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Abstract
Purpose of Review There is significant interindividual variability in the development and progression of fungal diseases, most
notably invasive pulmonary aspergillosis (IPA). The integration of individual traits into clinically valid procedures to predict the
risk and progression of infection, and the efficacy of antifungal prophylaxis and therapy, will change the current healthcare
landscape regarding the management of patients at risk of IPA and, likely, other fungal infections.
Recent Findings Over the last decade, an expanding number of common polymorphisms associated with IPA have been reported,
adding to the information available on monogenic defects underlying severe forms of the disease. Predisposition to IPA is
therefore nowadays considered to result from a combination of clinical and host factors, with the latter beingmost likely regulated
at the genetic level.
Summary In this review, we address the contribution of the genetic profile of the host to the outcome of the host-fungus
interaction and discuss the application of this information in potential strategies with the aim of moving towards personalized
prognostics, diagnostics, and treatment.

Keywords Aspergillosis . Immunocompromised host . Single nucleotide polymorphism (SNP) . Genetic susceptibility .
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Introduction

Invasive pulmonary aspergillosis (IPA) is a life-threatening
infection caused primarily by the opportunistic fungal patho-
gen Aspergillus fumigatus [1]. This disease commonly affects
patients with impaired immune function, including those un-
dergoing hematopoietic stem cell (HSCT) or solid organ trans-
plantation (SOT) and cancer therapy, or with selected primary
immunodeficiencies [2]. Because of the severe underlying
immune dysfunctions, including neutropenia or NADPH ox-
idase activity, IPA is typically associated with high mortality

rates. Other groups of patients with less severe or altogether
lacking apparent immunosuppression are at risk of non-
invasive fungal colonization. These include patients with un-
derlying pulmonary complications, such as cystic fibrosis and
chronic obstructive pulmonary disease (COPD), which are
prone to develop allergic bronchopulmonary aspergillosis
(ABPA) or chronic pulmonary aspergillosis (CPA), respec-
tively [3].

The risk of fungal infection and its clinical outcome vary
considerably even among patients with similar predisposing
clinical conditions and microbiological exposure. Since there
is currently no robust evidence for geographical or genomic
factors influencing the virulence of A. fumigatus, susceptibil-
ity to infection is thought to depend mainly on genetic predis-
position and the degree of pathogen exposure, with interac-
tions between the two likely contributing substantially to the
risk of infection [4–6]. Accordingly, studies in mice have re-
vealed disparate susceptibility profiles to experimental asper-
gillosis between inbred strains [7], reflecting a marked contri-
bution of heritable factors to the development of infection.
Importantly, the study of individuals with rare monogenic de-
fects and from common single nucleotide polymorphisms
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(SNPs) in cohort-based studies have pinpointed defined mo-
lecular players and mechanisms of genetic control of the an-
tifungal immune response [8••]. Here, we review the relevant
contribution of common human genetic variation to antifungal
immunity and the mechanisms through which it predisposes
to infections caused by A. fumigatus (Fig. 1).

Genetic Regulation of Innate Immunity
to Aspergillus

Epithelial Immunity

The lung epithelium is the initial site of the host-fungus inter-
action, and recent work has underscored its critical role in
defining progression from relatively innocuous colonization
to overt disease [9]. Despite its importance, not much is
known directly implicating epithelial immunity with the de-
velopment of aspergillosis. One exception was provided re-
cently in a study involving patients with ABPA and in which a
SNP in the zinc finger protein 77 (ZNF77), whose function is
required for normal epithelial integrity, was found to predis-
pose to enhanced fungal colonization of the lungs [10•].
Additional studies in bronchial epithelial cells whose genome
was edited to harbor the risk genotype revealed a decreased
epithelial integrity, with fungal conidia adhering and germi-
nating more efficiently as the result of enhanced synthesis of
adhesive extracellular proteins. Further recent studies have
highlighted additional mechanisms through which epithelial
immunity controls the initial stages of infection and how the
fungus has instead evolved strategies to counter these mecha-
nisms of epithelial control [11, 12]. However, it remains to be
assessed whether these mechanisms of resistance are

influenced by host genetic variation and how they contribute
to human disease.

