 2]. Although the incidence of cryptococcal infections within
the USA has declined by 70–90% from the 1990s due to antire-
troviral therapy (ART), it remains one of the leading causes of
meningitis in sub-SaharanAfrica, despite the availability of ART,
currently responsible for 11% of AIDS-related deaths [3].

Around a quarter million new cases of cryptococcal meningo-
encephalitis (CM) are diagnosed every year, and based on
estimates in 2014, it is responsible for causing approximately
181,100 deaths annually with poor survival despite therapy
[4]. In addition, due to vaccine-related reductions in bacterial
meningitis and persistence of CM in non-HIV-related cases,
CM is now the leading cause of non-viral meningitis in the
USA, where the mortality rate persists in all host populations
at about 20–30% despite therapy [5, 4].

Cryptococcus Is Divided into Two Species,
C. neoformans and C. gattii

C. neoformans and C. gattii are both species that belong to the
genus Basidiomycota and vary in distribution, clinical mani-
festations, and the hosts they target. Initially isolated in 1894
[6], C. neoformans has a worldwide distribution and is found
abundantly in soil contaminated by avian guano. C. gattii is
typically associated with tropical/subtropical regions and has
been isolated from eucalyptus and other plant species and
noted to be a weak plant pathogen of seedlings. 80% of all
cryptococcal infections worldwide are caused by
C. neoformans, which is usually the culprit in immunocom-
promised patients with disseminated disease while C. gattii is
responsible for the remaining 20%. In recent years, outbreaks
ofC. gattii have occurred in Vancouver Island, Canada (1999–
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2002), and the Pacific Northwest (2004–2011), suggesting
that C. gattii may have become more prevalent [5, 6].
Although both species are known to affect both the apparently
healthy and those with compromised immune systems, the
latter is historically known to affect a substantially larger num-
ber of apparently immunocompetent patients [7•].

At the 10th International Conference on Cryptococcus and
Cryptococcosis (ICCC10) held in Brazil in May 2017, the
nomenclature on cryptococcal species was extensively
discussed and remains controversial. In a perspective pub-
lished in 2017, Hagen et al. proposed that while several spe-
cies exist, seven species should be officially recognized;
C. neoformans var. grubii; C. neoformans var. neoformans;
and C. gattii VG1, VGII, VG III, VG IV, and VG IV/VGIIIc.
They believed this method of identification would stimulate
physicians to investigate the phenotypic and genotypic differ-
ences between these species further. On the other hand,
Kwon-Chung and colleagues argued that the genotypes of
2606 Cryptococcus strains had been recognized and this ge-
netic diversity may not be encompassed by just seven species.
Instead, they preferred dichotomizing the fungus as a
“Cryptococcus neoformans complex” or a “Cryptococcus
gattii complex” to avoid confusion [8, 9].

Life Cycle and Virulence Mechanisms

Both cryptococcal species exhibit a tropism for the brain that
is unique to this fungus and is particularly pronounced inmore
immunosuppressed individuals such as those with HIV/AIDS
[10]. Cryptococcus expresses a number of virulence factors
important in penetration of the blood-brain barrier including
urease, metalloprotease, and hyaluronic acid as well as an
immune-modifying laccase enzyme and copper/iron acquisi-
tion factors that potentiate growth within the CNS [11–13]. In
a recent study, Olave et al. described how an in vitro infection
of a human astrocytoma cell line with C. neoformans and C.
gattii demonstrated increased HLA class II expression and
intracellular survival of C. neoformans, suggesting that it pos-
sesses sophisticated virulence mechanisms to invade and sur-
vive within the CNS [14].

