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Abstract

Purpose of review This article provides updates on antifun-
gals, dosing strategies for safe and effective therapy in the
critically ill, including special populations, and the under-
standing of resistance over the last 5 years.

Recent findings Reports of adverse effects with echinocandins
have risen while antifungal resistance to this class has in-
creased, especially in Candida glabrata. New formulations
of posaconazole and isuvaconazole have been developed.
Alternative dosing strategies including combination therapy
are being evaluated for difficult to treat fungal infections.
Other highlights include additional data on dosing patients
with severe organ dysfunction, including those on continuous
renal replacement therapy, and new breakpoints for individual
Candida species being established for the echinocandins and
triazole classes.

Summary Increasing resistance in Candida spp. has made
susceptibility testing a standard of care for critically ill pa-
tients. New formulations of the triazole antifungals have made
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prevention and treatment of mold infections more of a reality.
There are many implications that must be considered when
treating critically ill patients due to alterations in pharmacoki-
netics and pharmacodynamics in order to ensure adequate
treatment. This article exposes the need for further clinical
research in treating invasive infections in this patient
population.

Keywords Antifungals - Pharmacokinetics - ICU - Candida -
Aspergillus - Mucormycosis

Introduction

There is considerable morbidity and mortality associated with
invasive fungal infections, especially in critically ill patients.
Factors placing this patient population at high risk include the
use of broad spectrum antibiotics, parenteral nutrition, immu-
nosuppression (especially transplant recipients and those re-
ceiving chemotherapy), intra-abdominal surgery, prolonged
intensive care unit (ICU) stay, and renal failure [1]. Of the
fungal infections associated with this patient population,
Candida spp. are by far the most common accounting for 70
to 90%. Timely and adequate antifungal treatment plays a
crucial role in patient outcomes [2]. Critically ill patients often
have altered pharmacokinetics and pharmacodynamics, which
greatly impact distribution, bioavailability, and clearance of
life-saving medications [3]. New agents and dosage forms
have recently been released or reformulated which add to an
arsenal of antifungals that better combat these diseases.
Knowledge of the medications and specific caveats associated
with dosing can have significant impact on patients in the
ICU.
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Echinocandins

The echinocandins (caspofungin, micafungin, and
anidulafungin) exert their antifungal effect by inhibiting the
synthesis of the polysaccharide 1,3 beta-D-glucan causing
degradation of the cell wall leading to cell lysis.
Echinocandins possess concentration-dependent fungicidal
activity against all Candida species, along with fungistatic
activity against Aspergillus species. Candida strains with drug
minimum inhibitory concentration (MICs) of <2 mcg/mL
were considered susceptible for all three drugs prior to 2012
[4]. Revised breakpoints have been established by the Clinical
and Laboratory Standards Institute (CLSI) based on data from
clinical studies, pharmacokinetic/pharmacodynamic studies,
and epidemiologic cutoff values for each agent and species
(Table 1) [5]. From a pharmacodynamic standpoint, AUC/
MIC is the parameter associated with outcomes in treatment
of Candida species [6], whereas the Cmax/MEC should be
optimized when echinocandins are used for invasive aspergil-
losis [7].

Because of their long half-lives, all echinocandins may be
administered once daily. Dosing is summarized in Table 2
[8e¢]. Of note, US labeling states that the daily dose of
caspofungin may be increased to 70 mg daily in patients with-
out adequate response or receiving concomitant inducers of
drugs clearance (e.g., rifampin, carbamazepine, dexametha-
sone, phenytoin, and efavirenz), while the European labeling
recommends a daily dose of 70 mg in patients weighing more
than 80 kg [9, 10].

