
(New) Methods for Detection of Aspergillus fumigatus Resistance
in Clinical Samples

Jeffrey D. Jenks1 & Birgit Spiess2 & Dieter Buchheidt2 & Martin Hoenigl1,3

Published online: 20 June 2019
# Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Purpose of Review The incidence of invasive aspergillosis has increased substantially over the past few decades, accompanied by
a change in susceptibility patterns of Aspergillus fumigatus with increasing resistance observed against triazole antifungals,
including voriconazole and isavuconazole, the most commonly used antifungal agents for the disease. Culture-based methods
for determining triazole resistance are still the gold standard but are time consuming and lack sensitivity. We sought to provide an
update on non-culture-based methods for detecting resistance patterns to Aspergillus.
Recent Findings New molecular-based approaches for detecting triazole resistance to Aspergillus, real-time polymerase chain
reaction (PCR) to detect mutations to the Cyp51A protein, have been developed which are able to detect most triazole-resistant
A. fumigatus strains in patients with invasive aspergillosis.
Summary Over the last few years, a number of non-culture-based methods for molecular detection of Aspergillus triazole
resistance have been developed that may overcome some of the limitations of culture. These molecular methods are therefore
of high epidemiological and clinical relevance, mainly in immunocompromised patients with hematological malignancies, where
culture has particularly limited sensitivity. These assays are now able to detect most triazole-resistant Aspergillus fumigatus
strains. Given that resistance rates vary, clinical utility for these assays still depends on regional resistance patterns.
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Introduction

Infections caused by Aspergillus fumigatus (A. fumigatus) af-
fect patients with immune impairment, including those with
hematologic malignancies and those with pre-existing lung
conditions or liver cirrhosis, and are associated with devastat-
ing mortality rates [1••, 2••, 3]. Early and reliable diagnosis of

invasive aspergillosis (IA) and subsequent rapid initiation of
appropriate antifungal therapy has been shown to improve
survival significantly [4, 5•]. However, IA progresses rapidly
and is difficult to diagnose at early stages [6, 7•], and once
diagnosed, emergence of triazole resistance complicates selec-
tion of appropriate antifungal treatment [8, 9, 10••].

Optimally, diagnostic tests for IA would therefore detect
not only the presence or evidence of invasive growth of
Aspergillus spp. but also triazole resistance. While most cases
of IA are now diagnosed by fungal biomarkers, including
galactomannan and 1,3-β-D-glucan [4, 11–13], these fail to
provide information on antifungal susceptibility of the causa-
tive pathogen. Culture-based approaches have the potential to
both detect the causative fungal species and detect resistance.
However, culture-based approaches are limited by low
sensitivities—in particular during early phases of infection—
and long turnaround time [11]. Importantly, triazole resistance
in A. fumigatus is caused by point mutations in certain genes,
such as the cyp51A gene, which encodes the triazole target
enzyme required for the biosynthesis of ergosterol [14]. These
point mutations may be detected via molecular methods,
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overcoming the limitations of low sensitivity and long turn-
around time that affect culture-based methods and—potential-
ly—improving clinical management and survival in patients
infected with triazole resistant A. fumigatus. Several polymer-
ase chain reaction (PCR) assays have been developed that can
detect triazole resistance mechanisms [15–20], and two are
commercially available, AsperGenius® (PathoNostics,
Maastricht, the Netherlands) and MycoGenie® (Adamtech,
Pessac, France). In this review, we will discuss established
and new methods for detection of A. fumigatus resistance in
clinical samples.

Culture-Based Methods for Detection of Resistance
in Aspergillus fumigatus

Susceptibility patterns of A. fumigatus to the most com-
monly used antifungal agents have changed over recent
years, some of which may also be attributed to increased
environmental use of azole fungicides [21] given their rel-
atively low cost and effectiveness against a broad range of
fungi [22]. For instance, in the European Union, half of all
cereals and grapevine are treated with fungicides, includ-
ing triazoles [23], and it is estimated that if azoles were no
longer used in Europe, a significant fall in wheat produc-
tion would result with an economic loss in the billions of
Euros [22]. Thus, in vitro susceptibility testing for initial
antifungal selection and monitoring while on antifungal
therapy has become increasingly important.

