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Abstract The U.S. Clinical and Laboratory Standards
Institute (CLSI) and the European Committee of
Antimicrobial Susceptibility Testing (AFST-EUCAST) have
developed broth microdilution methodologies for testing
yeasts and filamentous fungi (molds). The mission of these
methodologies is to identify in vitro antifungal resistance,
which is accomplished by the use of either clinical breakpoints
(CBPs), or to a lesser degree, epidemiologic cutoff values
(ECVs). The newly adjusted and species-specific CLSI
CBPs for Candida spp. versus fluconazole and voriconazole
have ameliorated some of the differences between the two
methodologies. In the absence of CBPs for mold testing, CLSI
ECVs are available for six Aspergillus species versus the
triazoles, caspofungin and amphotericin B. Recently, break-
points were developed by the EUCAST for certain Aspergillus
spp. versus amphotercin B, itraconazole and posaconazole,
which to some extent are comparable to ECVs.We summarize
these latest accomplishments, which have made possible the
harmonization of some susceptibility cutoffs, if not method-
ologies for some agent/species combinations.
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Introduction

The incidence and prevalence of invasive fungal infections
continue to increase, especially among chemically induced
immunosuppressed patients [1–3, 4•]. Such increase promp-
ted the introduction of new systemic antifungal agents, and the
development of standardized broth microdilution methods for
the in vitro susceptibility testing of yeasts and filamentous
fungi (molds) by both the U.S. Clinical and Laboratory
Standards Institute (CLSI) [5–7] and the European
Committee of Antimicrobial Susceptibility Testing (AFST-
EUCAS) [8, 9]. The availability of reliable methodologies
made possible the study of mechanisms of resistance and
cross-resistance in Candida spp., and more recently in
Aspergillus spp. [10•, 11•, 12•, 13•, 14, 15•, 16, 17, 18•, 19].
The association of genetic mutations, high minimum inhibi-
tory concentrations (MICs) and clinical outcome has been also
elucidated. Standardization also made possible the definition
of clinical breakpoints (CBPs) for the more common Candida
spp. (by both CLSI and EUCAST) [20•, 21•, 22•, 23•, 24•,
25•] and someAspergillus spp. (by EUCAST) [26•], as well as
epidemiologic cutoffs (ECVs) for a variety of Aspergillus (by
CLSI and EUCAST), Cryptococcus and Candida species (by
CLSI) [27•, 28•, 29•, 30•, 31, 32•, 33•, 34•, 35•], and the
important antifungal agents (triazoles, echinocandins, ampho-
tericin B and flucytosine) that are currently available for the
treatment/prevention of invasive fungal infections [36–38].
This review will focus on the published events that have
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made possible the comparison not only of testing con-
ditions, but of susceptibility endpoints developed by
both CLSI and EUCAST. Because of this, we only
discuss testing parameters and cutoffs values when they
are available by both organizations.

Antifungal Susceptibility Methods

CLSI and EUCAST Parameters for Testing Candida spp.

The CLSI and EUCAST broth microdilution standardized
methodologies have been discussed in detail elsewhere [10•,
11•, 39, 40], as well in the CLSI (M27-A3) and EUCAST
(EDef 7.2) documents [5–9]. The similar testing conditions
are (Table 1): RPMI-1640 (RPMI) broth, incubation temper-
atures (35° and 37° C) and time (24 h), a prominent inhibition
of growth (≥50 %) for testing the susceptibilities of Candida
spp. to triazoles and echinocandins. The differences are: inoc-
ulum densities (0.5×103 to 2.5×103CFU/ml and 0.5×105 to
2.5×105CFU/ml), the RPMI broth glucose content (0.2% and
2.0 %), the microdilution wells (round and flat-bottom), and
MIC determination (visual and spectrophotometric). Despite
these differences, early and recent comparisons of EUCAST
and the more practical CLSI 24 h triazole MICs [39–45], as
well as of amphotericin B and flucytosine [45], have yielded
comparable results regarding both essential, and more impor-
tantly, categorical agreement [42, 44].

CLSI and EUCAST Parameters for Testing Cryptococcus
spp.

