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Abstract The multitude of factors has contributed to the in-
creasing number of fungal infections caused by species of
difficult-to-treat opportunistic moulds, such as Fusarium,
Scedosporium, and cryptic Aspergilli. Also, rare fungi sporad-
ically encountered, such as Rasamsonia argillacea, Penicillium
oxalicum, and melanized fungi, are now well recognized. The
high mortality associated with these rare and uncommon fungi
is primarily linked to the difficulty in diagnosis and limited
therapeutic options, as many of them exhibit resistance to anti-
fungals including azoles. Azole resistance in Aspergillus
fumigatus has been increasingly reported because standardized
methods for susceptibility testing and associated clinical
breakpoints and epidemiological cutoff values became avail-
able. However, such advances in antifungal susceptibility test-
ing (AFST) in non-Aspergillusmoulds barring mucorales have
been lacking. Notwithstanding the fact that the true incidence
of these non-Aspergillus filamentous moulds in clinical settings
is hitherto unknown, also data on AFST by standardized
methods is largely lacking. Determination of minimum inhibi-
tory concentration (MIC) by reference techniques is the gold
standard to detect azole resistance in filamentous fungi. In re-
cent years, some progress has been made toward the descrip-
tion of resistance mechanisms at molecular level especially in
Aspergillus. This paper reviews the present state of azole resis-
tance in Aspergillus and other filamentous mould species and
discusses their relevance to clinical practice.
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Introduction

Filamentous fungi encompassing many genera are associated
with a wide spectrum of diseases in humans ranging from
superficial to life threatening invasive infections. The multi-
tude of factors has contributed to the increasing number of
fungal infections in the last two decades, especially caused
by species of opportunistic moulds for which there is no reli-
able medical therapy. The factors mainly include increasing
use of immunosuppressing agents, selection of these moulds
in the setting of antifungal prophylaxis, natural disasters, and
their better recognition due to advanced identification
methods [1, 2, 3••]. The incidence of mould infections is much
lower than candidiasis; however, infections due to filamentous
fungi are a significant cause of morbidity and mortality espe-
cially among immunocompromised patients [4]. Also, the ep-
idemiology of mycoses associated with several filamentous
fungi has changed such that the most prevalent invasive
mould infection is primarily due to Aspergillus fumigatus,
but the global emergence of azole-resistant strains has been
described in the last decade [5]. Also, infections caused by
difficult-to-treat moulds, such as species of Mucorales [6],
Fusarium [7], and Scedosporium [8], are increasingly report-
ed, although true incidence of these non-Aspergillus filamen-
tous moulds is hitherto unknown. Furthermore, rare fungi
sporadically encountered, such as Rasamsonia argillacea,
Penicillium oxalicum, and melanized fungi are now well rec-
ognized [9, 10].

The high mortality associated with the rare and uncommon
fungi is primarily linked to the difficulty in diagnosis, limited
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therapeutic options, and a lack of knowledge of the most ef-
fective antifungal therapy. In recent years, the challenges
pertaining to identification are significantly reduced by avail-
ability of molecular tools and mass spectrometry, which is
particularly helpful for the species level identification of fungi
with high accuracy and also for determining their resistance
profile to antifungals [11, 12••]. However, the therapeutic op-
tions for invasive fungal infections remain limited and include
only three structural classes of drugs: polyenes, azoles, and
echinocandins. Among antifungals, the better tolerated azoles
and echinocandins have emerged as first-line agents for most
common invasive fungal infections [13]. The azoles, namely
fluconazole (FLU), voriconazole (VRC), and posaconazole
(POS), are the most widely used antifungal to treat invasive
fungal infections. Azoles inhibit ergosterol biosynthesis and,
in general, are fungistatic. However, VRC is fungicidal toward
A. fumigatus. Notably, FLU has essentially no activity against
moulds. In contrast, itraconazole (ITC), VRC, POS, and
recently approved isavuconazole (ISA) all have activity
against moulds. Therefore, the emergence of azole antifungal
resistance in moulds jeopardizes the effective treatment. The
other major challenge in this respect is that antifungal suscep-
tibility testing (AFST) is not routinely performed in many
centers in the world. The true rates of global azole resistance
in these pathogens are enigmatic; therefore, detection and
monitoring of azole resistance are of paramount importance
for the effective management of the disease. The present re-
view aims to provide synopsis of azole resistance in clinically
significant opportunistic filamentous mould species and dis-
cusses the approach of detection of azole resistance in these
fungi.

