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Abstract
Cisplatin resistance is the main cause of colorectal cancer (CRC) treatment failure, and the cause has been reported to be 
related to Fusobacterium nucleatum (Fn) infection. In this study, we explored the role of Fn in regulating cisplatin resist-
ance of CRC cells and its underlying mechanism involved. The mRNA and protein expressions were examined by qRT-PCR 
and western blot. Cell proliferation and cell apoptosis were assessed using CCK8 and flow cytometry assays, respectively. 
Dual-luciferase reporter gene assay was adopted to analyze the molecular interactions. Herein, our results revealed that Fn 
abundance and miR-135b expression were markedly elevated in CRC tissues, with a favorable association between the two. 
Moreover, Fn infection could increase miR-135b expression via a concentration-dependent manner, and it also enhanced 
cell proliferation but reduced apoptosis and cisplatin sensitivity by upregulating miR-135b. Moreover, KLF13 was proved 
as a downstream target of miR-135b, of which overexpression greatly diminished the promoting effect of miR-135b or 
Fn-mediated cisplatin resistance in CRC cells. In addition, it was observed that upstream 2.5 kb fragment of miR-135b 
promoter could be interacted by β-catenin/TCF4 complex, which was proved as an effector signaling of Fn. LF3, a blocker 
of β-catenin/TCF4 complex, was confirmed to diminish the promoting role of Fn on miR-135b expression. Thus, it could be 
concluded that Fn activated miR-135b expression through TCF4/β-catenin complex, thereby inhibiting KLF13 expression 
and promoting cisplatin resistance in CRC.
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Introduction

Colorectal cancer (CRC) is a very common human malig-
nancy, ranking third in incidence and second in mortality 
among all cancers worldwide (Bray et al., 2018). Cisplatin 
is a well-known antitumor agent (Dasari & Tchounwou, 
2014). At present, surgery combined with cisplatin-based 
chemotherapy is a conventional treatment strategy for CRC, 
but due to treatment failure, the 3-year survival rate of CRC 
has not been improved (Du et al., 2018; Franke et al., 2018). 
Cisplatin resistance is the main reason for treatment failure 
of CRC (Fuertes et al., 2002). Therefore, it’s urgent to find 
novel treatment strategies for CRC, and understanding the 
specific molecular mechanism in regulating cisplatin resist-
ance in CRC is the key to achieving this goal.

Massive evidence has determined that CRC chemoresist-
ance is a result of complex interactions between gene regu-
lation and environment. The intestinal microbiota refers to 
the bacterial population inhabiting the human gastrointes-
tinal tract, which more than thousands of different species 
(Gill et al., 2006). Previous evidence has revealed that the 
intestinal microbiota is closely related to CRC initiation and 
development by regulating intestinal inflammation (Arthur 
et al., 2012). Notably, several recent animal studies suggested 
that gut microbiota might influence chemotherapy sensitiv-
ity by modulating local immune responses (Iida et al., 2013; 
Viaud et al., 2013). Fusobacterium nucleatum (Fn) is a Gram-
negative, spindle-shaped, non-spore forming oral anaerobe, 
which is one of the most abundant Gram-negative bacteria 
(Socransky et al., 1998). Surprisingly, it was observed that 
Fn abundance was significantly increased in CRC tissues 
compared with adjacent normal tissues (Kostic et al., 2012), 
suggesting that Fn might be a risking factor promoting CRC 
progression. In addition, the increase of Fn abundance in CRC 
tissue was related to the shorter survival period of patients 
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(Mima et al., 2016). Notably, a previous study demonstrated 
that the abundance of Fn was significantly increased in the 
CRC tissue of patients with relapse after chemotherapy, and 
Fn could improve the resistance of CRC cells to chemotherapy 
(Yu et al., 2017). Nevertheless, the mechanism of Fn promot-
ing cisplatin resistance in CRC remain larges unknown, which 
deserves further research.