Pattern Recognition Receptors

Innate immune recognition of fungal cell wall components has
been an area of intense research, and multiple families of pat-
tern recognition receptors (PRRs), including C-type lectin re-
ceptors (CLRs) and Toll-like receptors (TLRs), are known to
mediate the recognition of fungal cell wall components [13•].
Functionally, these PRRs induce the secretion of proinflamma-
tory cytokines and chemokines and activate mechanisms lead-
ing to phagocytosis and production of reactive oxygen species
(ROS), as well as the activation of complex immunoregulatory
processes and adaptive immunity [14]. The efficiency of fungal
recognition and the interaction with membrane-associated
PRRs also relies largely on the opsonization by different solu-
ble pattern recognitionmolecules (PRMs), including collectins,
pentraxins, ficolins, and components of the complement path-
way [15]. Given their pivotal role in innate antifungal immu-
nity, it is not surprising that genetic variation in these genes
constitutes major risk factors to diseases caused by a wide
range of fungal pathogens [16].

Toll-Like Receptors

The TLR family is endowed with prominent genetic variabil-
ity due to the strong selective pressure occurring during evo-
lution [17]. Given the high number of polymorphic sites in the
coding regions from these genes, TLRs were historically con-
sidered plausible targets for involvement in susceptibility to
infectious diseases, including fungal infections [18]. The pres-
ence of a haplotype in the leucine-rich repeat region of TLR4

Fig. 1 Overview of the major
innate immunity components and
the cell types in which genetic
defects increase susceptibility to
different forms of aspergillosis.
DC-SIGN, dendritic cell-specific
intercellular adhesion molecule-
3-grabbing non-integrin; DEFB1,
β-defensin 1; CARD9, caspase
recruitment domain-containing
protein 9; CXCL10, C-X-C motif
chemokine 10; NOD2,
nucleotide-binding
oligomerization domain-
containing protein 2; PLG,
plasminogen; PTX3, pentraxin-3;
SP-A2, surfactant protein A2;
TLR, Toll-like receptor; ZNF77,
transcription factor zinc finger
protein 77
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in allogeneic HSCT donors was associated with the develop-
ment of IPA in the corresponding recipients [19], a finding that
was validated in independent HSCT cohorts [20, 21] and in
immunocompetent individuals suffering from CPA [22], but
that failed to be replicated in other studies [23, 24••, 25]. These
discrepant findings may be related in part to the yet unknown
mechanisms through which TLR4 variants may influence an-
tifungal immune responses, particularly since no fungal ligand
for TLR4 has been identified to date.

Although SNPs in additional TLRs have been reported to
influence susceptibility to IPA, most of these studies involved
small sample sizes and failed to provide any functional valida-
tion [26, 25]. One relevant exception regards a study implicat-
ing a regulatory variant in TLR3—the prototypical receptor for
double-stranded RNA—in the development of IPA after HSCT
[27], an association that was replicated in patients suffering
from severe asthma with fungal sensitization [28]. Although
definitive data demonstrating direct binding of fungal RNA
to TLR3 has yet to be provided, dendritic cells from SNP
carriers displayed an impaired expression of TLR3, resulting
in a defective priming of memory CD8(+) T cell responses to
the fungus [27]. Such functional elucidation provided pivotal
evidence of how genetic defects in PRRs may influence adap-
tive immune responses, in addition to fungal sensing and innate
immunity. Importantly, as host damage perception is also fun-
damental for resolution of infection, genetic variants triggering
a hyperactivation of damage-associated molecular pattern sig-
naling, and presumably leading to uncontrolled inflammatory
response to the fungus, were also found to increase the risk of
IPA among HSCT recipients [29].

C-Type Lectin Receptors

The CLR family includes the receptors with the most well-
established roles in the coordination of antifungal immune
responses [30]. For example, the importance of dectin-1 in
the recognition of β-1,3-glucan and activation of antifungal
immunity has been revealed in mouse studies and confirmed
in patients with recurrent fungal infections carrying the early
stop codon SNP Y238X [31, 32]. This SNP results in a trun-
cated form of dectin-1 lacking several amino acids within the
carbohydrate recognition domain, with a detrimental effect on
recognition of β-1,3-glucan and cytokine production in re-
sponse to fungal stimulation [33•, 31]. As a result, Y238X
was also found to predispose HSCT recipients to the develop-
ment of IPA in different cohorts [34, 33•]. Additional variants
in dectin-1, but also dectin-2 and DC-SIGN (CD209), were
likewise correlated with the development of IPA in hemato-
logical patients [35, 36]. Importantly, dectin-1 deficiency in
both donors and recipients of HSCT was found to display a
concerted action towards the risk of infection [33]. This find-
ing was replicated in a large, independent HSCT patient co-
hort [24••], highlighting the key role of dectin-1 in antifungal

immunity across multiple cell types. Because the spatial local-
ization of the different dectin-1 isoforms within the cell or-
chestrates the signaling quality of antifungal immune re-
sponses [37, 38], it is also tempting to speculate that this
may be one additional mechanism through which the
Y238X variant contributes to infection.