Cryptococcus spores or desiccated yeast cells usually enter
the human host via inhalation and can lay dormant for several
years within the body [15]. In immunocompetent hosts, they
may not produce any symptoms or remain confined to the
lung in the form of granulomas. When host immunity is sup-
pressed, these latent organisms may reactivate and cause in-
fection, which can then disseminate to include multiple or-
gans, primarily the brain [15–17]. Unlike bacteria,
Cryptococci penetrate the blood-brain barrier (BBB) through
cortical capillaries rather than the choroid plexus. Three pos-
sible mechanisms of penetration exist as follows: (1) transcel-
lular passage across the endothelial cells, (2) between endo-
thelial cells by BBB disruption, or (3) a “Trojan horse”

mechanism by which the fungus straddles a host monocyte
to move across the BBB [18]. Attesting to the last mechanism
are the results of a small experiment carried out in vitro, in
which a threefold increase in brain fungal burden was seen
24 h after inoculating a mouse with Cryptococcus-infected
bone marrow–derived monocytes compared with inoculation
with free yeasts alone [18].

As an opportunistic fungus which has spent most of its
evolutionary timespan within the environment, many of its
virulence factors have evolved to ensure survival within these
external environments which has then been applied by appar-
ent serendipity to the host environment. Unique to
Cryptococcus is a polysaccharide capsule, which it wields as
armor to protect itself against unfavorable circumstances in-
cluding an excessively alkaline pH, high carbon dioxide
levels, desiccation, and a paucity of iron [19]. This same cap-
sule enables protection against human immunity by a
compacted structure that reduces complement and antibody
binding [20]. It is also able to actively secrete multiple viru-
lence factors outside the cell surface within microvesicles, and
this mechanism has been implicated in its ability to effectively
penetrate the blood-brain barrier [21]. An example is an ex-
tracellular laccase secreted in exosomes [22], which helps the
fungus evade free radicals and may contribute to antifungal
resistance [23•].

Immunocompromising Conditions Associated
with Cryptococcus

Apart from HIV, other immune-impairing conditions in-
cluding prolonged corticosteroid treatment, organ trans-
plant, malignancy, diabetes, and sarcoidosis have been
linked with cryptococcal infections [5]. Within the realm
of immune deficiencies, the most common condition as-
sociated with this infection is idiopathic chronic lympho-
penia (ICL) followed by auto-antibodies to GMCSF, al-
though it is hypothesized that the presence of ICL exclu-
sively is insufficient to cause infection and a second trig-
ger factor may be required [24•]. ICL has been defined as
the repeated presence of CD4+ T cells < 300 cells/mm3 or
of < 20% of total T cells with no evidence of HIV and no
other condition that could explain the decreased CD4
count [25]. To add to the list are occasional cases linked
to immune deficiencies such as GATA 2 deficiency, Job’s
syndrome, CGD, and X-linked CD 40 ligand mutations
[26••]. Within the USA, 13–18% of patients with a diag-
nosis of cryptococcal meningitis are apparently healthy,
but the mortality rate (30–50%) in this population is as
high as those who are more immunocompromised. In ad-
dition, Cryptococcus presents indolently and typically
without fevers within this subset of patients, leading to a
delay in diagnosis with its attendant high mortality and
residual neurological deficits such as cranial nerve palsies
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and cognitive impairment [27••]. This curious aspect of
CM in the previously healthy patients may be related to
macrophage defects leading to absence of production of
the pyrogen, TNF-α [28••].

Immune Activation Syndromes Associated
with Cryptococcal Infections

In a paper titled “The damage-response framework of micro-
bial pathogenesis and infectious diseases,” Pirofski and
Casadevall highlight a principle that an overactive immune
response may be as detrimental to a patient as an underactive
one [29••]. The most well-known example of this in crypto-
coccal disease is a Cryptococcus-related immune reconstitu-
tion syndrome (cIRIS) in AIDS patients that was first de-
scribed in 2005 when patients with CM who were started on
ARTwere found to have paradoxical worsening of their men-
tal status despite achieving viral and fungal control with im-
provements in CD4 counts [30]. A variant of cIRIS is
unmasking cIRIS, described in cases where a subclinical cryp-
tococcal infection is unmasked during immune reconstitution
shortly after starting ART. At the time of HIV diagnosis, be-
fore initiation of ART, a more recent study looked at CM in
patients with CD4 counts ranging from < 50 to > 100. As
anticipated, the percentage of death occurring in the study
arm with CD4 counts < 50 superseded those with CD4 counts
50–99, but there were also more deaths in those with CD4
counts > 100. The latter group was found to present more
frequently with altered mental status despite having a tenfold
decrease in fungal burden, pointing to the possible contribu-
tion of a dysfunctional immune pathology in this group as
well [31]. In addition, an analogous inflammatory response
has been observed in transplant recipients, especially if im-
mune suppression is reduced after fungal diagnosis [32]. Most
recently, a post-infectious inflammatory response syndrome
(PIIRS) was identified in previous healthy patients with re-
fractory disease [28••], an unexpected result that runs counter
to the expectation of a reduced immune response in patients
developing an opportunistic infection such as CM.