Echinocandins possess excellent in vitro activity against
Candida species, and standard dosing regimens may be ade-
quate for many ICU patients. Nonetheless, the potential need
for higher echinocandin dosing in critically ill patients has
been investigated in multiple recent studies. In 2009, high-
dose caspofungin (150 mg daily) was compared to standard
dosing in non-ICU patients with invasive candidiasis. It was
found that both regimens were equally effective, with slightly
more adverse events in the high-dose group [11]. However, a
recent study of caspofungin pharmacokinetics in 20 ICU pa-
tients revealed suboptimal drug exposure in 50% of the pa-
tients when standard doses were used. A weight-based dosing
strategy of 1 mg/kg per day was proposed to be more suitable
in this population [12]. Additionally, a recent study described
the pharmacokinetic variability of micafungin 100 mg daily in

ICU patients with sepsis and mechanical ventilation. Total
micafungin exposure was lower in ICU patients compared to
non-ICU patients. The authors suggested that the recommend-
ed dose of 100 mg daily will rarely attain target AUC/MIC
values in Candida albicans or Candida glabrata infections
with MIC >0.015 mg/L and any cases of infection due to
Candida parapsilosis [13]. The impact of this effect on clin-
ical outcomes remains to be seen.

As a class, the echinocandins are generally quite safe, but
recent publications point to an association between
echinocandins and cardiotoxicity. The proposed mechanism
of toxicity involves mitochondrial damage due to inhibition
of oxidative phosphorylation during loading doses [14, 15¢].
A case series of three ICU patients receiving empiric
anidulafungin or caspofungin described temporary drops in
cardiac index or mean arterial pressure (MAP) during infusion
[16]. Of note, all of these patients had a history of left ventric-
ular hypertrophy or dysfunction. The difference in toxicity
between agents may be attributable to the higher lipophilicity
of anidulafungin and caspofungin compared to micafungin
[15¢, 17], but polymorphic ventricular tachycardia has been
reported in a patient receiving micafungin [18]. A recent
small, prospective study evaluating hemodynamic parameters
in 15 ICU patients before and after the administration of
caspofungin or anidulafungin found no clinically significant
changes in heart rate, blood pressure, cardiac index, or re-
quired dose of vasopressors [19]. Close hemodynamic moni-
toring may be prudent in critically ill patients receiving
echinocandins, especially during loading doses.

Dose adjustment of echinocandins based on organ function
is typically not required. This feature is especially attractive in
the critically ill population who are at a high risk of multiple
organ failure. In hepatic dysfunction (Child—Pugh scores 7-9,
class B), the recommended dose of caspofungin is reduced to
35 mg daily given after the typical loading dose [10].
However, a recent study suggested that caspofungin dose re-
duction for liver dysfunction may be associated with inade-
quate drug exposure in ICU patients with a Child—Pugh B
score. This may be driven by hypoalbuminemia and the au-
thors suggest avoiding dose reduction in this population [9].
There is insufficient information regarding the use of
caspofungin or micafungin in patients with severe liver dis-
ease (Child—Pugh class C), however, anidulafungin may be
used without dose adjustment in ICU patients with any degree

Table 1 New and old

susceptibility breakpoints for Antifungal C. albicans  C. glabrata C. parapsilosis ~ C. tropicalis  C. krusei
Candida species based on CLSI
criteria Caspofungin and <0.25,<2 <0.12, <2 2,22 <0.25,<2 <0.25,<2
anidulafungin
Micafungin <0.25,<2 <0.06, <2 2,22 <0.25,<2 <0.25,<2
Fluconazole <2,<8 SDD <32,<8 <2,<8 <2,<8 NA

CLSI Clinical Laboratory Standards Institute, SDD susceptible dose-dependent
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of hepatic dysfunction due to minimal alternations in pharma-
cokinetics [20]. The echinocandins are not dialyzable, but
drug exposure may be altered in patients undergoing continu-
ous renal replacement (CRRT) therapy due to decreased pro-
tein binding and drug loss via filter membrane adsorption
[21]. Pharmacokinetic parameters of each echinocandin have
been investigated in small populations of patients requiring
various modalities of CRRT. Minimal echinocandin adsorp-
tion by hemofilters is reported across studies, suggesting that
regular doses are likely adequate in patients on CRRT
[21-23].