The role of dectin-1 signaling in antifungal immunity may
however extend beyond the direct activation of effector mech-
anisms. For example, recognition of β-1,3-glucan is nowa-
days acknowledged as one major mechanism involved in the
establishment of innate immune memory to infection with a
broad range of pathogens—a process referred to as trained
immunity [39]—and that occurs through the regulation of
multiple processes of cellular metabolism and epigenetic reg-
ulation [40, 41, 42••, 43]. Whether the Y238X SNP also con-
tributes to infection by compromising the induction of “natu-
ral” trained immunity as the result of our constant exposure to
fungi remains to be assessed. Either way, this may prove to be
a target amenable to therapeutic manipulation, particularly in
the context of fungal diseases.

In addition to dectin-1, MelLec was recently identified as
another critical CLR activated in response to A. fumigatus
[44••]. MelLec recognizes melanin in the cell wall of dormant
conidia and is required for the induction of protective immu-
nity to the fungus. Importantly, human monocyte-derived
macrophages from carriers of a non-synonymous SNP affect-
ing the cytoplasmic tail of MelLec, and likely impacting in-
tracellular signal transduction, were found to display a gener-
alized defect in the production of cytokines after fungal stim-
ulation. As a result, HSCT patients that received transplants
from donors carrying the SNP displayed a markedly increased
risk of IPA after transplantation. Besides the role of melanin as
a major determinant of the cell wall interaction with the innate
immune system, it endows the fungus with the ability to sur-
vive killing by phagocytes, namely, by blocking phagosome
biogenesis, a mechanism that depends on calcium sequestra-
tion inside the phagosome [45, 46•]. Importantly, disruption of
these protective mechanisms by the presence of a regulatory
variant in the gene encoding calmodulin 1, likely affecting
calcium signaling, increased the risk of IPA [46•]. Although
the mechanisms through which MelLec and melanin orches-
trate antifungal immunity are still incompletely understood
[47], these findings nevertheless support the concept that
CLRs are important repositories of genetic variability regulat-
ing susceptibility to IPA.

Caspase recruitment domain-containing protein 9
(CARD9) is an adaptor molecule that transduces signals from
dectin-1 and other CLRs and whose deficiency was initially
identified in patients suffering from mucocutaneous fungal
infections [48]. More recently however, human CARD9 defi-
ciency was also found to predispose to extrapulmonary asper-
gillosis through a mechanism involving the defective accumu-
lation of neutrophils in the infected tissue [49]. In addition to
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these rare mutations, functional studies in vivo using knock-in
mice carrying the common S12N SNP have implicated com-
mon variation in CARD9 in the pathogenesis of ABPA [50].
Mechanistically, S12N contributed to the activation of NF-κB
subunit RelB, which in turn promoted the production of IL-5
by alveolar macrophages and the recruitment of eosinophils to
drive Th2 cell-mediated allergic responses. Given the central
role of CARD9 in collecting signals from the CLR family and
orchestrating signals driving antifungal immunity, it is tempt-
ing to speculate that this or other common genetic variants in
CARD9 may also be relevant in patients at risk of other forms
of aspergillosis and eventually other fungal infections.

NOD-Like Receptors

Besides the involvement of nucleotide-binding oligomer-
ization domain (NOD)-like receptors (NLRs) in the for-
mation of inflammasomes, oligomeric cytosolic structures
known to play a key role in fungal sensing and immunity
[51,52], the function of canonical NLRs such as NOD1
and NOD2 in host defense against fungi remained until
recently poorly studied. The P268S SNP in NOD2, typi-
cally associated with inflammatory diseases, such as
Crohn’s disease [53], was found to confer resistance to
IPA in HSCT patients [54•]. Mechanistically, mononucle-
ar cells harboring this SNP displayed enhanced phagocy-
tosis and killing capacity as the results of a compensatory
mechanism leading to the increased expression of dectin-
1, a finding that was corroborated in a mouse model of
infection using NOD2-deficient mice. This variant illus-
trates therefore how genetic variation can influence the
intricate crosstalk between innate immune receptors and
highlights the possibility to disrupt NOD2 signaling as a
therapeutic intervention in IPA.