Pathophysiology of Immune Activation Syndromes

The pathophysiology of immune damage in cryptococcal dis-
ease varies between HIV positive and negative individuals.
While cIRIS in HIV patients is well-established, literature on
a similar post-infectious immune response syndrome (PIIRS)
described in apparently healthy hosts is nascent. PIIRS can be
best defined as a deterioration of mental status and/or audio-
visual capacity in an otherwise healthy host despite negative
CSF fungal cultures after being optimally treated for crypto-
coccal meningitis. In both HIV and non-HIV-associated dis-
ease, the patient has cleared the active infection after complet-
ing an appropriate antifungal regimen (including ART in HIV

cases) but deteriorates clinically because of an overly robust
immune response against non-viable organisms (Fig. 1) [33].
Excess inflammation of CNS infections is particularly prob-
lematic within the closed space of the skull where increased
pressures have the ability to effect herniation and cranial nerve
abnormalities [34•].

During an effective immune response, inhaled cryptococ-
cal spores are first recognized by a number of macrophage-
associated surface receptors including Dectin-1, Mincle, man-
nose receptor, CD14, and Toll-like receptors [26••]. This stim-
ulates macrophages to release CCL2, which recruits mono-
cytes and dendritic cells. In turn, these produce pro-
inflammatory cytokines such as INF-γ, TNF-α, and IL-6
and promote the differentiation of T cells to T helper cells.
Activated T helper cells further secrete IFNɣ, IL-6, IL-10,
and granulocyte-macrophage colony-stimulating factor
(GM-CSF) which activate and polarize M1 macrophages to
further secrete TNF-α and IL 12 to effect successful killing of
the fungus. Granulomas, composed of macrophages, CD4 T
cells and Cryptococcus-containing multinucleated giant cells,
are a sign of controlled infection, although Cryptococcus is
reported to survive latently within these granulomas.

Whether a macrophage is activated through the classical or
alternative pathway depends on stimulation through Th1 or
Th2 cytokines, respectively. When compared with alternative-
ly activated M2 macrophages, classically activated M1 mac-
rophages exhibit enhanced fungicidal activity in studies done
in vitro. In a recent review describing the pathophysiology of
cIRIS, it was hypothesized that a fine, mutually exclusive
balance exists between Th1- and Th2/17-mediated responses.
A Th2/17 response predominates in the early stages of the
disease, and with antifungals and delayed ART initiation, the
immune balance is restored. However, in cases when ART is
started soon after antifungal therapy, a hyperactive compensa-
tory Th1 response follows, leading to increased TNF-α, IFN-
ɣ, IL-6, and G-CSF levels, characteristic of cIRIS [35••]. This
inflammatory cascade is similar in previously healthy CM
patients, as recognized in a study describing 17 patients with
severe CNS disease, defined as a deterioration in mental status
(Glasgow Coma Scale < 15) despite six weeks of optimal
antifungal therapy and negative CSF fungal cultures [28••].
A 1000-fold increase in the number of CSF T cells and a lack
of Th2 and Th17 cytokines was reported in this study, indicat-
ing a dominant T1-mediated inflammatory response.
However, there was one significant difference—autopsy and
biopsy specimens in this group of patients showed activated
tissue M2 macrophages, which failed to phagocytose fungal
cells [28••].

