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Abstract Voriconazole is an antifungal triazole that is the
first-line agent for treatment of invasive aspergillosis. It is
metabolized by CYP2C19, CYP2C9, and CYP3A4 and dem-
onstrates wide interpatient variability in serum concentrations.
Polymorphisms in CYP2C19 contribute to variability in
voriconazole pharmacokinetics. Here, evidence is examined
for the use of voriconazole therapeutic drug monitoring
(TDM) and the role of CYP2C19 genotyping in voriconazole
dosing. The majority of studies exploring the impact of
voriconazole TDM on efficacy and safety have found TDM
to be beneficial. However, most of these studies are observa-
tional, with only one being a randomized controlled trial.
High-volume multicenter randomized controlled trials of
TDM are currently not available to support definitive guide-
lines. There is a significant relationship in healthy volunteers
between CYP2C19 genotype and voriconazole pharmacoki-
netics, but this association is markedly less visible in actual
patients. While CYP2C19 genotype data may explain
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variability of voriconazole serum levels, they alone are not
sufficient to guide initial dosing. The timeliness of availability
of CYP2C19 genotype data in treatment of individual patients
also remains challenging. Additional studies are needed be-
fore implementation of CYP2C19 genotyping for
voriconazole dosing into routine clinical care.
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Pharmacogenomics

Introduction

Voriconazole is an antifungal triazole approved by the FDA
for the treatment of invasive aspergillosis, esophageal can-
didiasis, candidemia in non-neutropenic patients, dissemi-
nated Candida infections, and infections caused by
Scedosporium apiospermum and Fusarium spp. [1]. Infec-
tious Diseases Society of America (IDSA) guidelines rec-
ommend voriconazole as a first-line agent for the treatment
of invasive aspergillosis and as an alternative agent for the
treatment of candidemia [2, 3].

Voriconazole is metabolized in the liver by CYP3A4,
CYP2C9, and CYP2C19 and demonstrates wide
interpatient variability in serum concentrations [4, 5].
Polymorphisms in CYP2C19, but not in CYP3AS5 or
CYP2C9, have been reported to affect its pharmacokinet-
ics [6, 7, 8¢]. Other factors including age, liver function,
and concomitant medications contribute to variability in
voriconazole concentrations [4, 5]. In addition,
voriconazole demonstrates saturable, non-linear pharma-
cokinetics in adults [9].

The field of pharmacogenomics seeks to understand varia-
tions in the response to medications based on inherited and
acquired genetic differences between patients [10, 11]. The
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prospect of pharmacogenomics testing has been explored
for a myriad of medications including CYP2C19 genotyp-
ing to aid voriconazole dosing [12¢]. Guidelines from the
Royal Dutch Pharmacists Association Pharmacogenetics
Working Group recommend monitoring voriconazole se-
rum concentrations in patients expressing the CYP2C19
poor metabolizer (PM) and CYP2C19 intermediate
metabolizer phenotypes [13]. However, there is a paucity
of guidelines for pharmacogenomic testing in patients treat-
ed with voriconazole. Common side effects of voriconazole
include hepatotoxicity, neurotoxicity, blurry vision, skin
rash, and hyperfluorosis [14]. Some of these adverse effects
are more likely to occur at higher than necessary
voriconazole serum/plasma concentrations, while low
voriconazole levels may result in therapeutic failure [12¢].
As such, voriconazole therapeutic drug monitoring (TDM)
has become commonplace in the management of serious
fungal infections. The objective of this review is to critical-
ly examine the evidence of the relationships among
CYP2C19 genotype, voriconazole serum concentrations,
and clinical outcomes.

CYP2C19 Polymorphisms

CYP2C19 catalyzes the metabolism of numerous commonly
prescribed drugs including antidepressants, anticancer agents,
clopidogrel, proton pump inhibitors, diazepam, and
voriconazole [15-17]. The CYP2C19 gene exhibits signifi-
cant ethnic differences in expression among the 34 identified
alleles [18]. The fully functional allele (*7) is associated with
normal CYP2C19 activity; individuals’ homozygous for this
allele are considered extensive metabolizers (EM). Individuals
who carry two null alleles are considered poor metabolizers
(PMs). The two most common non-functional (null) alleles
are CYP2C19*2 and CYP2C19*3, which account for 95 %
of individuals considered PMs [19]. Additional null alleles
include CYP2C19*%4, CYP2C19*5, CYP2C19*6, and
CYP2C19*8 [15, 20]. Approximately, 3—5 % of Caucasians,
12-23 % of Asians, 7 % of African Americans, and 0.9 % of
Hispanics are CYP2C19 PMs, indicating that they encode
non-functioning enzymes [21-24]. Conversely, intermediate
metabolizers carry one null and one wild-type allele (i.e.,
CYP2C19*1/*3).