Global Emergence of Azole Resistance in Aspergillus
Species

The last decade has witnessed shift in the etiology of asper-
gillosis and highlighted the emergence of cryptic and rare
Aspergillus species in various clinical settings in both immu-
nocompromised and immunocompetent hosts [14]. The appli-
cation ofmultilocus DNA sequence analysis in various studies
has indicated the prevalence of previously unknown Bcryptic^
Aspergillus species in clinical specimens [15, 16]. In two pop-
ulation based prospective studies in the USA and Spain, the
prevalence of cryptic Aspergillus species detected in clinical
specimens was found to be 10 and 12%, respectively [17, 18].
Aspergillus species belonging to the section Fumigati
(A. fumigatus complex) are often misidentified as they cannot
be distinguished from A. fumigatus by conventional methods.
Furthermore, these species often display intrinsic resistance to
azoles and other antifungal drugs. A. lentulus, A. udagawae,
A. viridinutans, and A. thermomutatus (Neosartorya
pseudofischeri) have been associated with refractory cases of
invasive aspergillosis (IA) [16, 19, 20]. Azole resistance in

Aspergillus species is not restricted to section Fumigati but
several species in other sections also exhibit elevated mini-
mum inhibitory concentrations (MICs) for azoles and are
listed section wise in Table 1.

Primarily, ITC is used in the treatment of chronic pulmo-
nary aspergillosis (CPA) [21], while VRC is used as first line
therapy of IA [22]. Recently another azole, ISA, has been
approved for the primary treatment of IA [23]. POS is indi-
cated as prophylaxis in high-risk patients, such as acute mye-
loid leukemia (AML) and stem cell transplant patients with
graft-versus-host-disease (GVHD) [22]. However, in recent
years, emergence of azole resistance in clinically relevant fil-
amentous moulds due to prolonged azole exposure had led to
increasing reports of treatment failure and breakthrough infec-
tions. Such development of azole resistance in chronic asper-
gillosis patients while on prolonged azole antifungals has been
well documented [24]. Regarding azole resistance in
A. fumigatus, it was first observed in collection of the late
1980s isolates in the USA from two patients treated with
ITC [25]. Later, azole resistance in A. fumigatus was reported
from the Netherlands in the 2000s with an annual prevalence
ranging from 1.7 to 6 % [26•], followed by the UK reporting
28 % of azole-resistant A. fumigatus (ARAF) isolates in 2008
and 2009 corresponding to 14 and 20 % of patients, respec-
tively [27]. Surveillance studies presently suggest the global
presence of azole resistance in A. fumigatus and include re-
ports from Europe, the Middle East, Asia, Africa, Australia,
and most recently, North and South America [28••, 29••, 30].
Azole resistance in A. fumigatus is frequently the result of
mutations in the cyp51A gene. Several non-synonymous point
mutations at codons G54, M220, and G138 in this gene are
primarily found in patients treated long-term with azoles [31].
Many of these mutations result in resistance to multiple anti-
Aspergillus triazole antifungals [31]. However, in contrast to
the point mutations observed in the host development route of
azole resistance, in the environmental driven route
A. fumigatus strains have in addition to the mutations in the
cyp51A gene, a tandem repeat duplication in the promoter
region, which increases the expression of the gene [31]. To
date, two resistance mechanisms TR34/L98H and TR46/
Y121F/T289A are reported to be associated with the environ-
mental A. fumigatus isolates from soil and air samples
[30, 31]. The patients directly acquire these azole-resistant
isolates from the environment by inhalation, and in high-risk
patients may result in life-threatening azole-resistant IA. The
environmental selection of ARAF isolates is suggested to be a
consequence of the wide use of triazole fungicides in agricul-
ture, the latter being highly similar in their structures, as
proven by homology modeling, to those used in medicine
[3••, 32••]. Recently, point mutations, G54 and M220, in
cyp51A gene of A. fumigatus environmental isolates were
reported from India, Romania, Tanzania, and Germany
[28••, 29••].
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Detection of Azole Resistance in Aspergillus

The patients who have a positive Aspergillus culture and
the clinical intention is to treat requires determination of the
species level complex of the isolate. Morphological methods
are not always useful in species identification of rare and un-
common Aspergillus isolates. Correct identification of species
with in the section Fumigati is clinically relevant specifically
in context of A. lentulus that appears to have higher in vitro
MICs to azoles compared to A. fumigatus, thus altering the
therapeutic decisions [19]. The major molecular taxonomic
tool, ribosomal sequencing, is widely used for fungal identifi-
cation. The use of internal transcribed spacer regions (ITS) for
inter-section-level identification and the β-tubulin locus for
identification of individual species within the various
Aspergillus sections is recommended [16, 33, 34]. The
AFST is very crucial in settings where antifungal therapy is
to be initiated in determining not only the best clinically active
antifungal agent but also to detect resistance in Aspergillus.
The Clinical Laboratory Standard Institute (CLSI) and the
European Committee on Antimicrobial Susceptibility