Echinocandin pharmacokinetics have also been described
in the case reports of patients requiring extracorporeal mem-
brane oxygenation (ECMO), which is associated with an in-
creased volume of distribution and the potential for drug loss
in the ECMO circuit. Reported plasma concentrations of
caspofungin in ECMO patients vary between undetectable
[24] and normal [25]. A case report of anidulafungin used
during ECMO reported similar Cmax and Cmin levels in crit-
ically ill patients not requiring ECMO and suggested that
anidulafungin dose adjustments during ECMO are unneces-
sary [26]. However, a recent ex vivo study evaluating the
sequestration of highly protein bound drugs (including
caspofungin) in ECMO circuits reported significant drug loss
to the circuit, with only 56% recovery of caspofungin at 24 h
[27]. The extent of echinocandin drug loss during in vivo
ECMO therapy and the possible effect of this interaction on
drug dosing and patient outcomes is yet to be determined.

Limited information exists regarding dosing of
echinocandins in obesity. Increased body weight has been as-
sociated with increased volume of distribution and clearance of
all echinocandins [28]. Pharmacokinetics of both caspofungin
and micafungin have shown decreased peak concentrations and
AUC when standard doses are used, suggesting the need for
dose escalation of echinocandins in obesity [29, 30]. A bedside
equation for dose optimization of micafungin in obesity based
on Monte Carlo simulation has been proposed, but is yet to be
evaluated in human subjects [31]. A case report of micafungin
therapy for C. glabrata candiduria in a morbidly obese patient
(BMI 102 kg/m?) reported successful therapy with the normal
dose of 100 mg daily despite significantly decreased serum
levels [32]. In a retrospective study evaluating the safety and
efficacy of caspofungin in obese patients, the incidence of fa-
vorable outcomes in esophageal candidiasis and invasive can-
didiasis was similar between obese and non-obese patients.
Only 2% of the study population was considered morbidly
obese (BMI >40), limiting the generalizability of the results
to all obese patients [33].

Echinocandins are the recommended initial therapy for
most episodes of candidemia and invasive candidiasis in the
recently updated Infectious Disease Society of America
(IDSA) practice guidelines [8¢¢]. A pooled analysis of nine
randomized trials evaluating antifungal therapy in candidemia
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and invasive candidiasis found that initial treatment with an
echinocandin was associated with improved survival rates
compared to therapy with a polyene or triazole [34¢°]. As
empiric therapy, no difference could be detected in 30-day
survival free from fungal infection when empiric micafungin
was administered to patients with ICU-acquired sepsis how-
ever [35]. Echinocandins should be avoided as therapy for
infections of the CNS and eye because of limited penetration
in these sites. Due to minimal urinary excretion (<1-10%), the
echinocandins are also generally avoided for the treatment of
candiduria. In patients with fluconazole-resistant Candida
species or contraindications to azole therapy, micafungin has
the highest renal elimination and has been successfully used
for treatment of urinary tract infections [36, 37].

With increased use of echinocandins for non-C. albicans
species over the last decade, reports of resistance have begun
to increase nationwide. Susceptibility rates for C. glabrata have
decreased to 93% on average across four sentinel sites moni-
tored by the CDC [38]. The increased MICs are attributed to a
mutation in the fks gene encoding for 1,3 beta-D glucan syn-
thase. Prior echinocandin use is the largest established risk
factor for this resistance and it correlates to clinically worse
clinical outcomes [39e, 40]. C. parapsilosis is associated with
higher in vitro MICs for echinocandins compared to other
Candida species due to naturally occurring polymorphisms in
the fks1 gene [41]. Recent publications however report similar
outcomes in patients with C. parapsilosis candidemia treated
with either fluconazole or an echinocandin [41, 42]. The 2016
update of the IDSA guidelines no longer clearly supports flu-
conazole over echinocandin use for C. parapsilosis, but recom-
mends that echinocandin susceptibility testing should be con-
sidered in patients with infections due to that species or prior
echinocandin use, especially with C. glabrata [8+°].

Triazoles

Triazoles inhibit 14-o-demethylase preventing the conversion
of lanosterol to ergosterol and ultimately causing a disruption
of the fungal cell membrane. Each agent differs
pharmacokinetically leading to varying activity between fun-
gal species. Because of the variable differences with in this
class if antifungals, great care must be taken when selecting an
agent especially in critically ill patients [43].