MicroRNAs (miRNAs) refer to a class of small noncoding 
RNA molecules of about 20 nucleotides in length. There a 
growing body of evidences revealed that miRNA is an essen-
tial tumor regulator which can be divided into “protocancer 
miRNA” or “tumor suppressor miRNA” (Saliminejad et al., 
2019). In CRC, dysregulated miRNAs taken part in various 
cancerous phenotypes such as increased proliferative and 
invasive abilities, immune escape, angiogenesis, and drug 
resistances by targeting multiple targeted genes, which was 
an important inducement for the pathogenesis and develop-
ment of CRC (Huang et al., 2021). For instance, miR-875-3p 
was significantly upregulated in CRC tissues and cells, and 
its knockdown inhibited CRC cell proliferation and migration 
(Li et al., 2020a). Chen et al. (2017) revealed that miR-199a/b 
upregulation facilitated cisplatin resistance in CRC. Recently, 
aberrant expression of miR-135b was found to be associated 
with carcinogenesis in variety of organs (e.g. non-small-cell 
lung cancer, ovarian cancer and CRC) (Dai et al., 2022; Wang 
et al., 2022; Zhao et al., 2021). It was previously described 
that miR-135b induced protective autophagy to promote the 
drug sensitivity of CRC cells against oxaliplatin (Wang et al., 
2021). Likewise, it was also confirmed that enforced miR-
135b expression dramatically elevated the chemoresistance 
of CRC through modulating PI3K/AKT/ ST6GALNAC2 
signaling pathway (Liu et al., 2017). Moreover, previous evi-
dences reported that increasing miRNAs were functioned as 
downstream targets of Fn and participated in the regulating 
of Fn on CRC malignant phenotypes, such as miR-21, miR-
1246, miR-92b-3p, miR-27a-3p, etc (Guo et al., 2021; Yang 
et al., 2017). Whereas, whether miR-135b could involve in 
Fn-induced cisplatin resistance in CRC remains need further 
study.

In the present research, the experimental data uncovered 
that Fn infection apparently activated miR-135b expression 
through acting on transcription factor 4 (TCF4)/β-catenin 
complex, thereby inhibiting Kruppel-like factor 13 (KLF13) 
expression and promoting cisplatin resistance in CRC. Our 
research provided novel perspectives for the treatment of CRC 
in patients with cisplatin resistance.

Materials and Methods

Clinical Samples Collection

The CRC tissues and normal adjacent tissues were col-
lected from 25 diagnosed CRC patients who received 
surgical resection at Changsha First Hospital. The CRC 
patients were clearly diagnosed by pathology and had no 
radiotherapy. This study was passed the review of Ethics 
Committee of Changsha First Hospital before enrollment 
of patients and all participants signed informed consent 
(Approval Number: No. 2022-171).

Cell Culture and Treatment

Human CRC cells (SW620, SW480, HCT116, HT-29 and 
Caco2 cells) and human colon epithelial cells (NCM460 
and HCoEpiC cells) were all purchased from American 
Type Culture Collection (ATCC) and cultured in DMEM 
(Gibco) containing 10% fetal bovine serum (FBS, Gibco) 
with 5% CO2 at 37 °C. HCoEpiC cells were cultured in 
colonic epithelial cell medium (CoEpiCM, ScienCell 
Research Laboratory) also containing 10% FBS according 
to the manufacturer’s instructions. Fn was also obtained 
from ATCC and was grown in trypticase soy broth (TSB) 
agar plates (containing 5% defibrinated sheep blood, 5 µg/
ml hemin and 0.5% yeast extract and 1 µg/ml vitamin K1) 
under anaerobic conditions at 37 °C.

For cell infection, SW620 and Caco2 cells were seeded 
into a 6 well-plate and infected with Fn at a multiplicity of 
infection (MOI) of 100:1, 500:1 and 1000:1 for 48 h. For 
cisplatin treatment, CRC cells were treated with cisplatin 
(5, 10, 15 or 25 µg/ml) for 48 h.