Pattern Recognition Molecules

As referred above, there are several circulating molecules
that are endowed with the ability to interact with and bind
to microbial polysaccharides without transducing intracel-
lular signals and that function as opsonins to facilitate
recognition and phagocytosis [15]. One classical example
regards the mannose-binding lectin (MBL), a CLR that
binds carbohydrate patterns from microorganisms and ac-
tivates the lectin pathway of the complement system [55].
There are several described combinations of non-
synonymous and promoter variants in the gene encoding
MBL, either affecting the expression levels, its functional
activity, or both [16]. Although there is no evidence for a
contribution of genetic variants in MBL to IPA, low cir-
culating concentrations of the protein were detected in
infected patients [56]. Instead, the development of CPA
was nonetheless linked with the presence of variable

MBL alleles [57, 58]. Other studies have also implicated
SNPs in lung surfactant proteins, such as SP-A2, in ABPA
[59, 60]. However, most of these studies were limited by
the small sample size, and these associations need to be
revisited in larger and well-characterized cohorts.

Another PRM that has received a great deal of recent
attention in the field of fungal diseases is the long
pentraxin-3 (PTX3) [55]. This molecule binds microbial
moieties from a wide range of microorganisms, including
bacteria, viruses, and fungi, particularly A. fumigatus [61].
Accordingly, genetic variation in PTX3 was identified as a
major risk factor for IPA after HSCT [62••], an association
that was validated in independent cohorts of recipients of
HSCT [24••] and SOT [63, 64] and patients with COPD
[65, 66]. Mechanistically, genetic variants in PTX3 were
found to compromise the normal expression of the protein
in the lungs and, at a cellular level, the antifungal effector
mechanisms of neutrophils were impaired [62••]. The spe-
cific impact of PTX3 deficiency on neutrophil function
was corroborated by a recent study describing the same
association in patients with acute myeloid leukemia under-
going chemotherapy courses without pre-existing neutrope-
nia [67]. Collectively, these studies support variation in
PTX3 as the most robust genetic marker for IPA identified
to date and lay the foundations for prospective clinical
trials assessing their prognostic performance in the clinical
setting.

Other mechanisms of antifungal host defense besides
neutrophil function may also be regulated by PTX3 and
influenced by its deficiency. For example, PTX3 has been
shown to bridge neutrophil and B cell functions in the
spleen, namely, class switching, plasmablast expansion,
and antibody production [68]. As such, antibodies against
fungal antigens could be compromised by PTX3 deficien-
cy, and this could represent one additional mechanism
potentially explaining the association with increased sus-
ceptibility to IPA. In addition, PTX3 was found to directly
bind to myeloid differentiation protein 2 (MD-2), an
adapter of the TLR4 signaling complex, and this process
was found to be critically required for immune protection
in experimental aspergillosis [69]. This raises the possibil-
ity that the combined genetic deficiency of PTX3 and
TLR4 might underlie a higher risk of IPA than the single
defects alone, a hypothesis that requires further
confirmation.

The clinical applicability of PTX3 in the setting of asper-
gillosis may also extend beyond risk stratification approaches.
Levels of PTX3 in the bronchoalveolar fluids were proposed
to be relatively accurate diagnostic markers for microbiologi-
cally confirmed pneumonia [70]. Because the concentrations
of PTX3 in each individual are determined at the genetic level
[62••], one can predict an improvement to the diagnostic per-
formance of PTX3 by stratifying patients according to their
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genotypic profile for PTX3. In addition, PTX3 deficiency was
also shown to impair the levels of alveolar cytokines, namely
IL-6 and IL-8, in hematological patients suffering from IPA
and to impact their ability to act as discriminators of infection
[71]. Of note, because supplementing otherwise deficient neu-
trophils with recombinant PTX3 was sufficient to restore the
efficacy of their antifungal effector functions [62••], the
targeted administration of PTX3 can be regarded as a promis-
ing prophylactic or therapeutic approach for IPA in patients at
risk [72].