Fluconazole

Fluconazole is active against most Candida species. The ex-
ceptions are Candida krusei which is intrinsically resistant and
strains of C. glabrata due to acquired resistance (efflux
pumps) [44]. Fluconazole remains the drug of choice for the
treatment of oral (100-200 mg/day) and esophageal (200—
400 mg) candidiasis [8e°]. It is regularly used in treating
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infections caused by Cryptococcus neoformans and coccidi-
oidomycosis (400-800 mg/day) [45, 46]. In critically ill pa-
tients with cryptococcal meningitis, fluconazole may be used
as a part of induction therapy (800 mg/day) in combination
with amphotericen B when flucytosine is unavailable, but is
most commonly use as consolidation (400 mg/day x 8—
10 weeks) or suppressive maintenance therapy (200 mg/
day x 6-12 months) [47]. When treating invasive candidiasis,
a loading dose of 800 mg (12 mg/kg) followed by a mainte-
nance dose of 400 mg (6 mg/kg) daily is recommended [8e¢].
For infections caused by C. glabrata susceptible to flucona-
zole, higher doses of a load of 1600 mg (24 mg/kg) followed
by 800 mg (12 mg/kg) daily are recommended to overcome
the susceptible dose-dependent range seen with C. glabrata.
When possible dosing should be based on actual body weight
in obese patients [48].

Before deciding on dosing for the critically ill, the pharma-
cokinetic properties of fluconazole must be considered. Oral
formulations have excellent bioavailability (>90%) making
for an easy transition from IV to oral therapy. The oral formu-
lation, unlike other agents in this class, is not affected by acid
suppression and can be administered via a gastric tube [49,
51]. The volume of distribution and protein binding are low,
but fluconazole is still able to reach therapeutic levels in the
central nervous system (CNS) and attains good tissue penetra-
tion [49, 50]. Fluconazole is predominantly excreted, 60 to
70%, unmetabolized by the kidneys, making it extremely use-
ful in the treatment of candiduria (200 mg/day). If C. glabrata
or pyelonephritis is suspected, increasing the dose to 400 mg/
day may be considered. Due to the high level of excretion in
the urine, dosage adjustments are necessary in renal dysfunc-
tion [50, 51]. Fluconazole doses should be reduced by 50% or
dosing interval extended to every 48 h for a creatinine clear-
ance (CrCl) < 50 ml/min. Fluconazole is extensively removed
by dialysis (25-40% removed in 4 h) due to its low degree of
protein binding. Patients undergoing intermittent dialysis
should receive unadjusted doses after each dialysis session
or 50% of the usual dose given daily [49, 51]. CRRT removes
an increased amount of fluconazole and is dependent on the
modality of CRRT used. Continuous venovenous
hemofiltration (CVVH) requires fluconazole 200—400 mg
(3—6 mg/kg) every 24 h; continuous venovenous hemodialysis
(CVVHD) requires 400-800 mg (6—12 mg/kg) every 24 h;
and continuous venovenous hemodiafiltration (CVVHDF) re-
quires 800 mg (12 mg/kg) every 24 h [52, 53]. Adjustments in
dosing are not necessary for hepatic impairment. Fluconazole
is an inhibitor of CYP2C9 and CYP3A4, which leads to nu-
merous drug interactions [54, 55].

Voriconazole

Voriconazole is a broad spectrum azole used in the critically
ill. Tt has activity against all Candida spp. (potential cross-

resistance does exist with fluconazole; especially
C. glabrata), Aspergillus spp., and molds such as
Scedosporium spp. and Fusarium spp. Voriconazole is the
drug of choice for invasive aspergillosis and is an alternative
or step-down therapy in Candida infections [8ee, 56°]. It is
available in both oral and intravenous formulations. For inva-
sive fungal infections, a loading dose of 6 mg/kg [Vevery 12 h
for two doses on day 1, followed by 4 mg/kg IV twice daily is
recommended. Oral bioavailability is excellent (>90% in
healthy subjects), which allows for easy conversion of therapy
when the patient stabilizes. Recent accounts show more vari-
ability in the critically ill with oral bioavailability as low as
63% [49, 57]. Absorption of the oral formulation is decreased
by high-fat foods and should be given 1 h before meals or 3 h
after meals to optimize absorption. In patients receiving con-
tinuous enteral nutrition, ideally, nutrition should be
interrupted in order to allow complete absorption of
voriconazole [43, 50, 51].