Testing (EUCAST) methods based on broth microdilution
are highly reproducible and recommended to detect in vitro
resistance against triazoles in filamentous fungi. EUCAST has
published MIC breakpoints for ITC (>2 μg/ml), VRC (>2 μg/
ml), and POS (>0.25 μg/ml) for defining resistance in
A. fumigatus [35]. Although break points are not available
for CLSI method, epidemiological cutoff values (ECVs) of
ITC (1 μg/ml), VRC (1 μg/ml), and POS (0.25 μg/ml) for
A. fumigatus and other five clinically relevant Aspergillus spe-
cies have also been established [36]. Recently, the ECVs for
the ISA using CLSI M38-A2 broth microdilution method and
EUCAST have been described as 1 and 2 μg/ml, respectively,
for A. fumigatus [37, 38]. It is recommended to perform in vitro
susceptibility testing onmultiple colonies, as different azole sus-
ceptibility phenotypes might be present in a single culture [39].

The major lacuna in detecting azole resistance is the prob-
lem that MIC determination of Aspergillus is not performed
routinely in many microbiological laboratories worldwide. A
simple agar-based screening method containing four-well
plate with a growth control and ITC, VRC, and POS added
to the agar [40] (VIP Check TMBeneden-Leeuwen, the

Table 1 An overview of published data on antifungal susceptibility against triazoles and molecular identification methods of clinical isolates of
Aspergillus species

S. No. Species Method of Identification MIC Range (μg/ml) Method References

ITC VRC POS

Section Fumigati
1 Aspergillus fumigatusa ITS, β-actin, Cmd 2–>32 0.5–>16 0.5–>32 CLSI, E test, EUCAST [31, 39]
2 Aspergillus fumigatiaffinis β-tubulin 0.5–8 0.25–6.66b 0.064–1.16b CLSI [19, 33]
3 Aspergillus lentulus β-tubulin, ITS 0.43–16 1–7.5b 0.25–1 CLSI [17, 19, 88]
4 Aspergillus novofumigatus β-tubulin >8–16 8–16 1 CLSI, EUCAST [88, 89]
5 Aspergillus thermomutatus ITS, β-tubulin, Cmd 1–2 2–16 0.5 CLSI [90, 91]
6 Aspergillus udagawe ITS, β-tubulin 0.125–2 0.25–2 0.125–0.25 CLSI [17]
7 Aspergillus viridinutans β-tubulin 1–14.4b 0.38–4b 0.064–0.5 CLSI, EUCAST, E-test [19, 88, 89]
8 Neosartorya pseudofischeri β-tubulin, ITS 0.25–16 2–6.66b 0.25–0.5 CLSI [17, 19]
9 Neosartorya udagawe ITS, β-tubulin, rodA 1–4 2–116 0.25–0.5 CLSI [92]
Section Flavi
10 Aspergillus tamarii ITS 0.25–2 0.125–8 0.03–2 CLSI [93]
Section Nidulantes
11 Emericella nidulans ITS, β-tubulin 0.125–2 0.032–4 0.032–4 CLSI [33]
12 Emericella unguis ITS, β-tubulin 0.25–0.5 0.125–16 0.25–2 CLSI [33, 34]
Section Usti
13 Aspergillus calidoustus ITS, β-tubulin, Cmd 0.25–>32 1–16 0.5–32 CLSI, EUCAST [17, 33, 89, 90, 94]
14 Aspergillus ustus ITS 1–8 4–8 CLSI [95]
Section Circumdati
15 Aspergillus ochraceus ITS, β-tubulin, Cmd 0.5–4 0.5–1 0.5–2 CLSI [33, 90]
16 Aspergillus sclerotiorum ITS, β-tubulin 0.25 1 2 CLSI [33]
Section Terrei
17 Aspergillus terreus ITS, β-tubulin 0.06–2 0.06–4 0.03–4 CLSI, EUCAST [33, 96]
Section Nigri
18 Aspergillus niger ITS, β-tubulin, Cmd 0.125–0.5 0.064–0.5 0.125–32 CLSI [33]
Section Versicolores
19 Aspergillus sydowii ITS, β-tubulin 0.25–0.5 1–2 0.25–0.5 CLSI [17]

ITC itraconazole, VRC voriconazole, POS posaconazole
a Isavuconazole MIC range 0.5–>8 µg/ml [31]
b Geometric mean MICs
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Netherlands) has the advantage of selecting ARAF strains.
The incorporation of this screening approach in laboratories
may result in isolating potential resistant isolates that could be
sent to referral laboratories for AFST and to identify the resis-
tant mechanisms.