Another area where testing conditions differ between both
organizations is for the Cryptoccocus neoformans–C. gattii
species complex. As early as the 1990s, the CLSI estab-
lished that, except for the incubation time (72 h), the stan-
dard parameters for this group of fungi were the same as
those for Candida spp. [5, 6]. Based on large numbers of
isolates of these species (from numerous laboratories) for
which MICs were collected during the last 10 to 15 years,
ECVs were defined by the CLSI for the Cryptoccocus neo-
formans–C. gattii species complex versus amphotericin B,
flucytosine and the triazoles [33•, 34•]. In 2012, the
EUCAST methodology was adopted for the testing of
Cryptococcus species, and the plates read when the OD
value is above 0.2. In cases with insufficient growth, it is
suggested that the test be repeated, but that the trays be
incubated at 30 °C [8, 46•]. The comparison with CLSI
methodology was complicated, since growth by the CLSI
method was insufficient to allow spectrophotometric MIC
determination.

CLSI and EUCAST Parameters for Testing Molds

The CLSI M38-A2 document provides guidelines for non-
dermatophyte molds with amphotericin B, triazoles and
echinocandins [7]. The EUCAST has a similar broth

Table 1 Parameters for the performance of CLSI and EUCAST methods

CLSI M27-A3 document
for yeasts

EUCAST EDef. 7.2
document for yeasts*

CLSI M38-A2 document
for molds

EUCAST EDef 9.1
document for molds*

Microplate well
shape

Round bottom Flat bottom Round bottom Flat bottom

Test medium RPMI 1640 with 0.2 %
glucose

RPMI 1640 with 2 %
glucose

RPMI 1640 with 0.2 % glucose RPMI 1640 with 2 %
glucose

Inoculum size 0.5 to 2.5×103CFU/ml 0.5 to 2.5×105CFU/ml 0.4 × 104 to 5 × 104CFU/ml 2 × 105 to 5×105CFU/ml

Incubation time 24–48 h: Candida spp. Same 24–48 h (echinocandins);
48 h other agents

Same
72 h: Cryptococcus neoformans When OD>0.2: C. neoformans

Temperature 35 °C 35 °C 35 °C 35 °C

Reading Visual Spectrophotometric Visual Visual

MIC criteria Amphotericin B: the lowest
drug concentration that
prevents any discernible
growth (clear wells).

Same Amphotericin B, triazole
MIC: the lowest drug
concentration that prevents
any discernible growth.

Same

Azoles, echinocandins,
flucytosine: the lowest drug
concentration that
inhibits ≥ 50 % of growth
as compared to control.

Same Echinocandin MEC: the
lowest drug concentration
that shows morphological
changes.

Same

CLSI U.S. Clinical and Laboratory Standards Institute, EUCAST European Committee of Antimicrobial Susceptibility Testing, MIC minimal
inhibitory concentration, MEC minimal effective concentrations

* http://www.eucast.org [5–9]
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microdilution standard, again except for the sugar content of
the RPMI broth (2 % and 0.2 % dextrose), the inoculum
concentrations (~105CFU/ml adjusted by conidial count-
ing and ~104CFU/ml adjusted by spectrophotometer),
and the final DMSO concentration (0.5 % and 1 %)
[7, 9]. Both methods recommend the determination of
minimal effective concentrations (MECs) when testing
echinocandins, instead of the traditional MIC when
evaluating other agents [7, 9]. An early comparison of
testing conditions for molds demonstrated that the
higher EUCAST inoculum size and glucose RPMI con-
centration did not significantly elevated MICs of
amphotericin B and itraconazole [47]. But a recent
study reported that voriconazole EUCAST MICs are
usually one dilution higher that CLSI values [32•].

Interpretive Guidelines for Candida and Aspergillus
Species

CLSI and EUCAST Clinical Breakpoints for Candida spp.