Voriconazole is able to achieve excellent lung, CNS, and
vitreous concentrations due to a large volume of distribution
and high-tissue penetration [48—50]. It is extensively metabo-
lized in the liver via CYP2C19 and is a potent inhibitor of
enzymes such as CYP3A4 and CYP2C9, which leads to nu-
merous interactions with other medications. Dosage adjust-
ments are necessary in patients with severe hepatic impair-
ment. The usual loading dose (6 mg/kg IV every 12 h) is
followed by a decreased maintenance dose of 2 mg/kg twice
daily. Dosage adjustments are not necessary in patients with
renal dysfunction or hemodialysis for the oral formulations.
Originally, the use of the IV formulation was considered con-
traindicated in patients with a CrCl1<50 mL/min because of
potential concerns with accumulation of the cyclodextrin car-
rier vehicle. However, this has not been determined to be
clinical relevant as kidney damage has only been established
with repeated doses of cyclodextrin in animal models [58]. In
a human study of 166 patients, neither baseline renal dysfunc-
tion, voriconazole route of administration, nor a combination
of these factors was seen to impact renal impairment [59].

There are numerous patient factors that may lead to vari-
ability with voriconazole levels including pharmacokinetics
during critical illness, drug interactions, or genetic factors as-
sociated with polymorphisms with CYP2C19. Therapeutic
drug monitoring is recommended for patients who are unre-
sponsive to voriconazole therapy or at risk for adverse effects.
Trough concentrations should be drawn after 2 to 3 days of
therapy and should be in a goal range of 2 to 6 mg/L [60°, 61].

Itraconazole
Itraconazole is a broad spectrum agent with activity against
Candida spp., Aspergillus spp., and endemic fungi. Due to its

unpredictable pharmacokinetic profile, it is reserved as a step-
down, alternative, or salvage therapy [43]. Drug level
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monitoring is recommended because of its multifaceted phar-
macokinetic profile to ensure both efficacy and limit toxicity.
Levels are drawn after 5 to 7 days of therapy and the trough
should be >1 mcg/mL for treatment doses and >0.5 mcg/mL
for prophylaxis dosing [60e, 61]. Itraconazole is available only
in oral formulations and, due to its long half-life, should be
given as a loading dose of 200 mg three times a day for 3 days,
followed by 200 mg once or twice daily [43].

Neither the capsule nor oral solution formulations are read-
ily absorbed. The solution has enhanced absorption compared
to the capsule because it is formulated with a cyclodextrin
carrier increasing hydrophilicity. Absorption of the capsules is
significantly increased in an acidic environment so it should be
taken with food or a cola beverage and be separated from acid-
suppressive medications. Unlike the capsule, the oral solution
is best absorbed on an empty stomach [43]. Itraconazole un-
dergoes liver metabolized primarily through CYP3A4 and it is
also a potent CYP340 inhibitor, which leads to several clinical-
ly relevant drug interactions [49]. Due to the extensive liver
involvement, dosage adjustment is necessary in patients with
severe hepatic impairment. Adjustments in dosing are not nec-
essary in the setting of renal dysfunction or hemodialysis [51].

Posaconazole

Posaconazole was originally approved as a suspension for the
prophylaxis of invasive candidiasis and aspergillosis in severe-
ly immunocompromised patients, but the medication is now
available as both delayed-release oral tablets and IV.
Posaconazole has an extended spectrum of activity that in-
cludes endemic dimgorphic fungi, zygomycetes, and
Fusarium spp. The medication possesses a large volume of
distribution, but limited CNS penetration. Renal and hepatic
dose adjustments are not necessary due its extensive excretion
in the feces as unmetabolized drug. Posaconazole is a potent
inhibitor of CYP3A4 and has numerous drug interactions [49].