Direct Detection of Azole Resistance in Culture Negative
Clinical Samples

A few studies have reported direct detection of mutations in
culture-negative clinical samples using real time PCR assays
[41, 42]. Recently, a multiplex real-time PCR for detection of
two environment associated resistance mechanisms, i.e.,
TR34/L98H and TR46/Y121F/T289A and for detection of
Aspergillus species has become available (AsperGenius®,
PathoNostics, Maastricht, the Netherlands). In the hematolog-
ic malignancies, the authors reported sensitivity and specific-
ity of 88.9 and 89.3 %, respectively, and in intensive care unit
patients 80 and 93.3 %, respectively [43]. Considering that the
AsperGenius-PCR allows identification of only two mecha-
nisms of resistance, therefore, a negative test result does not
rule out the presence of azole resistance.

Molecular Mechanism of Azole Resistance in A. fumigatus

The characterization of two different sterol demethylase genes
(Cyp51A and Cyp51B) in A. fumigatus have led to the descrip-
tion of mutations in cyp51A leading to azole resistance. A
number of mutations have been described that confers differ-
ent resistance profiles in Aspergillus. Various point mutations
cause structural changes in enzyme’s active site causing de-
creased affinity for its ligands [44]. These mutations have
been associated with resistance to one or two azoles (G54,
M220) or may confer cross-resistance [29••, 45]. Resistance
due to the tandem repeat coupled with mutation L98H or
Y121F/T289A in cyp51A has been proven to upregulate the
enzyme expression [46, 47•]. In addition, mutations at cyp51
gene have been related to disturbances in protein structure
causing alteration in the active site of docking of the antifun-
gal agent thereby leading to increase MICs. Until 2008, azole
resistance in A. fumigatus was primarily attributed to muta-
tions in cyp51 gene; however, in 2010, Manchester reference
laboratory, UK demonstrated that 43 % of the ARAF isolates
were without any mutation in the cyp51A gene [27]. Apart
from the abovementioned mutations, the genetic disturbances,
such as overexpression of ABC or MFS efflux pumps such as
atrF, cdr1B, Cyp51B overexpression and incorporation of ex-
ogenous cholesterol into A. fumigatus plasma membranes,
have been well studied in A. fumigatus [31]. Also, another
mutation in CCAAT-binding transcription factor complex
subunit HapE, resulting in azole resistance, have been report-
ed in A. fumigatus [48•]. Furthermore, cyp51A expression
modulated by insertion of an Aft1 transposon 370 bp upstream

of the start codon has been reported [49]. A solitary study
determined the azole MICs of 50 black Aspergilli (section
Nigri) using modified EUCAST and Etest methods and com-
pared the results with cyp51A sequences. ITC resistance was
observed in 51 % of the clinical isolates, but azole cross-
resistance was unusual. The authors found G427S and K97T
mutations in cyp51A gene of black Aspergilli, which warrant
further investigations [50].

Azole Resistance in Non-Aspergillus Moulds

The epidemiology of non-Aspergillus mould infections is
changing probably due to the wide use of molecular and pro-
teomic diagnostic methods; some moulds previously not re-
ported in the literature are reported to cause invasive diseases
suggesting the notion of emergence. In the last decade, envi-
ronmental filamentous ascomycetes other than Aspergillus
species are increasingly reported as agents of invasive dis-
eases specifically in profoundly immunosuppressive patients,
such as during prolonged neutropenia, GVHD, and in rejec-
tion episodes among solid organ transplant (SOT) patients.
They include the relatively more commonly reported species
of Fusarium and Scedosporium and rarely encountered spe-
cies of Acremonium, Penicillium, and Rasamsonia [51, 52].
Infections with these fungi are lethal because the hosts they
usually infect are incapable of mounting an effective immune
response and because they tend to be resistant to antifungals.
Table 2 lists species of filamentous moulds reported to exhibit
elevated MICs of azoles and are discussed below:

Intrinsic Azole Resistance in Species of Fusarium

Fusarium spp. are widespread filamentous fungi that are pri-
marily soil saprophytes and plant pathogens. In humans, 74
species of Fusarium are incriminated to cause infections, but
the most commonly reported species include Fusarium solani
complex, F. oxysporum complex, and F. (Giberella) fujikuroi
complex, which include among others F. verticillioides and
F. proliferatum. Also, to a lesser extent, both F. dimerum and
F. incarnatum-equiseti species complex (SC) have been report-
ed [52, 53]. They cause wide spectrum of infections, ranging
frommildly superficial to fatally disseminated disease especial-
ly in patients with profound and prolonged neutropenia and/or
T cell immunodeficiency [51, 53–57]. Fusariosis is highly fatal
some reports suggesting 30 % survival rates, especially among
patients with persistent neutropenia [51, 58, 59]. Fusarium spe-
cies are intrinsically resistant to azole antifungals, and some
clinically relevant species are also resistant to almost all cur-
rently used antifungals, including echinocandins and polyenes
[60] (Table 2).

CLSI subcommittee on AFST in the M38-A2 document
includes reproducible procedure for testing the antifungal
susceptibilities of Fusarium spp. However, species-specific
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clinical breakpoints (BPs) have not been established for
this pathogen due to lack of both clinical trials and knowl-
edge about the molecular resistance mechanisms. Recently,
ECVs have been established for important Fusarium species
and azoles including the highest ECVs for the three triazoles
and F. solani SC (32 μg/ml). Lower POS and VRC ECVs
were reported for F. verticillioides (2 and 4 μg/ml, respective-
ly) and F. oxysporum SC (8 and 16 μg/ml, respectively) [61].
These triazole ECVs are higher than the dose dependent
trough levels of azole antifungals and highlight the intrinsic
resistant nature of Fusarium spp. [62]. It is emphasized that
ECVs are not BPs, therefore, cannot envisage clinical re-
sponse to therapy but predict those isolates that are more likely
to harbor acquired molecular mutations conferring resistance.
The molecular resistance mechanism in Fusarium is not un-
derstood, but combination of CYP51A amino acid alteration
or overexpression may be involved. Recently, Fan et al.
showed that CYP51 in Fusarium has three paralogues
(CYP51A, CYP51B, and CYP51C), with CYP51C being
unique to the genus and CYP51A deletion increases the
sensitivity of F. graminearum to azoles [63].

Scedosporium Species

Scedosporium spp. are distributed in the environment as in-
habitants of soil, polluted water, and animal excreta [64].
Scedosporium apiospermum complex and Lomentospora
prolificans (previously S. prolificans) account for most infec-
tions prevalent worldwide and are associated with poor clinical
outcomes [65]. The three main species within S. apiospermum
complex are S. apiospermum, S. boydii, and S. aurantiacum.
The complex also encompasses uncommon species, such as
S. minutispora and S. dehoogii [66]. The fungus affect diverse
patient population with varied clinical manifestations and risk
factors include chronic obstructive lung disease, hematologic
malignancy, SOT or hematopoietic stem cell transplantation
(HSCT), corticosteroid use, neutropenia, and diabetes mellitus
[65]. Disseminated infections associated with high mortality
are typically caused by L. prolificans in immunocompromised
hosts [67–69]. Recently described S. aurantiacum colonizes or
infect the respiratory tract of patients with cystic fibrosis and
other chronic lung disease [68]. The species-specific differ-
ences in virulence and AFST patterns have been reported in
S. apiospermum complex and L. prolificans necessitating spe-
cies level identification of the causative agent [66]. Species
identification requires sequencing of the β-tubulin, β-actin,
and calmodulin gene targets [70•].

The majority of Scedosporium isolates exhibit multiple an-
tifungal resistance including azoles, and data on species-
specific susceptibility patterns is limited (Table 2). A compre-
hensive study on AFST of 332 molecularly identified
Scedosporium isolates demonstrates that L. prolificans exhibits
the highest GM MICs of all antifungal drugs including azoles

(ITC GM MIC, 32 μg/ml; VRC GMMIC, 15.4 μg/ml; POS
GM MIC, 32 μg/ml; and ISA GM MIC, 25.6 μg/ml) [71••].
All S. apiospermum and S. boydiiwere found to have highMIC
values of AMB (MIC50 4 μg/ml), ITC (MIC50 16 g/ml), and
ISA (MIC50 >4 μg/ml). POS and VRC are the most promising
drugs against Scedosporium species other than L. prolificans.
Limited in vitro activity of VRC was found only for
L. prolificans and S. dehoogii. Furthermore, S. aurantiacum
also exhibits elevated MICs for ITC, POS, and ISA. Overall,
VRC has activity against S. apiospermum, S. boydii, and
S. aurantiacum [71••]. The consequence of varied MICs for
azoles reflects that the susceptibilities of individual isolates are
difficult to predict, and thus, susceptibility testing of clinical iso-
lates remains essential for targeted treatment. It is emphasized
that clinical breakpoints, ECV, or molecular resistance mecha-
nism for Scedosporium are not yet elucidated; therefore, inter-
pretation of MIC testing remains difficult. Concordance among
in vitro resistance profiles and in vivo outcome has been reported
[72], and VRC treatment of L. prolificans infections showed a
40 % clinical response despite an MIC50 of 4 μg/ml [67].