As for any antimicrobial agent, detection of in vitro resis-
tance is an important factor in the treatment of invasive
fungal infections (e.g., Candida infections) for which
agents have been licensed. For in vitro results to be
meaningful, CBPs or ECVs should be available and estab-
lished using data obtained by standardized methods.
During the last two years, CBPs that serve to differentiate
an organism as treatable or nontreatable [48•] have been
adjusted (lowered) by the CLSI for most of the common
Candida spp. versus fluconazole, voriconazole and the
three echinocandins (Table 2) [20•, 21•, 22•]. Also,
EUCAST breakpoints are available for amphotericin B,
anidulafungin, fluconazole, posaconazole, and voricona-
zole [23•, 24•, 25•].

CBPs for Candida spp. and Fluconazole and Voriconazole

Between 1997 and 2006, the CLSI established susceptible
(≤8 μg/ml for fluconazole and 1 μg/ml for voriconazole)
and resistant (≥64 μg/ml and ≥4 μg/ml, respectively)
CBPs to encompass all Candida spp. During the last
three years, the following important factors demanded
the adjustment of these CBPs: the CLSI validated the
24 h (when growth permits it) incubation time for testing
these agents [41], the need to have species-specific
CBPs, and the perception that the original CBPs were
not sensitive enough to identify in vitro resistance to
these agents, especially when testing C. albicans, C.
parapsilosis and C. tropicalis. Therefore, using mutant
strains (e.g., due to either target enzyme modifications
or reduction of access of the triazole to the target), new

pharmacokinetic (PK) and pharmacodynamic (PD) infor-
mation, MIC distributions, and clinical experience with
either mucosal and invasive candidiasis (fluconazole) or
with non-neutropenic candidemia patients (voriconazole),
CLSI CBPs were adjusted: susceptible (≤ 2 μg/ml for
fluconazole and ≤0.125 μg/ml for voriconazole) and resis-
tant (≥ 8 μg/ml and ≥1 μg/ml, respectively) for C. albicans,
C. parapsilosis and C. tropicalis [20•, 21•]. No susceptible
endpoint was established for C. glabrata and fluconazole.
For the combination of voriconazole and C. glabrata, insuf-
ficient data that demonstrates a correlation between CLSI
MICs and response to therapy precluded the definition of
CBPs. These species-specific CBPs would better recognize
non-treatable or resistant isolates. Therefore, although both
organizations disagree with respect to the resistant endpoint
of voriconazole and C. albicans, C. parapsilosis and C.
tropicalis (resistant endpoints: EUCAST≥0.25 μg/ml and
CLSI≥1 μg/ml), there is complete agreement regarding flu-
conazole resistant endpoint for these three species (≥8 μg/ml)
(Table 2).

CBPs for Candida spp. and the Echinocandins

In 2008, the CLSI established a susceptible CBP (≤2 μg/ml)
for echinocandins and all Candida spp. However, using fks1
mutant strains, Garcia-Effron et al. [49, 50] demonstrated
that although caspofungin MICs>2 μg/ml captured almost
100 % of mutant strains, the MICs of anidulafungin and
micafungin that captured 95 % of these mutants were lower
for C. albicans (>0.5 μg/ml) and C. glabrata (>0.25 μg/ml).
More recently, the single susceptible echinocandin CBP was
adjusted to species-specific CBPs; susceptible ≤0.25 μg/ml
and resistant ≥1 μg/ml for C. albicans, C. krusei and C.
tropicalis; lower interpretive endpoints were established for
C. glabrata, which also were echinocandin-dependent
(Table 2). Since the EUCAST has not established interpre-
tive breakpoints for caspofungin and micafungin, due to
insufficient evidence of correlations between in vitro and
clinical response, we focus on anidulafungin CBPs
(Table 2). EUCAST breakpoints for anidulafungin are based
on ECVs, clinical experience and as pharmacokinetic infor-
mation [24•]. Although both organizations are in agreement
regarding the resistant endpoint of anidulafungin and C.
parapsilosis (≥8 μg/ml), once more, EUCAST resistant
endpoints are lower for C. albicans (≥0.06 μg/ml versus
≥1 μg/ml), and C. glabrata, C. krusei, and C tropicalis
(≥0.12 μg/ml versus ≥0.5 μg/ml and ≥1 μg/ml); differences
among susceptible endpoints are depicted in Table 2. The
reason for these discrepancies could be that although clinical
data from three clinical trials were used for the definition of
anidulafungin EUCAST endpoints, correlation of EUCAST
MICs and clinical response was not possible, since
EUCAST in vitro data were not obtained at the time [24•].
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Epidemiological Cutoff Values (ECVs) for Candida spp.