An allelic variant associated with increased CYP2C19
expression (CYP2C19*17) and catalytic activity has also
been identified [25]. Individuals possessing this allelic
variant are considered ultra-rapid metabolizers (URM)
[17]. CYP2C19*%17 is a relatively common allele in Eu-
ropeans and Africans (18-27 and 10-26 % frequencies,
respectively), yet it occurs infrequently in Asians (0.15—
0.44 % prevalence) [17].

Voriconazole Concentrations and Efficacy/Toxicity

Voriconazole exhibits a narrow therapeutic index, non-linear
pharmacokinetics, marked genotypic variability in CYP2C19
metabolizer status, and a high propensity for drug-drug inter-
actions [5, 26]. Consequently, a fixed dose of voriconazole
yields a myriad of plasma concentrations [27-29], which do
not necessarily predict future concentrations even in the same
individual [30, 31]. Voriconazole is also commonly used for
fungal infections such as invasive aspergillosis that are associ-
ated with significant mortality among susceptible hosts. These
factors underscore the need for voriconazole TDM. Indeed, the
majority of studies that explore the impact of voriconazole
TDM on efficacy and safety have found it to be beneficial.
However, most of these studies are observational, with only
one being a randomized, assessor-blinded, controlled trial
[32¢]. Furthermore, voriconazole TDM studies exhibit marked
heterogeneity in quality and design, including assay tech-
niques, voriconazole sampling methodology [29, 32, 33],
and target concentration ranges, all of which pose difficulties
when comparing results across studies. Nonetheless, the IDSA
guidelines support the use of voriconazole TDM [3].

Studies examining the role of voriconazole TDM have
used a variety of voriconazole-exposure metrics. Most of the
early studies reported random blood sampling. Voriconazole
efficacy has been shown to correlate well in vivo with the
AUC/MIC [34, 35] or mean unbound voriconazole
concentration/MIC ratio [36]. However, these measurements
entail repeated sampling and are difficult to perform in the
clinical setting. Assessment of the trough/MIC ratio is a less
robust, but more clinically achievable approach, which was
found to predict clinical response in a 5000-patient Monte
Carlo simulation using data from multiple phase 2 and phase
3 clinical trials [36].

The optimal target concentration range for voriconazole is
not clearly defined. The suggested lower end cut-off for effi-
cacy has ranged widely between 0.25 mcg/mL [33] and
2.51 mcg/mL [37]. Most initial studies used a voriconazole
concentration >1 mcg/mL as the lower cut-off on the basis of
in vitro studies that reported voriconazole MICs between 0.5
and 1 mcg/mL for most Aspergillus spp. and Candida spp.
[38, 39]. However, data now suggest a voriconazole concen-
tration of 2 mcg/mL may be a more appropriate lower-end
threshold concentration [40—42]. Because the unbound circu-
lating fraction (40—50 %) of voriconazole is microbiologically
active [29], such a recommendation seems pharmacologically
plausible. Suggested upper-end threshold concentrations for
voriconazole range from 4 to 7 mcg/mL and are based on
concentrations above which toxicities were observed across
studies. Studies reporting relationships among voriconazole
concentrations and efficacy and toxicity are summarized in
Table 1 and discussed in detail below [29, 31, 32e, 33, 36,
43, 44e, 45, 46-50].