Immunophenotyping tests on spinal fluid in patients with
PIIRS have demonstrated a CNS-compartmentalized, in-
creased number of HLA DR4 positive CD4+ and CD8+ cells
along with NK cells, confirming a predominantly T cell–
mediated injury [28••]. This is accompanied by elevated levels
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of cytokines including soluble IFN-ɣ, IL-18, and CXCL10. In
the study referenced earlier describing the immune pathology
in non-HIV cryptococcosis, CSF neurofilament light chain
(NFL) levels were assayed. The latter is a neuron-specific
and sensitive biomarker of axonal damage. Compared with
patients with non-CNS disease and healthy donors, those with
severe CNS disease were found to have a tenfold increase in

CSF NFL levels, indicating that this was a pathogenic and not
a protective immune response [28••].

Clinical Findings

Differences at the cellular level may help us understand why
clinical features and outcomes in patients vary based on their
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Fig. 1 An algorithmic approach to diagnose patients with inflammatory response syndromes (c-IRIS and PIIRS) after acute cryptococcal meningitis has
been successfully treated. CrAg cryptococcal antigen, ART antiretroviral therapy, VL viral load
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immune function. In a retrospective study describing 302 patients
with varying immune status, HIV-positive patients were the most
likely to have CNS involvement, compared with transplant re-
cipients and those previously healthy patients [27••]. Among the
different categories, the previously healthy was the group asso-
ciated with highest mortality at 90 days and the reason hypoth-
esized was a delay in diagnosis with a resultant increase in neu-
rological complications including strokes, auditory/visual de-
fects, and cognitive dysfunction [27••].

Common presenting signs and symptoms in HIV-associated
CM are well-documented and include fever, headache, altered
mental status, auditory/visual changes, and cranial nerve palsies
[7•]. Previously healthy adults with CM are more likely to pres-
ent with visual symptoms, auditory problems, altered mental
status, and seizures [36•]. Headache and fever, both hallmark
symptoms of meningitis, are found to be less prevalent in this
latter group [37•, 38•]. Lack of fever results in a reduced consid-
eration of meningitis in the differential and may be a contributor
to late diagnosis, resulting in a more critically ill presentation in
this population. In one study, the mean time from symptom de-
velopment to diagnosis in this group was found to be significant-
ly longer at 81 days compared with just 34 days in the typical
immunocompromised hosts [39] (Table 1).

The increased mortality associated with HIV-negative
cryptococcal disease has recently generated more interest
within the academic fraternity to study this group of pa-
tients more diligently. According to the large multi-center
CINCH (Cryptococcus Infection Network Cohort) study
following HIV-negative cryptococcal patients from the
time of diagnosis for up to two years post-diagnosis across
25 hospitals within the USA, it was found that those ini-
tially admitted with cognitive deficits had very slow im-
provement in serial MOCA scores over time and some
were not able to return to baseline despite completing a
year of therapy [40••, 41]. In another cohort of 27 patients
at the NIH clinical center who underwent comprehensive
neurological assessment from one to four years after diag-
nosis, most were found to have scores less than the 16th
percentile in all domains except attention when compared
with normative test averages. When these patients were
compared with age- and education-matched Alzheimer’s
disease patients, they were found to exhibit greater relative
deficits within the domains of psychomotor and executive
function as well [42].

Otological manifestations associated with cryptococcal dis-
ease have also been described in this population. Cryptococcus

Table 1 Distinguishing clinical
features, CSF, and radiological
findings in immunocompromised
and apparently healthy patients.
(+): present, (++): occurs more
frequently compared with the
other category

Clinical features HIV-positive/transplant
recipients/on chemotherapy

HIV-negative,
apparently healthy

Symptoms

Altered mental status + +

Fever ++ +

Headache + +

Auditory/visual problems + ++

Cranial neuropathies + +

Time from symptom development to diagnosis ~ 1 month ~ 1–3 months

Neurological complications (neurocognitive
deficits, spinal arachnoiditis)