Rare and Emerging Species of Rasamsonia, Paecilomyces,
Penicillium, and Acremonium

Rasamsonia argillacea, previously known as Geosmithia
argillacea, is an emerging pathogen that in the past has been
misidentified as Penicillium or Paecilomyces species.
Rasamsonia argillacea complex causes pulmonary infection
in chronic granulomatous disease patients [73]. Also, fatal in-
fection in stem cell transplant patients has been reported [74].
AFST reveals that species belonging to Rasamsonia complex
are resistant to VRC (Table 2) and variably resistant to ITC,
amphotericin B, and POS [9, 75]. Several studies highlight that
R. argillacea infection to be ruled out in patients whose fungal
infections worsen and whose cultures are reported as
Penicillium species, especially if these patients are receiving
VRC [9]. Similarly, antifungal susceptibility profiles of
Paecilomyces variotii and other species of Paecilomyces includ-
ing P. formosus, P. dactylethromorphus, and P. divaricatus are
reported to be VRC resistant [76]. Paecilomyces infections are
uncommon, but serious manifestations include pneumonia, si-
nusitis, osteomyelitis, disseminated infection, and fungemia [77,
78, 79•]. VRC-resistant P. oxalicum break through infections
have recently been reported in AML and in chronic aspergillosis
patients while on VRC therapy [10].

Another genus that seems to be emerging and show limited
VRC activity as in the abovementioned moulds is
Acremonium, which includes about 150 species but only a
few implicated as human pathogens [80, 81]. The most com-
mon species are A. kiliense and A. falciforme, and others in-
cluding A. roseogriseum, A. strictum, A. patronii, and
A. recifei are reported as opportunistic pathogens mainly af-
fecting immunocompromised hosts following HSCT, SOT,
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Table 2 Literature review of triazoles antifungal susceptibility data of molecularly identified clinically significant non-Aspergillus moulds

S. No. Species Method of
identification

MIC Range (μg/ml) Method References

ITC VRC POS ISA

Fusarium spp.
FFSC

1. Fusarium fujikuroi β-tubulin, RPB1, RPB2, ITS 16->16 2–16 0.5–4 4–16 CLSI [60, 61, 97]
2. Fusarium ananatum RPB2 >16 1–4 0.5–1 1–8 CLSI [60]
3. Fusarium andiyazi RPB2, ITS, β- tubulin >64 1–4 0.25–4 1–8 CLSI [60, 98]
4. Fusarium acutatum RPB2 >16 2–8 1–2 4->16 CLSI [60]
5. Fusarium anthophilum RPB2 16->16 1–4 0.25–0.5 1–8 CLSI [60]
6. Fusarium napiforme RPB2, ITS >16 1–4 2->16 2–8 CLSI [60, 97]
7. Fusarium nygamai RPB2, ITS >16 4->16 >16 8->16 CLSI [61, 97]
8. Fusarium proliferatum CAM, β-tubulin, RPB1, RPB2, ITS 16->64 1->16 0.12->32 4->16 CLSI, EUCAST [51, 59–61, 97–99]
9. Fusarium sacchari RPB2 >16 1–4 0.5->16 2–16 CLSI [60]
10. Fusarium subglutinans RPB2, ITS 0.5-≥16 1–8 0.125- ≥16 2–4 CLSI [60]
11. Fusarium temperatum RPB2 >16 1 0.25 1 CLSI [60]
12. Fusarium thapsinum RPB2, ITS >16 1–4 2->16 8–16 CLSI [60, 98]
13. Fusarium verticillioides β-tubulin, RPB1, RPB2, ITS 1->64 0.5->16 0.12->16 1–2 CLSI, EUCAST [51, 59–61, 97, 98]
14. Fusarium dimerum SC β-tubulin, RPB1, RPB2, ITS 1->16 1–16 0.5->16 ND CLSI, EUCAST [51, 61, 98]
15. Fusarium incarnatum-equiseti SC β-tubulin, RPB1, RPB2, ITS 1->16 0.5->16 0.5–16 ND CLSI [61]
16. Fusarium oxysporum SC β-tubulin, RPB1, RPB2, ITS 1->16 0.5->16 0.5–16 ND CLSI, EUCAST, E-test [51, 61, 98]
17. Fusarium solani SC β-tubulin, RPB1, RPB2, ITS 0.5->16 0.5->16 1->16 ND CLSI, EUCAST [51, 61, 98]
18. Fusarium keratoplasticum ITS, RPB2, β-tubulin >64 8 >16 ND CLSI [98]
19. Fusarium petroliphilum ITS, RPB2, β-tubulin >64 8–16 >16 ND CLSI [98]