@ Springer
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Voriconazole TDM and Efficacy

The only clinical trial investigating the impact of voriconazole
TDM on the incidence of adverse drug events and treatment
response was a 1:1 randomized, single-center study from
South Korea. In this study, voriconazole dosage was adjusted
using pre-specified algorithms based on trough voriconazole
concentrations drawn on day 4 of therapy in the intervention
group (55 of 110 patients) in which the targeted range was 1 to
5.5 mcg/mL [32¢]. The control group received standard
voriconazole dosing during the study. Although the incidence
of adverse drug events did not differ significantly between
groups (p=0.97), the likelihood of voriconazole discontinua-
tion due to adverse effects was fourfold higher among controls
compared to the intervention group (p=0.02). With the avail-
ability of voriconazole trough levels to guide dose adjust-
ments, providers tended to continue voriconazole longer in
the TDM arm despite the occurrence of a similar number of
adverse events. Importantly, TDM was associated with a
higher clinical response rate compared to no TDM (81 vs.
59 %, p=0.04).

Several observational studies have also evaluated the role of
voriconazole TDM (Table 1); the largest of which involved a
secondary analysis of 825 subjects with yeast or mold infec-
tions from nine phase 2 and phase 3 clinical trials. At a mean
plasma concentration (Cyyg) <0.5 mecg/mL, the voriconazole
response rate was 57 % compared to 74 % when C,,, was
between 0.5 and 5 mcg/mL. Moreover, a non-linear relation-
ship between C,,, and clinical response was determined by
logistic regression (p<0.003) [36]. Higher responses were seen
with primary rather than salvage therapy, and with yeast rather
than mold infections, and specifically within these groups with
Candida spp. rather than Aspergillus spp. Although informa-
tive, this study combined patients and pathogens with widely
different exposure-response relationships, making it difficult to
extrapolate these results to other patient populations.

In a study of voriconazole TDM during 2388 treatment days
in 52 patients at a single center, investigators found that trough
concentrations >1 mcg/mL yielded a higher response rate
(88 %) compared to troughs <1 mecg/mL (54 %; p=0.02)
[29]. The authors did not find a relationship between
voriconazole dose and trough concentration, but did observe
that trough concentrations were a significant predictor of clini-
cal response (probability 0.7 at a trough of 1 mcg/mL). In a
population pharmacokinetic analysis from 505 plasma concen-
tration values from another 55 patients, the same authors
reproduced this concentration-response relationship [44¢]. In
this study, plasma concentrations ranging from 1.5 to
4.5 mcg/mL were associated with a probability of response
greater than 85 %. The relationship was statistically significant
only when voriconazole was administered orally (p<0.001),
supporting variability in oral bioavailability as a major determi-
nant of subtherapeutic voriconazole levels.

Similar findings have been observed in several multicenter
studies. In an open-label study involving 201 adult patients,
voriconazole trough concentrations were significantly lower
(median 0.9 mcg/mL) in patients who failed treatment
compared to those who responded (median 2.1 mcg/mL;
p<0.05) [45+]. Among those patients with proven or prob-
able invasive fungal infections and voriconazole trough
concentrations <1.7 mcg/mL, the treatment failure rate
was 35 %, compared to a 6 % failure rate in patients with
voriconazole concentrations >1.7 mcg/mL. In another
multicenter study of 116 assessable patients with invasive
aspergillosis, 3 out of 5 patients with voriconazole trough
concentrations <0.25 mcg/mL failed to demonstrate any
sustained meaningful treatment response, which under-
scores the importance of knowing when trough
voriconazole concentrations are exceedingly low
(<0.25 mcg/mL) [33]. Several others have found
voriconazole TDM to beneficially influence treatment ef-
ficacy in studies involving relatively few patients (N<50)
[40, 51, 52].

In children 2 to 11 years old administered standard adult
dosages (3 to 4 mg/kg every 12 h), voriconazole demonstrates
linear pharmacokinetics, which has been attributed to higher
first-pass metabolism and systemic metabolic rates in the pe-
diatric population [53—-55]. However, at the recommended
dosage for ages 2 to 12 (7 to 8 mg/kg every 12 h), non-
linear pharmacokinetics, as seen in adults, are observed [55,
56]. The inability to reach adequate levels at standard adult
doses (especially in critically ill children [57]) and the vari-
ability in trough concentrations at recommended doses, sug-
gests voriconazole TDM may also be helpful in children.
Three pediatric studies using voriconazole target trough con-
centrations >1 mcg/mL demonstrated a relationship between
voriconazole concentrations and efficacy [58—60].