In addition, antifungal susceptibility testing is important in
monitoring background resistance and when comparing the
in vitro activity of new antifungal agents to existing agents.
Increasing resistance of A. fumigatus against triazoles is being
documented, including resistance to isavuconazole, the
newest triazole which was recently approved for first line
treatment of IA [24]. Isavuconazoe resistance has been emerg-
ing also among non-A. fumigatus species [25] and even
among wild-type isolates [26],

Collaboration between investigators and the Clinical and
Laboratory Standards Institute (CLSI) Subcommittee on
Antifungal Susceptibility Testing has generated consensus doc-
uments detailing standardized methods for broth- and agar-
based antifungal susceptibility testing [27]. A number of
culture-based diagnostic tests exist to detect antifungal resis-
tance, and we describe the most commonly used methods here.

Broth and Agar Dilution Methods

Dilution methods using broth and agar are considered the
reference standard methods for determining the minimum in-
hibitory concentration (MIC) of antibiotic and antifungal
agents. During antifungal testing with broth microdilution,
varying concentrations of antifungal agents are placed in
microdilution plate wells filled with broth culture media

containing serial dilutions of antifungal agents. Following in-
cubation, the plates are removed and examined for fungal
growth, indicated by the presence of cloudy broth. The MIC
to the antifungal agent is defined as the lowest concentration,
in milligrams per liter, of the agent that inhibits growth of the
fungus. In agar dilution, varying concentrations of antifungal
agents are combined with melted agar to produce plates with
varying serial dilutions of the antifungal agents being tested.
A. fumigatus is added to spots on the plate, and following
incubation, the plates are examined to determine if growth
has occurred at the inoculated spots. The lowest concentration
of antifungals that prevent A. fumigatus growth is considered
to be theMIC of the antifungal agent. Although these methods
are labor-intensive and expensive, they are the most frequently
used method to determine the efficacy of new antibiotic or
antifungal agents.

Etest® Method

Etest® (Biomérieux,Marcy-l’Étoile, France) is a commercial-
ly available, pre-formed test that consists of a predefined gra-
dient of antibiotic concentrations on a plastic strip. After
placement of the test strip and incubation of A. fumigatus on
an agar plate for 24 to 48 h, an ellipse of growth inhibition
occurs that can be used to determine the minimum inhibitory
concentration (MIC) of the antifungal agents being tested.
This method can be used to determine in vitro activity of a
variety of antifungal agents including amphotericin B,
flucytosine, caspofungin, and a number of triazoles including
voriconazole and posaconazole. While not approved for use
by the U.S. Food and Drug Administration (FDA) in the de-
tection of antifungal resistance by filamentous fungi, includ-
ing A. fumigatus, it is still a commonly used test and results
have been shown to be general agreement with the broth di-
lution reference method for determining susceptibility to
amphotericin B [28, 29], itraconazole [29], posaconazole
[28, 30, 31], isavuconazole [32, 33], and voriconazole [34],
although correlation between broth dilution and caspofungin
has proven to not be as robust [35].

Sensititre® Method

Sensititre® (TREK Diagnostic Systems, West Sussex, UK)
is a commercially available colorimetric microdilution test
that is used for susceptibility testing of yeast and fungi
including Candida species, Cryptococcus species, and
Aspergillus species. Similar to the broth microdilution
method, individual plates are dosed with varying concen-
trations of antifungal agents as well as a colorimetric indi-
cator. Unlike the broth dilution method, growth or lack of
fungal growth is determined by color change rather than
presence of turbidity in the plates. Following incubation
for 24 h, MIC results are read at the first well that
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demonstrates a color change of red (indicating growth),
purple (inhibition of growth), and blue (no growth).
Thus, the lowest MIC is interpreted as the plate with the
lowest concentration of antifungal agent that still retains a
blue color. This method can be used to determine antifun-
gal activity of amphotericin B, flucytosine, a number of
echinocandin agents, and a number of triazoles including
voriconazole and posaconazole. Compared to the Etest®
method and broth dilution, the Sensititre® method has sim-
ilar efficacy in determining susceptibility to amphotericin
B and itraconazole against Aspergillus spp. in one study
[29] but was inferior to the Etest® in another [36, 37].