FTSC
20. Fusarium acuminatum ITS, RPB2, CAM ND 4 ND ND CLSI [97]
21. Fusarium avenaceum ITS, RPB2, CAM ND 4 ND ND CLSI [97]
22. Fusarium graminearum SC ITS, RPB2, CAM ND 4 ND ND CLSI [97]
23. Fusarium sporotrichioides SC ITS, RPB2, CAM ND >16 ND ND CLSI [97]

Scedosporium / Pseudallescheria
spp.

24. Lomentospora prolificans rRNA sequence analysis, AFLP 8->16 4->16 8->16 4->16 CLSI [71••, 100, 101]
25. Scedosporium apiospermum AFLP 0.25->16 0.25–8 1->16 0.25–8 CLSI [71••, 101]
26. Scedosporium aurantiacum AFLP 1–128 0.5–32 4–16 0.5–32 CLSI [71••, 101, 102]
27. Scedosporium boydii β-tubulin, CAL, RPB2 ≥8–32 1–64 ND 1–64 CLSI [71••, 102, 103]
28. Scedosoprium dehoogi AFLP 0.5->16 0.5–>16 0.5–>16 2–>16 CLSI [71••]
29. Pseudallescheria ellipsoidea AFLP 0.25–32 0.125–16 1->16 0.125–16 CLSI [71••, 101, 102]
30. Pseudallescheria

angusta
AFLP 0.25–128 0.25–32 1->16 0.25–32 CLSI [71••, 102]

31. Pseudallescheria
minutispora

AFLP 0.5->16 0.25–2 0.5–>16 2–16 CLSI [71••]

Acremonium spp.
32. Acremonium kiliense ITS >16 0.125–4 2 ND CLSI [82••, 104]
33. Acremonium

sclerotigenum-A.
egyptiacum

ITS >16b 2b 2b ND CLSI [82••]

34. Acremonium implicatum ITS >16b 8b >16b ND CLSI [82••]
35. Acremonium persicinum ITS >16b 8b 8b ND CLSI [82••]
36. Acremonium atrogriseum ITS 8b 2b 2b ND CLSI [82••]
37. Acremonium fusidioides ITS >16b 2b 2b ND CLSI [82••]
38. Acremonium strictum ITS >8 ND 8 ND CLSI [105]

Rasamsonia spp.
39. Rasamsonia aegroticola ITS, β-tubulin, Cmd 1–2 >16 1–4 ND CLSI [106]
40. Rasamsonia argillacea ITS, β-tubulin, Cmd 1–32 16->16 0.25–8 ND CLSI, EUCAST [9, 106–108]
41. Rasamsonia cylindrospora ITS, β-tubulin, Cmd 1–2 >16 1–8 ND CLSI [106]
42. Rasamsonia eburnean ITS, β-tubulin, Cmd 1–4 >16 1–4 ND CLSI [106]
43. Rasamsonia piperina ITS, β-tubulin, Cmd 0.5–1 8->16 0.06–2 ND CLSI [106]

Paecilomyces spp.
44. Paecilomyces variotii ITS 0.008–4 1–32 0.008–0.125 ND CLSI [76]
45. Paecilomyces dactyletromorphus ITS 0.031–0.125 32 0.03 ND CLSI [76]
46. Paecilomyces divaricatus ITS 0.25–1 32 0.125–0.25 ND CLSI [76]
47. Paecilomyces formosus ITS 0.063–1 16–32 0.031–0.25 ND CLSI [76]
48. Penicillium oxalicum β-tubulin 0.5–2 2->16 0.125–0.5 8 CLSI [10]

Melanized fungi
49. Curvularia aeria ITS >16a 8a 1a ND CLSI [109]
50. Curvularia lunata ITS 0.03–32 0.25–1 <0.03–0.5 ND CLSI [109]
51. Curvularia protuberata ITS >16 8–16 0.5–1 ND CLSI [109]
52. Ochroconis mirabilis ITS, D1D2, β-tubulin 7a 11.09a 18.23a ND CLSI [110]
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and hematologic malignancies. The fungus causes varied
manifestations including pneumonia, arthritis, osteomyelitis,
endocarditis, meningitis, peritonitis, and fungemia [82••]. The
limited in vitro AFST data show high MICs for POS, VRC,
and ITC (Table 2) when compared to those found for other
hyaline molds, such as A. fumigatus [83].