Fewer studies have explored the usefulness of voriconazole
TDM in the prophylactic setting (i.e., to reduce breakthrough
fungal infections) [61-64]. Among 93 lung-transplant recipi-
ents receiving prophylactic voriconazole, absence of any
trough values >1.5 mcg/mL was associated with a significant-
ly greater number of respiratory cultures growing fungal spe-
cies (p=0.01) [61]. Notably, some of the positive cultures
represented colonization, and the value of preventing fungal
colonization remains unclear. A similar study in allogeneic
hematopoietic stem cell transplant recipients with hematologic
malignancies reported six cases of breakthrough candidiasis
among 43 patients with voriconazole trough concentrations
<2 mcg/mL and no cases among the 24 patients with concen-
trations >2 mecg/mL (p=0.061) [62]. Both of these studies saw
four breakthrough infections each with molds [61, 62]. An-
other study in immunocompromised patients failed to show
any relationship between TDM of prophylactic voriconazole
and efficacy, but involved cases with both prophylactic and
therapeutic indications for voriconazole [63]. Current
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evidence is insufficient to recommend voriconazole target
concentrations to ensure adequate prophylaxis.

Some studies failed to demonstrate a relationship between
voriconazole monitoring and efficacy [31, 41, 46, 65]. In these
studies, the number of cases included in the efficacy analysis
was low (maximum 53 cases). In one of the studies [41], the
trough-efficacy correlation became statistically significant af-
ter excluding patients with refractory hematological condi-
tions from the analysis. Another study [46] found a relation-
ship between trough concentrations and efficacy 6 but not
12 weeks after commencing therapy. A meta-analysis of 12
studies was performed to investigate the optimal blood con-
centration range of voriconazole [43]. Analysis of the extract-
ed data on voriconazole concentrations as a continuous vari-
able from 3 of the 12 studies [41, 66, 67], and its relationship
with efficacy, suggested that the distribution of voriconazole
plasma concentrations did not differ significantly between
treatment success and failure [weighted mean difference
1.95 (-2.18 to 1.84); p=0.35]. The addition of one study
[29] and dichotomous treatment of extracted data using grad-
ed cut-off values between 1 and 3 mcg/mL, demonstrated that
a trough of 1 mcg/mL (including a subset analysis limited to
cases of invasive aspergillosis), discriminated between treat-
ment success and failure [OR 7.23 (2.84 to 18.37); p<0.0001].
However, the limited number of studies actually analyzed as
well as small sample sizes and observational nature, preclude
strong conclusions about the drug concentration-efficacy rela-
tionship. Notwithstanding these underpowered studies, the
majority of studies show a positive benefit of voriconazole
TDM on efficacy.

Voriconazole TDM and Safety

Voriconazole can produce a variety of adverse effects that
vary in severity. Hepatotoxicity, visual disturbances, visual
hallucinations, and other neurologic disorders have been
directly correlated with plasma concentrations of
voriconazole (Table 1). A pooled PK/PD analysis of ten
phase 2 and phase 3 clinical studies suggested a relation-
ship between voriconazole concentrations and visual dis-
turbances, which occurred in 16 % of patients when plas-
ma voriconazole concentrations were <l mcg/mL, and
rose to 28 % at >9 mcg/mL [47]. Despite this relationship,
the usefulness of TDM for this application is limited be-
cause voriconazole-associated visual disturbances are typi-
cally mild, reversible, and generally do not result in dis-
continuation of therapy [68]. Other neurological adverse
effects including visual hallucinations and less commonly
encephalopathy may be more debilitating. Their relation-
ship to voriconazole concentrations has been studied as
well, with almost all of these studies reporting a statisti-
cally significant positive correlation [29, 43, 44s, 45, 48,
50, 69].

@ Springer

The association between plasma voriconazole concentra-
tions and hepatotoxicity has been extensively investigated
[29, 33,41, 43, 44, 45+, 46, 47, 49, 50, 70, 71]. Investigators
reported that 6 of 22 patients with voriconazole concentrations
>6 mcg/mL developed liver function test abnormalities,
resulting in 1 death [33]. Based on these and other data,
TDM was suggested to avoid voriconazole hepatotoxicity
[71, 72], but this has not been unanimously accepted [73]. In
the largest PK/PD analysis of voriconazole hepatotoxicity,
investigators [47] reported a statistically significant relation-
ship between voriconazole concentrations and risk of aspar-
tate transaminase, alkaline phosphatase, and bilirubin eleva-
tion (p<0.001), but this relationship was not observed for
alanine transaminase (p=0.17). More importantly, receiver-
operator characteristic curves denoted poor prediction of any
liver function tests abnormalities across a range of
voriconazole concentrations [47]. One study has suggested
that sustained elevated voriconazole concentrations might be
associated with an increased risk of hepatotoxicity [49]. None-
theless, the absolute incidence of hepatotoxicity with
voriconazole use remains low and is comparable to that of
other antifungal agents [74]. Thus, there is no universally ac-
ceptable concentration threshold, above which voriconazole-
related hepatotoxicity is known to occur.