The recommended dose of suspension is 200 mg three
times a day for prophylaxis and 800 mg divided two to four
times a day for the treatment of invasive fungal infections.
Bioavailability of the oral suspension is increased with high
fat meals and is highly dependent on both gastric pH and
emptying time results in significant clinical variability in
posaconazole drug concentrations. Dosing can further be chal-
lenging in critically ill patients because absorption is altered
when co-administered with acid suppressing agent [62]. In a
prospective observational study, 187 posaconazole serum
concentrations were analyzed from 31 patients. Of those, 80
(43%) were found to be below the target trough level of
700 pg/L and 68% of patients had at least one concentration
below goal [63]. Due to the significant pharmacokinetic chal-
lenges seen with posaconazole oral suspension, the IV and
delayed-release tablet were introduced in 2014. The delayed-
release tablet is designed to disperse the medication at the
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higher pH environment found in the small intestine, which
greatly improves absorption [64]. Dosing for the tablet and
IV formulation is the same: two 300 mg doses as a load,
separated 12 h apart on the first day, followed by 300 mg once
daily starting on the second day of therapy [65]. Like
voriconazole, the IV formulation of posaconazole contains
cyclodextrin as a carrier vehicle. As previously discussed,
the presence of this has not been determined to be clinically
relevant [66]. With these changes, the achievement of goal
serum concentration should theoretically be easier. A retro-
spective study evaluating trough levels in oncology patients
showed that posaconazole delayed-release tablets were able to
attain appropriate trough concentrations in most patients.
However, lower mean trough levels were seen in patients
experiencing diarrhea (650480 ug/L vs. 1300+130 pg/L)
and in patients with a weight >90 kg (740+90 pg/L) as com-
pared to patients with lower weight (1320+ 140 pg/L). The
same trend was seen in patients with a body mass index
(BMI)>30 (890+130 pg/L) vs. patients with a BMI<30
(12904140 pg/L) [67]. While no study has specifically eval-
uated trough concentrations with posaconazole delayed-
release tablets or IV formulation in critically ill patients, these
findings suggest that therapeutic drug monitoring may need to
be considered in this population. Anecdotally, the authors
have observed sub-therapeutic concentrations even when the
drug is given IV.

Isavuconazole

Isavuconazole is the newest antifungal agent. It was approved
by the FDA in 2015 for the treatment of invasive aspergillosis
and invasive mucormycosis [68]. Similar to posaconazole,
isavuconazole has an extended spectrum with activity against
a large range of yeasts, dimorphic fungi, and molds including
those in the Zygomycetes family (Mucor spp., Rhizopus spp.,
Lichtheimia spp., and Rhizomucor spp.) [69].
Isavuconazonium sulfate is a water-soluble prodrug that is
rapidly hydrolyzed to isavuconazole, the active component.
Isavuconazonium sulfate is available in both oral and intrave-
nous formulations [70¢]. For both, the recommended dosing
regimen is a loading dose of isavuconazonium sulfate 372 mg
(200 mg isavuconazole) every 8 h for six doses, followed by a
maintenance dose of 372 mg once daily [69]. Because the
prodrug is highly water soluble, the intravenous formulation
does not require solubilization by a cyclodextrin vehicle
which decreases concern for potential nephrotoxicity.
Dosage adjustments for renal and hepatic impairment are
not necessary. Isavuconazole is metabolized in the liver by
CYP3A4 and CYP3AS. Although clearance of isavuconazole
is impaired in patients with hepatic impairment, dosage ad-
justments are not recommended for these patients. Since
isavuconazole is a substrate of CYP3A4, drug interactions
are important considerations [69]. Isavuconazole has 98% oral
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bioavailabilty, its absorption is not affected by food, and it
follows linear pharmacokinetics [71¢]. At this time, no corre-
lation between serum concentrations and outcomes has been
determined but clinical experience is still lacking. Therefore,
therapeutic drug monitoring is not yet routinely recommended
for isavuconazole, but the same could be said for other
triazoles upon initial approval. Its role in therapy may be that
it has the potential for fewer adverse effects than other azoles.
In trials for aspergillosis, there were less hepatobiliary and
ocular reactions compared to voriconazole. Rather than caus-
ing a risk of QTc prolongation, caution is advised when
isavuconazole is used in patients with short QTc.