Plasminogen represents another example of a PRM that
displays relevant genetic diversity. By performing an un-
biased screen of mice subjected to experimental aspergil-
losis with different strains and correlating genetic data
with survival, a non-synonymous variant was associated
with the risk of IPA in patients undergoing HSCT [73].
These findings support the importance of additional pre-
clinical studies testing different models of infection and
evaluating additional immune-related readouts to guide
the discovery of human genetic variation with an impor-
tant contribution to the risk of infection.

Cytokines and Chemokines

A number of positive associations between genetic variants in
cytokines (e.g., IL-1 gene cluster, IL-12, IL-10, and IFN-γ)
and chemokines (e.g., CXCL10) and susceptibility to asper-
gillosis have also been reported [74–78]. One of the most
relevant examples available to date regards the immunoregu-
latory cytokine IL-10, which has been observed at elevated
levels in patients with CPA [79] and in non-neutropenic pa-
tients with IPA [80]. In addition, significant relationships be-
tween genetic variation in IL-10 and aspergillosis have been
found in patients with cystic fibrosis [81], hematological pa-
tients undergoing chemotherapy [76], and HSCT recipients
[82]. The latter data was recently validated in a large, two-
stage association study demonstrating the contribution of a
specific variant in the IL-10 promoter to the risk of IPA, an
association occurring, at least in part, due to a shift towards an
anti-inflammatory cytokine profile in patients carrying IL-10
high-producing genotypes [83].

Other relevant reports have implicated genetic variation
in IL-1β and beta-defensin 1 (DEFB1) in susceptibility to
mold infection after SOT by affecting the production of
proinflammatory cytokines by mononuclear cells [84]. In
addition, a specific allele in the promoter of IFN-γ was
recently found to confer resistance to IPA [75]. Although
the exact molecular mechanisms though which this variant
controlled risk of infection are not known, cells harboring
the implicated allele displayed nonetheless an enhanced
fungicidal activity. Regarding chemokines, one robust
study implicated a haplotype in CXCL10 and risk of
IPA in HSCT recipients [85]. Mechanistically, this

haplotype was correlated with the inability of dendritic
cells to express CXCL10, and, interestingly, patients who
survived IPA displayed significantly higher CXCL10
levels compared with patients without the disease. Taken
together, these observations suggest the need for evalua-
tion of interindividual variability in immune function to
assess the performance of novel diagnostic and immuno-
therapeutic approaches for aspergillosis [86].

Conclusions—Clinical Translation of Host
Genetics

Early diagnosis remains critical to obtain a favorable out-
come in patients suffering from aspergillosis. However, the
existing tools are often compromised by slowness, inva-
siveness, lack of standardization, and insufficient under-
standing of their kinetics [87]. Given these technical bar-
riers, the search for diagnostic tools that are more efficient
and reliable is an active field of research. Although the
interaction of the fungus with the immune system is being
exploited to project novel and improved fungal diagnos-
tics, efforts have on the other hand been also devoted to
the implementation of clinical models aimed at the predic-
tion of infection in high-risk patients. In this regard, inter-
pretation of individual signatures associated with impaired
antifungal immune responses and their integration with
clinical data is regarded as a promising approach [88].
However, because the effect size of single variants may
not be discriminatory enough to support clinical decisions,
there is the need to account for a broader set of variants,
likely impacting different, yet equally relevant, susceptibil-
ity mechanisms [6]. As a matter of fact, a recent study
evaluating the combination of multiple genetic and clinical
factors into a predictive model has demonstrated that such
information could be used to successfully guide pre-
emptive therapy in hematological patients [89].

Besides improved diagnostics, functional analyses of
genetic variation known to impact susceptibility to infec-
tion remain a priority, since an improved understanding of
the multiple targets and pathways affected by genetic var-
iation may contribute to the establishment of innovative
and personalized immunotherapeutics. This is illustrated
by the pre-clinical evidence showing that genetic PTX3
deficiency can be rescued by the exogenous administration
of the protein, a finding that may support its personalized
use in specific patients at high risk of infection. In con-
clusion, the success of novel diagnostic and immunother-
apeutic approaches for IPA and likely other fungal dis-
eases will only be possible if guided by personalization
based on the interindividual variability in antifungal im-
mune function.
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