When used in the prophylactic setting, voriconazole toxic-
ity must be weighed against its ability to reduce breakthrough
invasive fungal infections. A study evaluating the role of
voriconazole in preventing invasive fungal infections among
lung transplant recipients demonstrated that toxicities were
significant enough to warrant drug discontinuation in 27 %
(25/93) of cases [61]. The usefulness of voriconazole TDM in
the prophylactic setting requires further study.

Voriconazole Pharmacokinetics and CYP2C19
Polymorphisms

Studies in Healthy Volunteers

A study in healthy volunteers receiving voriconazole 200 or
300 mg po BIDx 10 days found that voriconazole C,,,x and
AUC were increased in CYP2C19 PMs compared to EMs
[75]. The impact of CYP2C19 genetic variants on
voriconazole pharmacokinetics has been confirmed and char-
acterized in a number studies in adult healthy volunteers
(Table 2) [7, 8¢, 76-80]. Pharmacokinetic parameters includ-
ing half-life (t;,) and AUC are significantly increased in
CYP2C19 PM compared to CYP2C19 EM receiving oral
voriconazole. In single-dose studies, the voriconazole t;),
has ranged from 8.7 to 15.2 h in PM and 3.3 to 8.1 h in EM
[7,76,77, 79, 80]. In a multiple-dose study, the voriconazole
AUC,.t geometric mean ratio of PM to EM was 3.3 [8]. This
increase is consistent with the results of several single-dose
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studies, which determined that the voriconazole AUC,_,, was
2.8 to 4.1 times higher in PM compared to EM [7, 8¢, 76-80].
In single oral dose studies, significant reductions in
voriconazole clearance have been observed in PM versus
EM [7, 76-80]. A multiple-dose study reported that the
voriconazole apparent oral clearance (CI/F) decreased from
210 to 58.3 mL/min in EM compared to PM [8]. However,
changes in clearance in this trial were not subjected to statis-
tical evaluation.

Alternations in voriconazole pharmacokinetics in
CYP2C19 genetic variants has also been observed with intra-
venous voriconazole [8e, 78]. After a single dose
(voriconazole 200 mg i.v.), the AUC,,.,, geometric mean ratio
of PM to EM was 3.23 in healthy volunteers [8¢]. In another
single-dose study (voriconazole 400 mg i.v.), the AUC,_,, was
significantly increased and clearance significantly decreased
in PM compared to EM [78]. However, in this study 6 out of 8
patients initially categorized as EM were later found to pos-
sess the CYP2C19*1/*17 genotype.

Two studies have produced conflicting data on the effect of
the CYP2C19*17 allele on voriconazole pharmacokinetics [7,
77]. Unfortunately, only volunteers who were heterozygous
for the CYP2C19*17 allele (CYP2C19*1/*17) and not homo-
zygous (CYP2C19*17/*17) were enrolled in these trials. One
study of healthy volunteers receiving a single oral
voriconazole dose (200 mg) demonstrated a significant in-
crease in apparent CI/F and a decrease in AUC,_, in EM
(CYPC19*1/*1) compared to URM (CYP2C19*1/*17) [77].
In contrast, an analysis of the placebo groups from two drug
interaction studies reported no statistical differences for
AUCy.,, apparent CI/F, or t;,, when comparing EM
(CYPC19*1/*1) to URM (CYP2C19*1/*17, CYP2C19*2/
*17) [7]. Based on the results of these trials, it was proposed
that the CYP2C19*17 allele may possibly lead to subthera-
peutic voriconazole concentrations [81].