Cell Transfection

The overexpression plasmid of KLF13 and TCF4 
(pcDNA3.1-KLF13, pcDNA3.1-TCF4), mimic/inhibi-
tor of miR-135b and their negative controls (pcDNA3.1, 
mimics NC, inhibitor NC) were purchased from GeneP-
harma. Lipofectamine™ 3000 (Invitrogen) was acquired 
to transfect the above RNAs into SW620 and Caco2 cells 
in accordance with the manufacturer’s instructions. The 
transfection efficiency was assessed at post-transfection 
48 h. The sequences of mimics and inhibitors used in this 
work were provided as follows: inhibitor NC, 5′-GAA 
UUA AUU​AAA​GAU​GGC​CCG​UUG​UACU-3′; miR-135b 
inhibitor, 5′- UCA​CAU​AGG​AAU​GAA​AAG​CCAUA-3′; 
mimics NC, (sense) 5′-CAG​UAC​UAU​UGU​GUA​GUA​
CAA − 3′, (antisense) 5′-GUA​CUU​UUG​UGU​AGU​ACA​
AUU-3′; miR-135b mimics, (sense) 5′-UAU​GGC​UUU​
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UCA​UUC​CUA​UGUGA-3′, (antisense) 5′-GUA​CUU​UUG​
UGU​AGU​ACA​AUU-3′.

DNA Extraction and Bacteria Quantification

Bacteria DNA was extracted using the QIAGEN stool kit 
(QIAGEN). Fn quantification was performed by quantita-
tive real-time polymerase chain reaction (qRT-PCR) using 
SYBR regent (Thermo Fisher Scientific). The data was ana-
lyzed with − 2ΔΔCT method. Universal Eubacteria 16s was 
used as internal reference gene. The primers were listed as 
follows (5′ –3′): Fn (F): CGG​GTG​AGT​AAC​GCG​TAA​AG; 
Fn (R): ACA​TTG​TGC​CAC​GGA​CAT​CTTG; 16s (F): CGG​
CAA​CGA​GCG​CAA​CCC; 16s (R): CCA​TTG​TAG​CAC​GTG​
TGT​AGCC.

RNA Extraction and qRT‑PCR

Total RNA was extracted with TRIzol (Thermo Fisher 
Scientific). For mRNA, the cDNA was synthesized using 
the Reverse Transcription Kit (Toyobo). For miRNA, the 
cDNA was synthesized with the first-strand cDNA synthesis 
kit (Sangon). Then, SYBR (Thermo Fisher Scientific) was 
employed for the qRT-PCR assay. GAPDH and U6 were 
used as the reference gene for mRNA or miRNA, respec-
tively. The data was analyzed with 2−ΔΔCT method. The 
primers were listed as follows (5′–3′): miR-135b (F): CTG​
TGG​CCT​ATG​GCT​TTT​CAT, miR-135b (R): GCT​CGC​CCC​
TCA​CTG​TAG; KLF13 (F): CGG​CCT​CAG​ACA​AAG​GGT​
C, KLF13 (R): TTC​CCG​TAA​ACT​TTC​TCG​CAG; TCF4 
(F): TGC​AAA​GCC​GAA​TTG​AAG​ATCG, TCF4 (R): AGA​
AGG​TCC​AAT​GAT​TCC​ATGC; GAPDH (F): ATG​ACT​
CTA​CCC​ACG​GCA​AG, GAPDH (R): GGA​AGA​TGG​TGA​
TGG​GTT​TC; U6 (F): CTC​GCT​TCG​GCA​GCACA, U6 (R): 
AAC​GCT​TCA​CGA​ATT​TGC​GT.

Cell Counting Kit‑8 (CCK‑8) Assay

SW620 and Caco2 cells were plated in a 96 well-plate with 
5000 cells/well. After the corresponding interventions for 
48 h, the cells were incubated with 10 µl of CCK-8 solu-
tion (Dojindo) at 37 °C for 3 h. Absorbance was analyzed 
at 450 nm with a microplate spectrophotometer (Bioteke).