When used for the treatment of invasive aspergillosis,
isavuconazole and voriconazole were found to have similar rates
of all-cause mortality and success at the end of treatment. An
open-label non-comparative trial looked at the use of
isavuconazole for the treatment of invasive mucormycosis.
Patients had an all-cause mortality rate at day 42 of 38% and
an overall success rate of 31%. The mortality rates seen were
similar with mortality rates of 35-45% seen in previous studies
with amphotericin B for the treatment of invasive
Mucormycosis.

Amphotericin B

Amphotericin B (AmB) is a member of the polyene antifungal
class. It exerts concentration-dependent fungicidal activity by
increasing membrane permeability through interactions with er-
gosterol [72]. Concentrations needed for fungicidal activity are
4-10x the organism’s MIC, and it is important to note only a
fraction of AmB is microbiologically active in tissue [73, 74].
Since there is no evidence that distribution takes place in adipose
tissue, dosing in the obese can be based on an ideal body weight
[48]. The medication produces a post-antifungal effect and phar-
macodynamics allow for once daily dosing [75]. Metabolism
and route of elimination for AmB are not well understood
[48]. Oral absorption is poor, and AmB is most commonly ad-
ministered intravenously. Intrathecal and inhalation administra-
tions are used in unique circumstances [43, 76].

AmB is a broad spectrum agent and is the drug of choice
for cryptococcal meningitis and endemic mycoses in the crit-
ically ill. Other uses include salvage therapy or unknown in-
fections when empiric antifungal treatment is desired, espe-
cially in cases of neutropenic hosts [43, 56, 77]. AmB can be
used as a prophylactic agent but is most often avoided because
of the efficacious aforementioned oral agents with less toxic-
ity. Usual dosing for conventional AmB is 0.7 mg/kg IV daily
(0.25-1.5 mg/kg/day), although doses of 0.3 mg/kg/day are
suited for the treatment of minor infections [78]. Increased
doses, 1 to 1.5 mg/kg/day, can be considered in severe inva-
sive fungal infections or infections caused by organisms with
increased resistance to preferred agents [8ee, 79]. Treatment of

severe invasive infections is often combined with surgery and
requires several months of IV therapy [79]. Extended dura-
tions and high doses are associated with increased rates of
nephrotoxicity [80]. In patients developing nephrotoxicity,
the dose may be halved or the dosing interval increased to
every other day to prevent further renal compromise. Due to
infusion-related reactions like fever, chills, rigors, and cardiac
arrthythmias, administration of conventional AmB should be
over 4 to 6 h. Those requiring renal replacement therapy do
not necessitate a dose adjustment due to AmB being poorly
dialyzable. Intrathecal doses of AmB range from 0.1 to 1.5
(typically 0.5)mg and are reserved for severely ill patients
with central nervous system infections refractory to IV admin-
istration [48].

The use of inhaled amphotericin has been reported since
1959, but there is a limited quality clinical data regarding this
method of administration [81]. Nebulization is a strategy for
minimizing the toxicities of the medication while providing
localized therapy. Though the risk for systemic toxicity is
reduced, there is a concern for direct lung toxicity which
may be due to alterations in lung surfactant, especially with
conventional amphotericin. Selection of a nebulizer is another
important consideration due to its vital role in medication
aerosolization and subsequent treatment success [76].
Dosing has not been standardized and is dependent on the
amphotericin formulation, fungal organism, and nebulizer
used [76, 81]. This has led to a variety of reported doses
ranging from 3 to 100 mg daily to 50 mg once weekly [75].
As for its place in therapy, nebulized amphotericin may be an
option as adjunctive therapy for treatment of tracheobronchial
aspergillosis in combination with a systemic triazole, prophy-
lactic therapy for pulmonary aspergillus in lung transplant
patients, and as an alternative treatment of allergic
bronchopulmonary aspergillosis [56¢, 76]. Limited data exists
for use in other invasive pulmonary fungal infections.