+ ++

Pulmonary involvement + +

CSF analysis

Opening pressure ++ +

CSF pleocytosis + ++

Elevated protein + ++

Hypoglycorrhachia + ++

Higher cryptococcal antigen titers ++ +

Positive CSF fungal culture ++ +

Positive fungal blood culture ++ +

MRI brain findings

Meningeal enhancement + +

Hydrocephalus + +

Cryptococcomas + +

Ependymitis + ++

Choroid plexitis + ++

Ischemic infarcts + ++
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is able to invade either the neural or vestibulocochlear apparatus
to subsequently result in a sensorineural, bilateral, and
progressive/fluctuating hearing loss. In a small study conducted
at the NIH clinical center, 19 out of 29 patients with CM pre-
sented with hearing loss which ranged from mild to moderate
and was sensorineural in origin. Almost half of these patients
also had hearing thresholds below 4 Hz, a frequency crucial for
hearing normal speech [43].

One of the neurological sequelae also reported in recent
literature is a spinal arachnoiditis, which can be hard to deci-
pher clinically when presenting concomitantly with meningo-
encephalitis. When involving the lumbar region, it can present
with saddle anesthesia, urinary retention, and sensory and gait
disturbances with a tendency towards asymmetric lower ex-
tremity weakness. Patients with arachnoiditis have also been
found to have elevated soluble CD27 and NFL levels in their
CSF [44]. Some of the independent risk factors for mortality
reported in HIV-negative patients include older age, liver or
renal disease, diabetes, and hematological malignancies treat-
ed with chemotherapy [45]. This contrasts with HIV-positive
CMwhere the main independent risk factors for poor outcome
are altered mental status, CD4 lymphopenia, high CSF fungal
burden, and older age at diagnosis [46].

Laboratory Tests

In the same retrospective study alluded earlier [27••], there
were also features on CSF analysis that varied according to
immune status. While HIV-positive patients were found to
have higher initial opening pressures and cryptococcal antigen
titers as well as more frequent cryptococcal growth from fun-
gal blood and CSF cultures, previously healthy adults were
found to have more frequent findings of CSF pleocytosis,
elevated protein, and hypoglycorrhachia, all indicative of a
heightened immune response in these patients [27••, 36•].
Although hypoglycorrhachia has been associated with micro-
bial meningitis and CSF inflammation in the past, the actual
mechanism behind it is unclear and has been attributed to
decreased glucose transport across the blood-brain barrier
and an increase in brain metabolism [47]. CSF pleocytosis
has long been used as a measure of neuroinflammation but
studies examining inflammatory biomarkers such as soluble
CSF CD27 (produced by activated Tcells) or HLA-DR+ CD4
cells suggest that these may be more accurate markers of in-
trathecal inflammation compared with CSF WBC as the latter
does not indicate the identity or inflammatory activity of the
intrathecal cell population [48]. Cell numbers within the CSF
represent only the “tip of the iceburg” in a disease which is
predominantly within the substance of the brain. Thus, ratios
of soluble cytokines to T cell numbers such as CSF
CD27/CD4 cells may better represent the degree of inflamma-
tion in a meningoencephalitis such as CM, compared with that
of a meningitis-only disease [48].

The advent of cryptococcal antigen detection techniques has
played amajor role in the rapid diagnosis of cryptococcal disease.
One of the earliest methods was the latex agglutination (LA)
technique, which was able to detect the presence of cryptococcal
capsular polysaccharide GXM (glucuronoxylomannan) using
antibodies raised in rabbits. This was then followed by point-
of-care testing with the lateral flow assay (LFA), which used
gold-conjugated monoclonal antibodies that targeted all GXM
serotypes (A–D) [49]. Compared with EIA (Enzyme Immuno-
Assay) and LA, the LFA is more rapid, able to quantify crypto-
coccal antigen titers, and has a high sensitivity and specificity
(100% and 99.8% respectively in CSF) [49]. In fact, the LFA is
so sensitive that it can be used as a simple blood test for CM,
even in previously healthy patients who typically have low anti-
gen loads [50]. This is thus an important tool that could improve
time-to-diagnosis for a life-threatening, though rare disease that
presentswith littlemore than a headache to suggest the diagnosis.
In contrast, in a recent study from 2018, it was found that mo-
lecular techniques such as the FilmArrayMeningitis/Encephalitis
panel have a poor percent positive agreement for CM (52%)
when compared with antigen testing, indicating that the LFA
represents the most optimal method to diagnose CM [51].
However, it is important to note that while important for diagno-
sis, antigen tests do not differentiate live from dead organisms,
limiting their ability to assess for treatment responses after
diagnosis.