Cell Apoptosis Assay

For cell apoptosis detection, SW620 and Caco2 cells after 
different treatment were collected and washed with PBS for 
three times. Then, cells were resuspended in 500 µl of 1× 
Annexin-binding buffer (BD), and then incubated with 10 µl 
Annexin V-FITC and 5 µl PI stain avoiding light for 10 min. 
After washing, the cells were immediately analyzed using 
flow cytometry (BD).

Western Blot

The proteins were isolated with RIPA, and the protein con-
centration was analyzed using the BCA kit (Beyotime). 
Then, the same amount of protein was separated by 12% 
SDS-PAGE gel, which further transferred to a PVDF mem-
brane (Millipore). After blocking, the membranes were incu-
bated with primary antibodies against KLF13 (Proteintech, 
18352-1-AP), TCF4 (Abcam, ab217668), β-catenin (Abcam, 
ab32572) and GAPDH (Abcam, ab8245) at 4 °C for over-
night, then hybridized with secondary antibody (Abcam, 
ab7090) for 60 min. Blots were visualized by GEL imaging 
system (Bio-Rad) and subsequently analyzed with ImageJ 
software.

Dual‑Luciferase Reporter Gene Assay

For validation the regulation between miR-135b and KLF13, 
the 3’-UTR fragment of KLF13 containing wide-type (wt) 
and mutation site (mut) miR-135b binding site were ampli-
fied by PCR, and inserted into the pmirGLO vector (Pro-
mega). Then, CRC cells were co-transfected with recom-
binant KLF13-wt or KLF13-mut vectors and miR-135b 
mimics/inhibitor or their negative controls for 48 h. To 
examine the effects of TCF4/β-catenin complex on miR-
135b expression, the full length of miR-135b promoter frag-
ment containing wt- or mut-TCF4 binding site were ampli-
fied by PCR, and inserted into the pGL3 vector (Promega). 
Then, CRC cells were co-transfected with the recombinant 
pGL3.0 vector and pcDNA3.1 or pcDNA3.1-TCF4 for 48 h. 
Finally, the luciferase activity was subsequently assessed via 
a dual luciferase reporter assay system (Promega).

Statistical Analysis

All our data were obtained from three independent experi-
ments. Statistical data was analyzed by SPSS 19.0 (IBM, 
Armonk, NY) and expressed as means ± SD. Between-group 
differences and multi-group comparisons were determined 
using Student’s t test and one-way ANOVA, respectively. 
The p values less than 0.05 were considered significant.

Results

Fn Infection Gradually Increased miR‑135b 
Expression Via a Concentration‑Depend Manner

The CRC tissues and normal adjacent tissues were collected 
from diagnosed CRC patients, and it was found that Fn abun-
dance and miR-135b expression were markedly increased in 
CRC tissues when compared with those in normal adjacent 
tissues (Fig. 1A, B). In addition, it was observed that the 
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enrichment of Fn exhibited a positive correlation with miR-
135b expression in clinical samples (Fig. 1C). Meanwhile, 
qRT-PCR assay also revealed that miR-135b expression 
in CRC cells was examined, and our results revealed that 
miR-135b was significantly upregulated in CRC cell lines 
(SW620, SW480, HCT116, HT-29, and Caco2 cells) com-
pared with human colon epithelial cells (NCM460 cells, 
HCoEpiC cells) (Fig. 1D). To investigate the relationship 
between Fn and miR-135b in CRC, CRC cells were infected 
with Fn with different MOI. It was turned out that Fn infec-
tion increased miR-135b expression in CRC cells in a MOI 
dependent manner (Fig. 1E). Collectively, these findings 
elucidated the potential connection between Fn and miR-
13b in CRC.