MALDI-TOF MS Method

Newer approaches for identifying pathogens and
performing antimicrobial and antifungal testing, such as
matrix-assisted laser desorption ionization-time of flight
mass spectrometry (MALDI-TOF MS), are being explored.
By analyzing the composite correlation index (CCI), or
similarities between spectra generated by microorganisms
treated with different concentrations of drug, the minimal
profile change concentration (MPCC) can be determined
[38], which is the lowest drug concentration where the
spectra are more similar to the maximum drug concentra-
tion that the null drug concentration. The MPCC has been
shown to correlate well with the MIC determined by broth
dilution in drug susceptibility testing of Candida albicans
[39]. MALDI-TOF MS has shown good agreement with
the CLSI reference method in the detection of resistance
patterns to caspofungin with a number of Candida and
Aspergillus spp. including A. fumigatus [40]. In a proof-
of-concept study, MALDI-TOF MS was shown to accu-
rately detect strains of A. fumigatus with reduced
voriconazole susceptibility, although this method did not
prove to be more rapid or simpler compared to testing with
PCR and the Sensititre® microdilution panel [41]. Still,
this method needs improved standardization, expanded
availability of databases, and databases need to be contin-
uously updated to include reference spectra of unusual
pathogens [42, 43].

Molecular Approaches for Detection of Resistance
of Aspergillus fumigatus

Incidence of IA caused by triazole-resistant A. fumigatus
(ARAf) is increasing, particularly in patients with underlying
hematological malignancies. As the diagnosis of IA is rarely
based on positive culture in this group of patients, molecular
detection of resistance mutations directly from clinical sam-
ples is crucial. Furthermore, the highmortality rates associated
with ARAf underline the necessity of using non-culture-based

assays for the detection of both Aspergillus spp. and triazole
resistance directly from clinical samples [44–48, 49••].

Real-time PCR testing has been developed to detect tri-
azole resistance to A. fumigatus. The Cyp51A protein, a cen-
tral enzyme with lanosterol-14α-demethylase activity in the
ergosterol biosynthesis pathway, is a target for triazole anti-
fungals with at least 13 mutations at six amino acid positions
causing a resistance phenotype to triazoles [20], including
itraconazole, posaconazole [50], voriconazole, and
isavuconazole. Molecular PCR-based methods for detecting
Cyp51A alterations directly from clinical samples have to be
very sensitive and specific to ensure the amplification of small
amounts of Aspergillus DNA and to avoid cross-reactivity
with human DNA. It is difficult to amplify the whole
Cyp51A gene from primary clinical samples due to the very
small amount of intact fungal molecules in these samples. In
this scenario, nested PCR assays using two consecutive PCRs
amplifying the same gene region have shown the highest sen-
sitivities. In addition to in-house triazole resistance, such as
ARAf PCR assays detecting the frequent mutation combina-
tions TR34/L98H, TR46/Y121F/T289A, and M220 in the
A. fumigatus Cyp51A gene by subsequent DNA sequence
analysis [44, 45], some real-time PCR systems without
DNA sequence analysis are commercially available. For the
Cyp51A amino acid substitutions G54 and M220 and other
known and unknown mutations, several in-house PCR assays
plus DNA sequencing from clinical A. fumigatus isolates have
been established [20, 51, 52]. To detect potential mutations in
the PCR products analyzed by DNA sequence analysis, the
sequence of the products has to be compared to the sequence
of the A. fumigatus Cyp51A wild-type sequence using the
NCBI alignment service Align Sequence Nucleotide Blast
(http://www.ncbi.nlm.nih.gov/) or e.a. the FunResDB-A [53].