Imaging

Since cryptococcal meningoencephalitis is predominately a
compartmentalized intracranial infection, lumbar punctures
with measurement of opening pressures are still the standard
of care for initial diagnosis and monitoring during the acute
phase of the illness. Brain MRI scans are also a reliable mo-
dality to evaluate both the degree of anatomic damage as well
as a gross measure of inflammation.

Typical MRI brain findings seen in cryptococcal meningitis
irrespective of immune status include meningitis, meningoen-
cephalitis, hydrocephalus, enlarged perivascular (Virchow-
Robin) spaces, cryptococcomas, and disseminated disease.
In a case series following three patients, cryptococcomas on
brain imaging were seen to persist as long as seven years after
initial diagnosis despite clinical resolution, signifying that
they do not necessarily represent active infection [52]. Optic
nerve edema, ischemic strokes, and spinal cord abscesses have
also been reported in cIRIS patients [53].

In non-HIV patients, ependymitis and choroid plexitis have
been noted to occur at a greater frequency than in HIV-related
CM. A study describing MRI brain findings in HIV-negative
patients was able to correlate ependymitis with elevated solu-
ble CD27 levels, a marker for T cell–mediated intrathecal
inflammation while choroid plexitis was found to be a predic-
tor of higher NFL levels, an indicator of axonal damage [54].
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The presence of ependymitis and choroiditis is not specific for
cryptococcal meningitis and has been associated with several
other infections such as tuberculosis, toxoplasmosis,
nocardiosis, and CMV [7•]. However, in the setting of known
CM, it is a harbinger of active inflammation and may also
predispose to central obstruction of the foramina of Monro,
Luschka, and Magendie. These findings can help guide the
physician regarding the need for therapeutic steroids and ven-
tricular shunting versus serial lumbar punctures to reduce in-
tracranial pressure [54]. Interestingly, unlike other neurologic
infections such as neurocysticercosis [55], CM rarely ob-
structs at the level of the Silvian fissure, likely due to the
absence of an adjoining choroid with its inflammatory
potential.

Treatment

According to IDSA guidelines, the recommended treatment
duration for CM in HIV-positive and transplant recipients is
two weeks of induction therapy with amphotericin and
flucytosine followed by eight weeks of fluconazole. Per the
literature, the use of flucytosine in the first two weeks of in-
duction therapy has been associated with lower fungal burden
and a decreased risk of relapse [2]. Interestingly, as shown in a
murine model with disseminated cryptococcal disease, the
combination of flucytosine and AMB is reported to retain its
superiority over AMB monotherapy even against flucytosine
resistant C. neoformans strains [56]. In the non-HIV popula-
tions, it is generally preferred to continue induction therapy
for at least four to six weeks or two weeks from negative CSF
fungal cultures and before a transition to fluconazole. After
the initial 10–12 weeks of treatment, the patient can be
transitioned to suppressive-dosed 200 mg fluconazole. The
best method to monitor microbiological treatment efficacy is
the CSF fungal culture, although in the pre-fluconazole era,
15–20% of previously healthy patients relapsed after a four-
week course of amphotericin B and negative CSF cultures at
discharge [57]. While a decrease in cryptococcal antigen titer
may suggest improvement, a positive antigen test does not
differentiate between live and dead Cryptococcus and signif-
icantly lags behind fungal clearance.