Fn Infection Promoted Cisplatin Resistance of CRC 
Cells by Upregulating miR‑135b

After Fn infection, results from CCK8 assay revealed that 
Fn infection enhanced the cell viability of SW620 and 
Caco cells in a MOI dependent manner (Fig. 2A). In addi-
tion, SW620 and Caco2 cells were subjected to cisplatin, 

and it was observed that cisplatin treatment suppressed 
cell viability in a dose dependent manner (Fig. 2B). Fol-
lowing qRT-PCR assay showed that cisplatin treatment 
gradually increased miR-135b expression in SW620 and 
Caco cells at concentration of 0–15 µg/ml, while miR-135 
expression was no significant difference between 15 µg/
ml and 25 µg/ml cisplatin treatment (Fig. 2C). Previous 
researches have confirmed the evidences highlighting the 
regulatory roles of Fn infection and miR-135b on drug 
resistance against CRC (Hong et  al., 2023; Liu et  al., 
2017). Here, we further explored the roles of Fn and miR-
135b on cisplatin resistance against CRC cells. Firstly, 
miR-135b was greatly silenced after miR-135b inhibitor 
transfection (Fig. 2D). Then, it was demonstrated that Fn 
infection greatly significantly enhanced cell viability and 
reduced cell apoptosis in SW620 and Caco2 cells exposed 
to cisplatin, which dramatically reduced the drug sensitiv-
ity of CRC cells to cisplatin, however, these roles could 
be impeded by miR-135b inhibition (Fig. 2E, F). Taken 
together, Fn facilitated cisplatin resistance in CRC by 
increasing miR-135b expression.

Fig. 1   Fn infection gradually increased miR-135b expression via a 
concentration-dependent manner. The CRC tissues and normal adja-
cent tissues were collected from diagnosed CRC patients, and Fn 
abundance (A) and miR-135b expression (B) in tissues were detected 
by qRT-PCR (n = 25). C The correlation between Fn abundance and 
miR-135b expression was analyzed using Pearson correlation analy-
sis. D  qRT-PCR was adopted to measure miR-135b expression in 

CRC cells (SW620, SW480, HCT116, HT-29 and Caco2 cells) and 
human colon epithelial cells (NCM460  and  HCoEpiC cell  lines). 
SW620 and Caco2 cells were infected with Fn (MOI = 0, 100, 500 
or 1000) for 48  h, and miR-135b expression in cells was measured 
by qRT-PCR. Data were expressed as mean ± SD. All our data were 
obtained from three independent experiments. *p  < 0.05, **p  < 0.01, 
***p  < 0.001



67Journal of Microbiology (2024) 62:63–73	

miR‑135b Negatively Modulated KLF13 Expression

Next, the potential targets of miR-135b were further ana-
lyzed. Through multiple databases prediction (Starbase, 
TargetScan and miRDB), it was found that KLF13 was a 

downstream target gene of miR-135b (Fig. 3A, B). Recently, 
KLF13 was considered as a tumor suppressor in various 
types of cancer, including CRC (Yao et al., 2020). Thus, the 
regulatory relationship between KLF13 and miR-135b was 
detected. As shown in Fig. 3C, the results from qRT-PCR 

Fig. 2   Fn infection promoted cisplatin resistance of CRC cells by 
upregulating miR-135b. A SW620 and Caco2 cells were infected with 
Fn (MOI = 0, 100, 500 or 1000) for 48 h, and cell proliferation was 
examined by CCK8 assay. B  SW620 and Caco2 cells were treated 
with cisplatin (5, 10, 15 or 25 µg/ml) for 48 h, and cell proliferation 
was assessed using CCK8 assay. C The expression of miR-135b in 
SW620 and Caco2 cells after cisplatin (5, 10, 15 or 25 µg/ml) treat-
ment were detected by qRT-PCR. D miR-135b expression in SW620 

and Caco2 cells following inhibitor NC or miR-135b inhibitor trans-
fection was analyzed using qRT-PCR. miR-135b knockdown was 
induced in CRC cells combined with cisplatin and Fn treatments. 
E  CCK8 assay was adopted to determine cell proliferation. F  Cell 
apoptosis was assessed using flow cytometry. Data were expressed as 
mean ± SD. All our data were obtained from three independent exper-
iments. *p < 0.05, **p < 0.01, ***p < 0.001
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and/or western blot subsequently revealed that miR-135b 
mimics transfection resulted in increased miR-135b expres-
sion and reduced KLF13 expression in CRC cells, while 
miR-135b inhibitor transfection presented the opposite 
effects (Fig. 3C, E). Next, dual luciferase assay also showed 

that miR-135b mimics transfection evidently downregulated 
the luciferase activities of wt-KLF13 plasmids expressed 
cells, and miR-135b inhibitor could obviously enhanced the 
luciferase activities of cells containing wt-KLF13 plasmids, 
however, either miR-135b mimics and miR-135b inhibitor 