In contrast to CBPs, the ECV is the susceptibility endpoint
that differentiates between wild type (WT, isolates not har-
boring resistant mechanisms) from non-WT isolates (har-
boring one or more resistant markers) [48•, 51]. Among
Candida spp., ECVs are usually lower than the CBP.
Although an organism with an MIC above the drug ECV
(non-WT) shows reduced susceptibility and is less likely to
respond to the agent being evaluated as compared to the WT
population, it may respond if the MIC is below the break-
point. CLSI CBPs for Candida spp. versus itraconazole,
amphotericin B and flucytosine are not available, due the
lack of sufficient clinical and in vitro data to demonstrate
correlations. Instead, the CLSI has recently defined ECVs that
are based on CLSI MIC data from multiple laboratories [35•].
We focus on the comparison of CLSI amphotericin B ECVs
and EUCAST breakpoints for Candida spp. (Table 2), since

the latter organization has no interpretive values for either
itraconazole or flucytosine; CLSI ECVs for those two latter
agents can be found elsewhere [35•, 40].

ECVs and Breakpoints for Candida spp. and Amphotericin B

The EUCAST resistant amphotericin B breakpoints are low-
er (>1 μg/ml) than the CLSI non-WT endpoints (or isolates
with reduced susceptibility to amphotericin B; >2 μg/ml) for
the common Candida spp. (Table 2). These differences must
be due to testing conditions. Based on peak attainable serum
concentrations of 2 μg/ml and the pharmacodynamic corre-
late of the peak serum concentration-to-MIC ratio of 2 as the
predictor of maximal activity, the cutoff of amphotericin B
resistance traditionally has been an MIC of ≥1 μg/ml [40].
But so far, attempts to correlate this vitro result (≥1 μg/ml)
with clinical outcome in Candida infections have failed
[52]. One of the problems is the scarcity of Candida isolates

Table 2 Breakpoints or ECVs of antifungal agents approved by European Committee of Antimicrobial Susceptibility Testing, (EUCAST) and
Clinical and Laboratory Standards Institute (CLSI) for susceptibility testing of Candida. Data in μg/ml

Antifungal Species EUCAST CLSI

Susceptible Intermediate Resistant Susceptible or WT (ECV)* S-DD Intermediate Resistant or
non-WT*

Fluconazole C. albicans ≤2 4 >4 ≤2 4 – >4

C. glabrata – ≤32 >32 – ≥32 – ≥64

C. krusei PT PT PT PT PT PT PT

C. parapsilosis ≥2 4 >4 <2 4 – ≥8

C. tropicalis ≥2 4 >4 ≤2 4 – ≥8

Voriconazole C. albicans 0.125 – >0.125 ≤0.125 – 0.25–0.5 ≥1

C. glabrata IE IE IE IE IE IE IE

C. parapsilosis 0.125 – >0.125 ≤0.125 – 0.25–0.5 ≥1

C. tropicalis 0.125 – >0.125 ≤0.125 – 0.25–0.5 ≥1

Anidulafungin C. albicans ≤0.03 – >0.03 0.25 – 0.5 ≥1

C. glabrata ≤0.06 – >0.06 0.125 – 0.25 ≥0.5

C. krusei ≤0.06 – >0.06 0.25 – 0.5 ≥1

C. parapsilosis. – ≤2 >2 ≤2 – 4 ≥8

C. tropicalis ≤0.06 – >0.06 0.25 – 0.5 ≥1

Amphotericin B C. albicans ≤1 – >1 ≤2* – – >2*

C. glabrata ≤1 – >1 ≤2* – – >2*

C. krusei ≤1 – >1 ≤2* – – >2*

C. parapsilosis ≤1 – >1 ≤2* – – >2*

C. tropicalis ≤1 – >1 ≤2* – – >2*

*ECV: Epidemiological cutoff (also known as COWT); it applies only to amphotericin B and posaconazole because CLSI has not approved
breakpoints for these two agents and any fungal species.