Studies in Patients

In contrast to the mostly positive results reported in healthy
volunteers, studies on the impact of CYP2CI19 genetic vari-
ants on voriconazole concentrations in patients have demon-
strated conflicting results (Table 3). While retrospective stud-
ies have indicated an association between CYP2C19 genotype
and voriconazole concentrations [83, 85, 87, 88], several pro-
spective studies have reported no association [50, 84]. For
example, a retrospective study in adults reported a minimum
observed concentration (Cy;,) of 3.67 mg/L and 1.98 mg/L in
PM and EM, respectively (p<0.05) [87]. However, in a pro-
spective observational trial in adult Korean patients, median
trough concentrations were not significantly different in EM
and PM (2.12 and 2.75 mg/L, respectively, p=0.859) [84].
The different results in patients compared to healthy vol-
unteers may be due to confounding factors present in patients

such as drug interactions, comorbidities, and organ dysfunc-
tion [89]. Additionally, the CYP2C19 genotype does not ap-
pear to account for all of the intrinsic variability in
voriconazole pharmacokinetics between individuals. An anal-
ysis of placebo groups from two healthy volunteer studies
revealed that the CYP2C19 genotype explained 49 and
39 % of variability in voriconazole apparent CI/F and
AUC_,, respectively [7]. Similarly, in a retrospective review
of cystic fibrosis lung transplant recipients, the CYP2C19 ge-
notype only explained 38 % of variability in voriconazole
maintenance dose [83].

Several studies indicate that the CYP2C19*17 allele may
lead to subtherapeutic voriconazole concentrations [82, 83,
85]. In cystic fibrosis lung transplant recipients, the proportion
of below range concentrations was 37.9 and 15.6 % in
CYP2C19*17 and CYP2C19*1 groups, respectively
(»<0.01) [83]. In a retrospective study, immunocompromised
patients with cancer possessing the CYP2C19*17/*17 geno-
type had lower median dose-normalized trough concentra-
tions than those with the CYP2C19*1/*1 genotype [88]. In
that study, all of the patients with the CYP2C19*17/*17 ge-
notype (N=4) failed to achieve therapeutic voriconazole con-
centrations. Furthermore, in a retrospective study of patients
with voriconazole levels <0.2 mcg/mL and excluding those
receiving enzyme inducers, allogeneic stem cell transplant or
liver transplant patients, inadequate dosing, or timing of
levels, the CYP2C19*1/*17 or CYPC219*17/*17 genotypes
were found in 8 out of 10 patients (80 %) [90]. In complicated
dosing settings such as obesity genetic screening may also be
informative and clinically helpful. For example, sustained el-
evations in voriconazole serum concentrations in an obese
patient despite appropriate adjusted weight-based dosing were
attributed to a CYP2C19 homozygous PM genotype
(CYP2C19%2/*2) [91].

Several studies have described voriconazole pharmacoki-
netics in immunocompromised pediatric patients with
CYP2C19 polymorphisms [89, 92]. When comparing pediat-
ric PMs to EMs, the increase in voriconazole AUC was con-
sistent with the results observed in adults [89, 92]. However,
the genotypic variability observed in these patients precluded
statistical analysis.

Other important issues related to the CYP2C19 genotype
include the association between genotype and efficacy or tox-
icity and CYP2C19 genotype-guided dosing of voriconazole.
Clinical studies have reported that the CYP2C19 genotype is
not associated with the efficacy or toxicity of voriconazole
(Table 3). Investigators found no significant difference among
CYP2C19 genotypes in treatment response, all-cause, and in-
vasive aspergillus mortality [86¢]. The authors concluded that
with therapeutic drug monitoring, an association was not ob-
served between CYP2C19 genotype and voriconazole effica-
cy. Multiple studies have failed to find an association between
CYP2C19 genotype and adverse effects [70, 82—84, 86¢]
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including hepatotoxicity [70, 82]. Nonetheless, several inves-
tigators have proposed voriconazole dosing based on
CYP2C19 genotype. Matsumoto et al. recommended an ini-
tial voriconazole dose of 7.2 to 8.9 mg/kg/day and 4.4 to
6.5 mg/kg/day in CYP2C19 wild type and CYP2C19 non-
wild type, respectively, in Japanese patients [70]. Wang et al.
suggested a voriconazole dose of 200 mg orally or intrave-
nously twice daily in PM and voriconazole 300 mg orally
twice daily or 200 mg intravenously twice daily in non-PM
[87]. However, to our knowledge, a strategy of prospective
CYP2C19 genotyping to select an initial voriconazole dose
has not been validated prospectively.