Fig. 3   miR-135b  negatively regulated KLF13 expression. A  Data-
bases (Starbase, TargetScan and miRDB) were employed to predict 
the downstream target of miR-135b. B  The potential binding site 
between miR-135b and KLF13 was presented. C–E  miR-135b and 
KLF13 expressions in SW620 and Caco2 cells following mimics NC 

or miR-135b mimics transfection were analyzed using qRT-PCR and/
or western blot. F The interaction between miR-135b and KLF13 was 
analyzed by dual-luciferase reporter gene assay. Data were expressed 
as mean ± SD. All our data were obtained from three independent 
experiments. *p < 0.05, **p < 0.01, ***p < 0.001
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had a little effect on CRC cells with mut-KLF13 transfec-
tion (Fig. 3F), suggesting that miR-135b could negatively 
regulate KLF13 expression.

KLF13 Overexpression Reversed the Regulatory 
Effect of Fn/miR‑135b‑Mediated Cisplatin Resistance

To investigate the functional association between KLF13 
and Fn or miR-135b in regulating cisplatin resistance in 
CRC cells. The KLF13 overexpressing cells were induced 
by transfection with pcDNA3.1-KLF13. As Fig. 4A showed 
that KLF13 mRNA level in SW620 and Caco2 cells was 

Fig. 4   Fn activated miR-135b expression through acting on TCF4/β-
catenin complex. A KLF13 mRNA level in SW620 and Caco2 cells 
following pcDNA3.1 or pcDNA3.1-KLF13 transfection was analyzed 
using qRT-PCR. KLF13 overexpressing vectors were transfected 
in to cells with Fn infection or miR-135b mimics co-transfection. 

B  CCK8 assay was adopted to determine cell proliferation. C  Cell 
apoptosis was assessed using flow cytometry. Data were expressed as 
mean ± SD. All our data were obtained from three independent exper-
iments. *p < 0.05, **p < 0.01, ***p < 0.001
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significantly increased upon pcDNA3.1-KLF13 transfection. 
Then, it was further observed that both Fn infection and 
miR-135b overexpression markedly enhanced the cell viabil-
ity but decreased cell apoptosis, and all these changes could 
be restrained when KLF13 was co-overexpressed (Fig. 4B, 
C). In conclusion, KLF13 functioned as the target of Fn/
miR-135b in regulating cisplatin resistance of CRC cells.

Fn Activated miR‑135b Expression Through Acting 
on TCF4/β‑catenin Complex

As previously reported, miR-135b upregulation in CRC 
might be related to transcriptional activation of TCF4/β-
catenin (Valeri et al., 2014). Consistent with the previ-
ous study, by using database prediction, it was found that 
TCF4 had a potential binding site at − 2.5 kb upstream of 
the pre-miR-135b promoter, and the luciferase vector was 
constructed (Fig. 5A). As shown in Fig. 5B, pcDNA3.1-
TCF4 transfection markedly increased TCF4 mRNA 
level in SW620 and Caco2 cells. The results of dual-
luciferase reporter gene assay subsequently displayed that 

pcDNA3.1-TCF4 transfection increased the luciferase activ-
ity of cells expressing recombinant wt-luciferase vectors, 
while had no significant role on cells transfected with recom-
binant mut-luciferase vectors (Fig. 5C). Moreover, we also 
confirmed that Fn infection increased TCF4 and β-Catenin 
protein levels in SW620 and Caco2 cells (Fig. 5D), and 
upon LF3 treatment, the promoting effect of Fn on miR-
135b expression was diminished (Fig. 5E). Thus, it could be 
concluded that Fn promoted miR-135b expression in CRC 
cells via the TCF4/β-catenin complex.