Melanized Fungi and Azoles

Melanized fungi are ubiquitous saprophytic fungi in the envi-
ronment. Their prevalence estimated in clinical samples
showed only 10 % of them being clinically significant [84].
However, their clinical significance in the last few years is
increasing not only in immunocompetent individuals but also
in immunocompromised patients. Their clinical manifesta-
tions span from respiratory tract inflictions like allergies,
superficial infections to fatal disseminated cases [85••]. In
SOT subjects, dark pigmented fungi are recognized as most
recent emerging opportunistic pathogens. In SOT recipients,
species of Verrucosa and Ochroconis are mainly reported
from lung and liver transplants patients. Emergence of mela-
nized fungi in pathologies requires the use of accurate diag-
nostic tools, such as molecular methods. The limited data on
the in vitro AFST of melanized fungi are available in the
literature, mainly inferred from clinical cases, with potential
variations due to the use of different methodologies [86]. It is
emphasized that there are no defined BPs and no established
correlation between MIC and clinical outcome, and also, the
marked differences in the in vitro susceptibility results both at
the genus and at the species levels reflect the phylogenetic
diversity of these fungi. Therefore, presently exploring azole
resistance in melanized moulds is challenging. Table 2 lists
melanized fungi reported to exhibit elevated azole antifungal
MICs.

Perspectives and Conclusions

Intrinsic or acquired antifungal resistance in pathogenic fungi
may be encountered in both antifungal drug exposed and

antifungal drug-naive patient. Furthermore, prior antifungal
treatment confers a selection pressure and increases the possi-
bility of resistance in patients failing therapy. Thus, in both
scenarios, detection of resistant isolates requires appropriate
and carefully performed susceptibility testing and endpoint in-
terpretation. Intrinsically resistant species can be diagnosed
through correct species identification, but their identification
is challenging using phenotypic methods, as non-Aspergillus
moulds may poorly sporulate, e.g., Fusarium and
Scedosporium species complexes on routine media. As
discussed above, molecular identification tests could reliably
identify the isolates but are cumbersome and not performed
in routine microbiology laboratories. Nevertheless, with the
availability of isolate, less cumbersome mass spectrometric
species identification is possible. Identification of fungi using
matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) MS is rapid and potentially economical com-
pared to sequence-based technologies, after equipment is pur-
chased. However, current commercial MALDI-TOF MS refer-
ence databases contain a limited number of filamentous fungal
spectra. Thus, substantial augmentation of the spectral library is
required for routine laboratory and several studies have
highlighted the importance of in-house database creation for
species of Aspergillus, Fusarium, and Scedosporium filamen-
tous fungi for reaching a consensus between proteomic and
sequence-based identifications [12••, 34, 87••]. It is emphasized
that without the creation of a highly stringent supplemental
database, MALDI-TOFMS analysis is often unable to achieve
species, and sometimes genus level identification compared to
that of sequencing.

Regarding the progress made toward the description of
azole resistance mechanisms at molecular level, barring
A. fumigatus, the underlying mechanism remains unknown
in a number of resistant filamentous moulds. MIC determina-
tion is still the most reliable procedure for surveillance of
azole resistance in clinical isolates; however, molecular
methods allowing detection of resistance warrants further
standardization of techniques for effective integration in the
routine laboratories. Also, standardized techniques detecting
azole resistance in culture-negative specimens for rapid

Table 2 (continued)

S. No. Species Method of
identification

MIC Range (μg/ml) Method References

ITC VRC POS ISA

53. Pyrenochaeta romeroi ITS 0.5 4->8 0.25–0.5 0.125 CLSI, EUCAST [111, 112]
54. Veronaea botryosa ITS 0.25–1 1–8 0.031–0.25 4–16 CLSI [113, 114]

Abbreviations: ITC Itraconazole, VRCVoriconazole, POS Posaconazole, ISA Isavuconazole, FFSC F. fujikuroi species complex, FSSC F. solani species
complex, FTSC F. tricinctum species complex, ND Not Done, AFLP amplified fragment length polymorphism
aGeometric mean MIC data of these isolates is given here
bMIC90 data of these isolates is given
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diagnosis and effective therapy need to be developed. Finally,
regarding filamentous fungi, continued efforts to improve the
reliability of AFST followed by analysis of the prevalence of
resistance at molecular level are warranted.
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