An overview of commercially available DNA sequence
analysis independent real-time PCR systems for detection
of Cyp51A mutations was published by Rath and
Steinmann in 2018 [54••]. The diagnostic performance
for the detection of Aspergillus DNA of five commercial
tests was described, including the MycAssay Aspergillus®
system, Microgen Bioproducts Ltd. (Camberley, UK), the
AsperGenius® assay from PathoNostics (Maastricht, the
Netherlands), the MycoGenie® assay from AdamTech
(Pessac, France), and he SeptiFast® system, which is a
multiplex-real-time PCR assay for the detection of bacteri-
al and fungal pathogens and last the RenDX Fungiplex®
assay from Renishaw Diagnostics Ltd. (Glasgow, UK).

In addition to the detection of Aspergillus DNA, the
AsperGenius® and MycoGenie® real-time PCR systems
are also able to analyze Cyp51A mutations. The
AsperGenius® detects the TR34/L98H and Y121F/
T289A mutations by melting curve analysis, the
MycoGenie® can identify the TR34/L98H combination.
T h e A s p e rG e n i u s® a s s a y w a s e v a l u a t e d i n
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bronchoalveolar lavage (BAL) samples with sensitivity
and specificity values of 84% and 80%, respectively.
Eight samples revealed Cyp51A triazole resistance muta-
tions [18, 48]. Schauwvlieghe et al. also analyzed BAL
samples from patients with positive galactomannan in
BAL and suspected invasive Aspergillus infection using
the AsperGenius® system detecting a sensitivity of 79%.
Triazole resistance mutations were found in the form of
TR34/L98H in eight and T289A/Y121F in three patients
[55]. This test was also evaluated in 124 serum samples of
49 hemato-oncological patients (14 proven/probable cases,
33 control patients) and 211 plasma samples from 10 pa-
tients with proven or probable IA, two possible cases, and
27 controls. The described sensitivity was 78.6% and the
specificity 100% for the first group and 80% and 77.8% for
the second group of patients, respectively [56, 57]. The
detection of resistance markers in BAL fluid using the
AsperGenius® method was also associated with an in-
creased probability of treatment-failure to triazoles [48].
The AsperGenius® assay had a good diagnostic perfor-
mance in BAL and serum samples. An advantage of this
of the assay is the time saving aspect by detecting triazole
resistance mutations without DNA sequence analysis.

The MycoGenie® PCR system is recommended for the
testing of biopsy, respiratory, and serum samples. This as-
say has very high sensitivity by detecting the 28S rRNA
gene of A. fumigatuswith a LOD of 1 copy/μl and the major
triazole resistance mutation combination TR34/L98H with
a LOD of 6 copies/μl. The system was evaluated in 2017 by
Dannoui et al. in 88 respiratory samples and 69 serum sam-
ples of patients with proven or probable IA, revealing a
sensitivity of 92.2% for respiratory samples and of 100%
for serum samples [58]. A further study was published by
Denis et al. comparing the MycoGenie® assay to an
A. fumigatus Bio-Evolution® system (Bio-Evolution®,
Bry-sur-Marne, France) using the rRNA gene ITS1 region
for Aspergillus DNA detection. BAL samples (n = 73) of
hematological and non-hematological patients were inves-
tigated. Patients were classified as proven, probable, and
noIA groups for data evaluation. Both assays showed
100% specificity for the detection of Aspergillus DNA,
and the triazole resistance associated Cyp51A alterations
TR34/L98H was not detected.

Evaluation of the A. fumigatus Bio-Evolution® data re-
vealed a sensitivity of 81% and of the MycoGenie® data of
71%. Apart from promising approaches, the sensitivity and
clinical feasibility of the MycoGenie® system have to be fur-
ther evaluated in different clinical settings.

A further real-time PCR system for the detection of
Aspergillus DNA and the Cyp51A triazole resistance alter-
ations TR34 and TR46 is the Fungiplex Aspergillus Azole-R
test system (Bruker Daltonik GmbH, Bremen, Germany). The
assay is validated for testing of serum, plasma, and BAL fluid

samples with different detection limits in different samples.
The two Cyp51A alterations are detected by using different
DNA detection channels of the real-time PCR instruments.
In serum, the limit of detection was 50, in plasma 75, and in
BAL 25 genome equivalents/500 μl sample for TR34 and in
serum 50, in plasma 75, and in BAL 50 Aspergillus genome
equivalents/500 μl sample for TR46. The assay is not yet
validated in a clinical setting.