Discussion

The intestinal microbiota is made up of a vast array of 
microbes and is often considered the “forgotten organ” of 
human disease (Cheng et al., 2020). In recent years, more 
and more evidence has shown that the ecological imbalance 
of intestinal microbiota is closely related to the occurrence 
and development of CRC (Tilg et al., 2018). Several studies 
have identified microorganisms as CRC candidate pathogens 

Fig. 5   The promotion effect of Fn on miR-135b expression in CRC 
cells might be related to TCF4/β-Catenin complex. A Database was 
employed to predict the potential binding site between TCF4 and 
miR-135b, and the luciferase vector construction diagram was pre-
sented. B  TCF4 mRNA level in SW620 and Caco2 cells following 
pcDNA3.1 or pcDNA3.1-TCF4 transfection was analyzed using qRT-
PCR. C The interaction between TCF4 and miR-135b was analyzed 

by dual-luciferase reporter gene assay. D  Western blot was adopted 
to analyze TCF4 and β-Catenin protein levels in SW620 and Caco2 
cells following Fn infection. E qRT-PCR was adopted to detect miR-
135b expression in SW620 and Caco2 cells following Fn and LF3 
treatments. Data were expressed as mean ± SD. All our data were 
obtained from three independent experiments. *p < 0.05, **p < 0.01, 
***p < 0.001



71Journal of Microbiology (2024) 62:63–73	

and revealed that these pathogens promote CRC initiation, 
progression, and metastasis, as well as cisplatin resistance, 
through a variety of mechanisms including promoting 
inflammation and secreting virulence factors (Cheng et al., 
2020). Therefore, intestinal microbiota is of great clinical 
value for the prevention and treatment of CRC, and explor-
ing the regulatory mechanism of intestinal microbiota in the 
occurrence and development of CRC can provide a theoreti-
cal basis for the development of novel treatment strategies 
for CRC.

Fn is an invasive, adhesive, and pro-inflammatory anaero-
bic bacterium that functions in regulating intestinal immune 
system (Su et al., 2019). It was previously reported that Fn 
showed a significant enrichment in the feces and tumor tis-
sues of CRC patients (Xu et al., 2021). Moreover, there were 
a great body of evidences highlighted that the abnormally 
enrichment of Fn was could involve in CRC development. 
Brennan et al showed that Fn affected intestinal immunity 
by forming a Th17 response in an FFAR2-dependent man-
ner, thus potentiating intestinal tumorigenesis (Kostic et al., 
2013). Chen et al. (2022)’ s also proved that Fn driven CRC 
metastasis through repressing METTL3-medaited m6A 
modification of KIF26B. Moreover, Fn was also confirmed 
to act on TLR4 and MYD88 innate immune signaling and 
specific miRNAs to enhance autophagy, thus promote the 
drug chemoresistance (Yu et al., 2017). Cisplatin is the most 
used chemotherapy drug for CRC in clinic (Tan et al., 2022). 
Although there were several literatures uncovered that Fn 
could make oesophageal squamous cell carcinoma cells and 
oral squamous carcinoma cells acquire more stronger resist-
ance against cisplatin (Chen et al., 2022; Da et al., 2021). 
Nevertheless, the role of Fn in mediating cisplatin resistance 
in CRC and its underlying mechanism remain clear. Con-
sistent with the previous study (Xu et al., 2021), our results 
also demonstrated the Fn exhibited an abnormal abundance. 
Importantly, we also demonstrated that Fn administration 
greatly facilitated the cell viability and decreased apoptosis 
of cisplatin-treated CRC cells, supporting that Fn accumu-
lation might be a key cause of cisplatin resistance in CRC.