Discussion/Conclusion

In this review, we describe the evidence supporting the use of
voriconazole TDM and the role of CYP2C19 genotyping for
voriconazole dosing. The impact of voriconazole TDM on
safety and efficacy is still not entirely clear. Most evidence
to date was acquired retrospectively in the absence of a non-
TDM comparison group and with discretionary post-
concentration dosage adjustments. The cost associated with
voriconazole TDM is the only identifiable barrier to its routine
use. The only randomized controlled trial that assessed the
role of voriconazole TDM was from a single center and un-
derpowered to detect differences in their primary outcome of
adverse events [32¢]. High-volume multicenter randomized
controlled trials in this area are currently not available to sup-
port definitive guidelines. Until then, we support routine
voriconazole TDM given substantial retrospective and pro-
spective observational data supporting its benefit in regards
to efficacy, avoidance of neurotoxicity, and minimizing dis-
continuation of therapy.

While a significant relationship exists in healthy vol-
unteers between CYP2C19 genotype and voriconazole
pharmacokinetics, including AUC, CI/F, and t;,,, this as-
sociation is markedly less apparent in actual patients.
Studies also indicate that CYP2C19 genotype is not re-
lated to the efficacy or toxicity of voriconazole. Addi-
tional studies are needed before routine CYP2C19
genotyping is performed to facilitate initial dose selection
of voriconazole. Finally, there is no validated model that
allows for an accurate initial dosage of voriconazole
based upon CYP2CI19 allelic profile. While CYP2C19
genotype data may explain variability of voriconazole
serum levels, they alone are not sufficient to guide initial
dosing. This is in agreement with several reviews that
state further research is needed before the widespread imple-
mentation of clinical voriconazole pharmacogenomics [12e,
14, 93, 94].

The logistics of timeliness of data from TDM and genotyp-
ing remain a continued challenge to patient care. While the

@ Springer

“turn around” time for TDM data has improved in both refer-
ence laboratories and in hospital laboratories, availability of
genotyping data remains difficult. Genotyping data are typi-
cally not available for patients as a guide to initial dosing in
patients receiving voriconazole therapy.

If the current data are insufficient to recommend
CYP2C19 genotyping for all patients, when should it be
performed? We feel that institutional resources should first
be used to implement voriconazole TDM with a reasonable
turnaround time. Once voriconazole TDM is implemented,
CYP2C19 genotyping, if available, may be a useful adjunct
to assist in characterizing the voriconazole disposition of
select patients with particularly unpredictable concentra-
tions and a clinical need for aggressive treatment. As a
reminder, alternative specimens than blood are needed for
CYP2C19 genotyping in allogeneic stem cell or liver trans-
plantation patients and those who have recently received
heterologous blood transfusions [95]. We also note that
genotyping may be useful in specific clinical situations
such as dosing of voriconazole in critically ill patients (es-
pecially for patients from ethnicities associated with high
rates of PM status such as Asians), in patients on multiple
interacting medications, in obese patients receiving intrave-
nous voriconazole, and in selected pediatric patients in
whom therapeutic levels are difficult to obtain. In patients
receiving initial doses of voriconazole above manufacturer
recommendations, CYP2C19 genotyping may be helpful to
identify PMs and thereby prevent excessive levels and tox-
icity. Furthermore, the presence of the CYP2C19*17 allele
in critically ill patients may lead to the decision to admin-
ister combination antifungal therapy until therapeutic levels
of voriconazole are achieved. Knowledge of the CYP2C19
genotype may also aid in the management of voriconazole
vincristine drug interactions. In PMs, the half-life of
voriconazole may be prolonged, requiring the drug to be
held longer than 24 to 48 h before starting vincristine to
avoid this serious drug interaction [96, 97]. Similar recom-
mendations were recently made by others assessing of the
role of pharmacogenomic screening of patients with hema-
tological malignancies [14].

In conclusion, CYP2C19 genotyping to aid voriconazole
dosing is an appealing concept, but further studies are needed
before this practice is widely implemented into routine clinical
care.
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