The role of steroids is controversial and has been limited to
patients with cIRIS, elevated intracranial pressure, or patients
with pulmonary Cryptococcus having ARDS [58•]. In a large
study performed in Thailand and a similar landmark study pub-
lished in 2016, there was no mortality benefit seen with the use
of adjunctive corticosteroids in HIV-positive patients upon their
initial presentation with CM. In fact, the latter study had to be
suspended because the dexamethasone groupwas noted to have
higher rates of mortality at 10 weeks and six months. Treated
patients also had higher rates of disability and adverse events.
The reason for this was unclear and could be related to differ-
ences in pathophysiology, but steroid use was found to be

associated with lower rates of fungal clearance which may ex-
plain the poorer outcome. However, the study was not powered
for patients who had cIRIS [59•, 60].Moreover, it is noteworthy
that the patients included in this study were begun on steroids at
the time of diagnosis and received a prolonged course. There is
a possibility that outcomes may have been different if patients
were started on steroids after fungal clearance was achieved and
perhaps for a shorter duration to reduce comorbid infections.
Many case reports have highlighted the role of steroid use in
cIRIS, especially when accompanied by elevated intracranial
pressure [61].

In the CINCH study which was restricted to non-HIV pa-
tients with CM, 80% of patients who received steroids after
CSF fungal cultures were negative, showing an improvement
in functionality and outcomes [40••]. In another study con-
ducted from 2011 to 2016, it was found that previously
shunted HIV-negative patients with cryptococcal meningitis
and PIIRS had improved functional outcomes when cortico-
steroids were used as salvage therapy [62•]. Other anecdotal
reports suggest improvement in CM with refractory disease
[63, 64]. This may imply that there is a niche for corticosteroid
use to suppress inflammatory responses in these patients.
When treating patients with steroids, it is imperative to con-
tinue fluconazole and be attentive for recurrence since steroid
use is an independent risk factor for infection [65, 66] and may
lead to recurrence.

Hydrocephalus in these patients is a concerning finding and
requires meticulous management. In the HIV host, hydrocepha-
lus is usually due to blockage at the level of the arachnoid gran-
ulations and therefore represents a communicating process [67].
Serial lumbar punctures are essential to relieve intracranial pres-
sure and typically suffice to sustain low pressures. Lumbar drain
or ventriculoperitoneal shunt insertion is only occasionally re-
quired. On the other hand, non-HIV patients more commonly
have obstructions of the choroid plexus distal to the fourth ven-
tricle and are also more likely to develop hydrocephalus [7•].
Ventriculoperitoneal shunting has been shown to provide
sustained relief of neurological symptoms and patients most like-
ly to benefit are those with hydrocephalus, an initial OP > 25 cm
H2O and an HIV-negative status [38•, 68]. Resolution of gait
instability and reduced mental acuity, both typical features of
hydrocephalus, are more likely if shunting is performed soon
after the onset of symptoms and outcomes may be improved
by adjunctive corticosteroid therapy [62•, 69].

Pulmonary cryptococcal disease has been associated
with a paradoxical cIRIS as well [70]. In these patients,
symptoms usually develop between 1 to 10 months after
ART initiation. Usual radiographic manifestations include
solitary or multiple nodules which can progress to cavitary
lesions, pneumonic infiltrates, and pleural effusions [71].
CIRIS has also been known to cause extra CNS manifes-
tations such as chorioretinitis, lymphadenitis, ARDS, and
soft tissue abscesses [72].
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Conclusions and Future Perspectives

Despite antifungals and effective diagnostic tools, mortality
rates due to Cryptococcus have not changed substantially
since the advent of amphotericin B reduced mortality from
100% to the current 20–40% inmost host populations current-
ly. Moreover, mortality continues to be high even in previous-
ly healthy patients who counter intuitively have a worse prog-
nosis and mortality rates comparable with HIV patients.
Interestingly, transplant patients tend to have somewhat lower
mortalities which may be due to more rapid diagnosis because
of their close follow-up [27••]. Thus, future frontiers for more
effective therapy appear to (1) improve the time to diagnosis
and (2) identify and manage associated immune inflammatory
conditions. Related to the first, advent of the more sensitive
laminar flow assay (LFA) has made the diagnosis of CMmore
facile [73] as a simple blood test may have significant sensi-
tivity in hard-to-diagnose hosts with low antigen loads such as
the previously healthy patients [50]. Immunomodulatory ther-
apy remains an elusive goal and is the subject of active re-
search both in the USA and abroad. A particular challenge in
resource-limited countries is how to alter immune responses in
a cost-effective manner.
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