miRNA has been shown to play an important role in 
cancer biology, and miRNA dysregulation is an important 
factor in the development of CRC as well as chemotherapy 
resistance (Balacescu et al., 2018). Notably, miRNAs acted 
as the downstream targets of Fn in promoting CRC pro-
gression. As proof, Yang et al. (2017) revealed that Fn 
facilitated CRC cell proliferation by upregulating miR-
21. In our paper, it was observed that miR-135b expres-
sion was markedly increased in CRC tumor tissues and 
CRC cells, and its expression was positively correlated 
with Fn abundance in clinical samples. In addition, Fn 
infection increased miR-135b expression in CRC cells in 
a MOI dependent manner. It has been widely reported that 
miR-135b is markedly upregulated in CRC and acts as an 

oncogene (Jia et al., 2017; Li et al., 2015). For instance, 
as revealed by Li et al. (2015) miR-135b upregulation pro-
mote CRC cell proliferation and inhibited the apoptosis. 
Importantly, miR-135b knockdown sensitized CRC cells 
to oxaliplatin (Qin et al., 2018). However, the function of 
miR-135b in regulating Fn-mediated cisplatin resistance 
in CRC hasn’t been fully elucidated. Here, we have proved 
that miR-135b knockdown greatly reversed the promot-
ing effect of Fn on cisplatin resistance. Subsequently, we 
attempted to elucidate the pathway by which Fn activated 
miR-135b. TCF4/β-catenin complexes are major transcrip-
tional regulators of the Wnt signaling pathway. The trans-
location of β-catenin from cytoplasm to nucleus leads to 
the formation of the TCF4/β-catenin complex, which acti-
vates downstream target genes (Gordon & Nusse, 2006; 
Schuijers et al., 2014). Much evidence has revealed the 
correlation between the TCF4/β-catenin complex and CRC 
progression. For example, Wang et al. (2018b) displayed 
that TCF4/β-catenin complex activation promoted CRC 
development by inhibiting tumor-suppressive miR-145 
expression. It was well known that Fn could positively 
promote signal transduction of Wnt/β-catenin signaling 
to participate in tumor carcinogenesis (Li et al., 2020b; 
Rubinstein et al., 2019), and it further confirmed in our 
work, demonstrating that Fn infection markedly elevated 
TCF4 and β-catenin expressions. Notably, we also found 
TCF4 targeted miR-135b promoter region and elevated its 
expression. Upon TCF4/β-catenin complex was blocked, 
the promotion effect of Fn on miR-135b obviously 
disappeared.

It is well known that the main biological function of 
miRNA was depended on binding to the 3′-TUR region of 
the target gene to degrade RNA or blocking the translation 
of mRNA into protein, thus involving the regulation of cell 
process. After multiple bioinformatics analyses, KLF13 
was found to be a downstream target of miR-135b, and the 
relationship was validated by dual luciferase assay. KLF13, 
a tumor-suppressive member of Kruppel-like factors fam-
ily, was a newly identified tumor regulator in cancer biol-
ogy (Yao et al., 2020). Generally, KLF13 also named as 
BTEB3, FKLF-2, and RFLAT-1, was downregulated in 
prostate cancer, and its overexpression could promote AKT 
signaling to suppress tumor growth (Wang et al., 2018a). 
Newly, Yao et al. reported that KLF13 was also downregu-
lated in CRC tissues and could repress cell proliferation by 
transcriptionally inhibiting HMGCS1-medaited cholesterol 
biosynthesis (Yao et al., 2020). Moreover, KLF13 was also 
found to promote the sensitivity of acute lymphoblastic leu-
kemia cells to dexamethasone by inactivating MYB (Heard 
et al., 2015). However, the function of KLF13 in regulating 
cisplatin resistance in CRC is still unclear. In the current 
paper, it was observed that KLF13 overexpression strikingly 
reversed the promoting roles of Fn infection and miR-135b 
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overexpression on cisplatin resistance. Therefore, we came 
to the conclusion that KLF13 functioned as the target of 
miR-135b in regulating Fn-mediated cisplatin resistance in 
CRC.

Taken together, our experimental data suggested that Fn 
infection promoted cisplatin resistance in CRC by regulation 
of the miR-135b/KLF13 axis. Our study provides a theoreti-
cal basis for reserving cisplatin resistance in CRC.
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