On account of the toxicities associated with conventional
AmB, additional formulations are being investigated. New
research on ion complexes, nanoparticles, protein-
phospholipid bioparticles, and liquid crystals indicate poten-
tial future directions for this drug [82—85]. Lipid formulations
are currently the only alternative designs approved for use.
Existing alternative products include amphotericin B colloidal
dispersion (ABCD), amphotericin B lipid complex (ABLC),
and liposomal amphotericin B (L-AmB). All have shown
comparable efficacy to conventional amphotericin B [43].
Dosing differs from conventional AmB and ranges from 3 to
5 mg/kg given as a single daily IV infusion. Infusion times are
also decreased when compared to conventional AmB. ABLC
and L-AmB can be given over 2 h, while AmB deoxycholate
is administered over 4 h. As with conventional AmB, higher
doses of L-AmB have been used for cryptococcal meningitis
(6 mg/kg/day) and zygomycosis (10—15 mg/kg/day) [79, 86].
Two modern studies have assessed high-dose liposomal
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amphotericin. The AmBiLoad trial randomized patients to a
loading phase of 10 mg/kg/day for 2 weeks compared to the
standard regimen (3 mg/kg/day) in treatment of invasive as-
pergillosis. No difference in efficacy was seen, but nephrotox-
icity and hypokalemia were significantly increased with the
higher dosing [87, 88e¢]. The more recent AmbiZygo trial also
evaluated doses of 10 mg/kg/day for 4 weeks in patients with
mucormycosis. Creatinine levels doubled from baseline in
40% of patients (16/40) with no improvement in mortality
(38% at 12 weeks) [89¢].

Due to the increased mortality associated with
mucormycosis, combination therapy with lipid formulations
of amphotericin B paired with echinocandins, deferasirox, or
triazoles has been studied [90]. Despite no inherent activity
from echinocandins, the combination of capsofungin plus
amphotericin B lipid complex has the promising, but limited,
data, supporting its use for mucormycosis [91].

Flucytosine

Flucytosine is classified as a pyrimidine analog and exerts
activity through inhibition of fungal DNA synthesis [43].
The cost of flucytosine has significantly increased since
2009. A 2-week course of flucytosine increased to roughly
$28,000 based on 2015 whole sale cost in the USA [92]. It
is primarily used in the treatment of cryptococcal meningitis in
combination with another agent due to its increased propensi-
ty to develop resistance when used by itself. Most commonly,
flucytosine is combined with amphotericin B due to increased
rates of CSF clearance compared to amphotericin B with flu-
conazole [93]. Flucytosine is associated with significant bone
marrow suppression and can be seen with traditional dosing of
150 mg/kg/day [78]. Peak serum levels should be measured 3
to 5 days into therapy and be maintained between 30 and
80 mcg/mL in order to decrease adverse effects. Lowering
the daily dose to 75—100 mg/kg to minimize toxicity is appro-
priate when combined with another antifungal agent [46, 91].
Due to renal excretion, dose adjustments are required for pa-
tients with renal impairment (creatinine clearance <50 mL/
min). Limited data exists regarding dosing in patients requir-
ing renal replacement therapy. Suggested dosing ranges from
20 to 50 mg/kg after dialysis sessions and 37.5 mg/kg every
12-24 h for continuous renal replacement therapy (CVVHD/
CVVH) [94].

Conclusion
This update provides pertinent dosing considerations and in-
dications for antifungal agents commonly used in the critically

ill. The pharmacokinetic information provided may greatly
impact the safety and efficacy of therapy and subsequent
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patient outcomes when treating invasive fungal infections.
Additional data would be useful in establishing dosing for
special populations such as those with liver dysfunction, kid-
ney failure, or morbid obesity.
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