PT: Susceptibility testing not recommended, as the species is a poor target for therapy with the drug or intrinsically resistant to fluconazole and
MICs for this species should not be interpreted using these cutoffs

IE: Insufficient evidence to set breakpoints

S-DD: susceptible dose dependent
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for which the MIC is >2 μg/ml. Therefore, a Candida isolate
with such a high MIC should be considered unusual and less
likely to respond to amphotericin B therapy.

CLSI and EUCAST ECVs and Breakpoints for Aspergillus
spp.

Because recent clinical studies (not designed for correlation
purposes) have only provided some insights regarding the
potential value of MICs in certain mold–drug combinations,
CLSI CBPs are not available for mold testing. For example,
during voriconazole clinical trials for aspergillosis, its effi-
cacy data is based on response to treatment of patients
infected mostly with WT isolates. However, CLSI ECVs
are available for six species of Aspergillus (Aspergillus
fumigatus, A. flavus, A. nidulans, A. niger, A. terreus, and
A. versicolor) and five antifungal agents (amphotericin B,
three triazoles and caspofungin) [28•, 29•, 30•]; Table 3
depicts CLSI ECVs and available EUCAST breakpoints
[26•]. As for Candida spp., ECVs could characterize the
susceptibility of Aspergillus spp. to antifungal agents and
monitor the emergence of strains with mutations and re-
duced antifungal activity.

ECVs and breakpoints for Aspergillus spp. and Amphotericin B

Although there are available amphotericin B CLSI ECVs for
six Aspergillus spp., EUCAST has defined breakpoints only
for A. fumigatus and A. niger, and both values are one
dilution lower than CLSI ECVs (Table 3) [26•, 30•].
Information is scarce regarding the relationship between
resistance mechanisms, high amphotericin MICs and clini-
cal response to therapy; it is mostly available for A. terreus
(intrinsically resistant to this agent) and A. flavus [10•, 11•].
Alteration of the cell wall composition of A. flavus has been
responsible for amphotericin B resistance (MICs>1 μg/ml),
while catalase production instead of ergosterol content has
played a role in A. terreus resistance to this agent [12•].

ECVs and Breakpoints for Aspergillus spp. and Triazoles

The clinical relevance of mold testing remains uncertain, but
both CLSI and EUCAST methodologies have elucidated the
complexity of cross-resistance among triazoles, especially in
A. fumigtus. Triazole resistance (MICs>2 μg/ml) has been
associated with single or multiple point mutations of the
cyp51A gene in A. fumigtus and A. flavus, as well as the
incidence of multiazole, cross-resistance and patient failure
to triazole treatment [13•, 14, 15•, 16, 27•, 28•]. However,
other host and drug factors cannot be ignored. Triazole
molecular resistance mechanisms have not been identi-
fied for the other non-A. fumigatus spp., but the pres-
ence of the two cyp51 genes was reported in A. terreus,

and azole resistance has been associated with multipli-
cation of cyp51A in an engineered laboratory strain of
A. niger [11•].

The CLSI and EUCAST have defined itraconazole and
voriconazole ECVs of ≤1 μg/ml for A. fumigatus (non-WT
MICs≥2 μg/ml) [27•, 28•]; these values were corroborated
in a recent study [31]. With the exception of ECVs for A.
nidulans and itraconazole (≤2 μg/ml by the CLSI and
≤1 μg/ml by the EUCAST), ECVs and breakpoints for A.
flavus and A. terreus versus itraconazole by both organiza-
tions are the same (Table 3) [26•, 28•]. More recently, two
potential susceptible breakpoints for voriconazole and A.
fumigatus using either CLSI (susceptible, ≤0.5 μg/ml; resis-
tant, >1 μg/ml) or the EUCAST (susceptible, ≤1 μg/ml;
resistant, >2 μg/ml) methodologies also were suggested;
these breakpoints were based on the fact that as the vorico-
nazole MIC increased, a higher area under the concentration
time curve (AUCs) was needed to achieve suppression of
galactomannan in an in vitro dynamic model of invasive
pulmonary aspergillosis [32•]. Again, the voriconazole ECV
of 1 μg/ml was corroborated, but the EUCAST ECV was
one dilution higher in that recent report (WT [no mutations]
range by the CLSI 0.5–1 μg/ml and by the EUCAST 0.5–
2 μg/ml). The EUCAST has not yet made decisions regard-
ing this agent and Aspergillus spp.