Triazole resistance in A. fumigatus is not only a problem
in immunocompromised patients but is also an emerging
concern for treating chronically infected and/or colonized
patients. A study of Guegan et al. had the aim to evaluate
the performance of PCR assays to detect Aspergillus fungi
together with triazole resistance in sputum samples from
cystic fibrosis (CF) patients. The study compared the diag-
nostic performance of the MycoGenie® assay with the
AsperGenius® system and two in-house assays plus
DNA sequencing by investigating 119 sputum samples
from 87 CF patients. PCR results were also compared to
mycological culture. The overall rate of Aspergillus detec-
tion with the four qPCR assays ranged from 47.9 to 57.1%;
the detection rate for positive cultures with A. fumigatus
was 42/119 (35.3%). Five out of 41 isolated strains were
triazole resistant, whereby three revealed Cyp51A muta-
tions and only one isolates the TR34/L98H mutation com-
bination. The authors concluded that “Cyp51A targeting
was only moderately effective for triazole resistance mon-
itoring” [59].

To perform some comparable analyses between six in-
house ARAf PCR assays plus DNA sequence analysis [14,
44, 45] and a commercial realtime PCR assay, Postina
et al. investigated in parallel the commercially available
AsperGenius® system in detecting the Cyp51A alterations
TR34/L98H and Y121F/T289A directly from 52 clinical
samples (15 biopsies, 22 bronchoalveolar lavage (BAL),
15 cerebrospinal fluid (CSF) samples) and ARAf isolates
(n = 3) of immunocompromised patients. Both methods
were compared concerning amplification and detection of
Aspergillus DNA and Cyp51A alterations. The rate of pos-
itive ARAf PCR results plus successful sequencing using
the ARAf PCR assays was 61% in biopsies, 29% in CSF,
67% in BAL samples, and 100% in isolates. In compari-
son, the amount of positive PCRs using the AsperGenius®
assays was 47% in biopsies, 42% in CSF, 59% in BAL
samples, and 100% in isolates. Altogether, 17 Cyp51A
alterations were detected using the ARAf PCRs plus sub-
sequent DNA sequencing and therefrom 10 alterations al-
so by the AsperGenius® system. The comparative evalu-
ation of the data revealed that the conventional PCR as-
says were more sensitive in detecting ARAf in BAL and
biopsy samples, whereby differences were not significant.
The advantage of the AsperGenius® system was the time
saving aspect [14].
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Future Perspectives

In the future, knowledge about the epidemiology of
Aspergillus susceptibility patterns will represent a cornerstone
for guiding the appropriate selection of antifungal prophylaxis
and treatment. Given that more areas may be burdened with
high rates of environmental triazole resistance, triazoles may
not be universally recommended as primary antifungal treat-
ment, but instead, treatment choice may depend on local epi-
demiology of ARAf. While triazole resistance is considered
an emerging threat for patients infected by A. fumigatus [60]
leaving very limited treatment options for those patients, tri-
azole resistance in Aspergillus terreus [61] may be even more
threatening, because Aspergillus terreus is non-susceptible to
amphotericin B.

To enable early diagnosis and treatment, more rapid and
sensitive methods to diagnose A. fumigatus and ARAf need to
be developed. Optimally, these methods would be applied as
point-of-care tests in blood specimens and detect a broader
spectrum of resistance markers including markers for resis-
tance in individuals on prolonged triazole therapy [62].

Conclusion

In summary, non-culture-based molecular detection of
Aspergillus triazole resistance is of high epidemiological and
clinical relevance, mainly in immunocompromised patients
with hematological malignancies, where culture has limited
sensitivity. Molecular assays are now able to detect most
triazole-resistant A. fumigatus strains in patients with IA.
Given that resistance rates vary, clinical utility for these assays
still depends on regional resistance patterns.
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