Posaconazole ECVs for A. fumigatus in three different
studies have been either 0.12 μg/ml or 0.25 μg/ml [27•, 28•,
31]. In 2011, the EUCAST established ≤0.12 μg/ml as the
susceptible breakpoint for posaconazole versus A. fumigatus
and A. terreus; both values are lower than the ECVs for
these two species by the CLSI (Table 3) [26•].

In a recent study, 64 % of patients infected with a resis-
tant A. fumigatus isolate were azole naïve and the case-
fatality rate of azole-resistant invasive aspergillosis was
88 %. In addition, patients suffering a hematologic or onco-
logic disease were more likely to harbor an azole-resistant
isolate than were other patient groups (p<0.05) [14].
Verweij et al. [53] recommended dose escalation of vorico-
nazole and posaconazole with isolates for which MICs are
above the ECV. The other consideration is bioavailability,
e.g., the limited ability to increase posaconazole exposure
with the oral solution and the variability of triazole serum
levels. In an animal model of A. fumigatus (cyp51A muta-
tions), the standard dosing regimen needed to be increased
when the posaconazole MIC for the infecting isolate
was 0.5 μg/ml to avoid treatment failure [15•]. All these
results indicate that these endpoints could be useful in
the monitoring and selection of antifungal therapy in
aspergillosis, but more data needs to be gathered for
them to be clinically relevant. This is important, since
itraconazole, voriconazole and posaconazole have a role
in the prevention and treatment of chronic, allergic or
invasive aspergillosis.
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ECVs for Aspergillus spp. and Caspofungin

Caspofungin ECVs of 0.25 and 0.5 μg/ml are also available
for six Aspergillus spp. by the CLSI; these values are listed
elsewhere [29•]. But, ECVs have not been defined for any
other echinocandins or by the EUCAST for any species and
echinocandin. Scarce information is available regarding
high caspofungin MECs and clinical failure and the pres-
ence of FKS1 resistant mutations [18•]. Yet, caspofungin
MECs≥1 μg/ml for three of four isolates of A. fumigatus,
and breakthrough infections were observed in patients

receiving either empirical or prophylactic caspofungin ther-
apy [54], but genetic studies were not performed. The latter
results are in agreement with those reported for a laboratory
mutant of A. fumigatus (caspofungin MEC≥16 μg/ml with a
S678P amino acid change) [17].

Conclusions

Standardized broth microdilution (CLSI and EUCAST) and
disk diffusion (CLSI) methods are available to test licensed

Table 3 CLSI (ECVs) and EUCAST (breakpoints) susceptibility endpoints for six Aspergillus spp. at 48 h. Data in μg/ml

Antifungal agent and species
(CLSI no. Isolates)a

CLSI MIC or MEC
ECV-WT (μg/ml)b

CLSI MIC or MEC
Non-WT (μg/ml)

CLSI Mode
(μg/ml)c

S-BP (μg/ml)d,e EUCAST R-BP (μg/ml)d

Amphotericin B

Aspergillus fumigatus (3,988) ≤2 ≥4 0.5 ≤1 >2

Aspergillus flavus (793) ≤2 ≥4 1 NA NA

Aspergillus nidulans (184) ≤4 ≥8 1 NA NA

Aspergillus niger (673) ≤2 ≥4 0.5 ≤1 >2

Aspergillus terreus (545) ≤4 ≥8 2 NA NA

Aspergillus versicolor (135) ≤2 ≥4 1 NA NA

Itraconazole

Aspergillus fumigatus (2,544) ≤1 ≥2 0.5 ≤1 >2

Aspergillus flavus (536) ≤1 ≥2 0.5 ≤1 >2

Aspergillus nidulans (141) ≤2 ≥4 0.5 ≤1 >2

Aspergillus niger (427) ≤2 ≥4 1 NA NA

Aspergillus terreus (369) ≤1 ≥2 0.25 ≤1 >2

Aspergillus versicolor (68) ≤2 ≥4 1 NA NA

Posaconazole

Aspergillus fumigatus(1,647) ≤0.25 ≥0.5 0.06 ≤0.12 >0.25

Aspergillus flavus (321) ≤0.25 ≥0.5 0.06 NA NA

Aspergillus nidulans (129) ≤1 ≥2 0.25 NA NA

Aspergillus niger (325) ≤0.5 ≥1 0.5 NA NA

Aspergillus terreus (330) ≤0.5 ≥1 0.25 ≤0.12 >0.25

Aspergillus versicolor (41) ≤1 ≥2 0.5 NA NA

Voriconazole

Aspergillus fumigatus (2,778) ≤1 ≥2 0.25 ≤1e ≥2e

Aspergillus flavus (590) ≤1 ≥2 0.5 NA NA

Aspergillus nidulans (139) ≤0.5 ≥1 0.125 NA NA

Aspergillus niger (479) ≤2 ≥4 0.5 NA NA

Aspergillus terreus (462) ≤1 ≥2 0.5 NA NA

Aspergillus versicolor (80) ≤2 ≥4 0.25 NA NA

CLSI U.S. Clinical and Laboratory Standards Institute, EUCAST European Committee of Antimicrobial Susceptibility Testing, ECV epidemiologic
cutoff values, MIC minimum inhibitory concentration, MEC minimal effective concentrations, NA not available
a Number of MICs/isolates used for the establishment of CLSI ECVs [28•, 29•, 30•]
b Calculated ECVs comprising ≥95 % of the statistically modeled population; WT0Wild-type [28•, 29•, 30•]
c Most frequent minimum effective concentration (MEC) as determined in CLSI studies [28•, 29•, 30•].
d S-BP0susceptible-breakpoint; R0resistant-breakpoint
e The ECV and not the BP is listed for A. fumigatus and voriconazole as reported in ref. [27•]. However, the EUCAST has recently proposed this
value as the BP for this agent/species combination.
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antifungal agents against both Candida spp. and Aspergillus
spp. Standardized broth microdilution methodologies have
allowed the establishment of species-specific breakpoints
for most of the common Candida spp. versus fluconazole
and voriconazole (CLSI and EUCAST), posaconazole and
anidulafungin (EUCAST) and the three echinocandins
(CLSI). In the absence of breakpoints, species-specific
ECVs have been defined for amphotericin B, itraconazole
and flucytosine versus most common Candida spp.; for
amphotericin B, triazoles and caspofungin versus six
Aspergillus spp.; and for amphotericin B, triazoles and flu-
cytos ine versus the Cryptococcus neoformans-
Cryptococcus gattii species complex (CLSI). On the other
hand, the EUCAST has recently established breakpoints for
some Aspergillus spp. versus amphotericin B, posaconazole
(two species), and itraconazole (four species). It is expected
that ECVs may serve as sensitive markers for the emergence
of isolates with decreased susceptibility to the agent being
evaluated, or to separate WT from non-WT isolates. The
association of non-WT with mechanisms of resistance has
been elucidated for some of these species/agent combina-
tions, but more related information is needed.

The question is, how harmonized are CLSI and EUCAST
standards? It is clear that there are basic differences in some
of the testing conditions (e.g., inoculum size), but the short-
ening of the CLSI incubation time to 24 h for testing
Candida spp. and the adjustment to species-specific and
more sensitive CBPs indicates that fluconazole, and to some
extent voriconazole, CBPs are similar, and that both meth-
ods are useful to identify and monitor in vitro resistance to
these agents. The same applies to the comparison of avail-
able ECVs and breakpoints by both organizations. However,
further efforts are needed, since there are several gaps in the
development of susceptibility endpoints, as well as the rel-
evance of the available ones beyond in vitro assays.
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