
Flow cytometry is a promising tool used to identify the phe-
notypic features of bacterial communities in aquatic ecosys-
tems by measuring the physical and chemical properties of 
cells based on their light scattering behavior and fluorescence. 
Compared to molecular or culture-based approaches, flow 
cytometry is suitable for the online monitoring of microbial 
water quality because of its relatively simple sample prepa-
ration process, rapid analysis time, and high-resolution phe-
notypic data. Advanced statistical techniques (e.g., denoising 
and binning) can be utilized to successfully calculate pheno-
typic diversity by processing the scatter data obtained from 
flow cytometry. These phenotypic diversities were well cor-
related with taxonomic-based diversity computed using next- 
generation 16S RNA gene sequencing. The protocol provided 
in this paper should be a useful guide for a fast and reliable 
flow cytometric monitoring of bacterial phenotypic diversity 
in aquatic ecosystems.

Keywords: flow cytometry, phenotypic diversity, online mo-
nitoring, binning, aquatic ecosystem

Overview

Safe and effective management of water resources (e.g., ground-
water, drinking water, and water supply network) requires 
a robust monitoring system to detect waterborne microor-
ganisms. It is very important to characterize microorganisms 
accurately in water because the cell density or distribution of 
waterborne microorganisms can pose a fatal threat to public 
health. Currently, 90% of the population is not supplied with 
advanced purified water, and annually, approximately 7.15 

million people in the United States suffer from the diseases 
caused by contaminated water costing the US healthcare sys-
tem $3.3 billion dollars (Collier et al., 2021). Evaluating the 
water quality by only using indicators (e.g., fecal coliforms 
or Escherichia coli) or waterborne microorganisms may miss 
information on other threats that cause water pollution. Thus, 
it is also necessary to analyze the total bacterial community 
to derive meaningful information (Leight et al., 2018). It is 
necessary to provide a new perspective on water manage-
ment; this could be achieved through an approach that can 
obtain overall information on bacterial communities in aqu-
atic environments.
  In most countries, culture-based methods, which are rela-
tively simple and inexpensive, are used as standard methods 
to detect indicator species and other waterborne microor-
ganisms (Ramírez-Castillo et al., 2015). As culture-based me-
thods are labor intensive and time consuming, they are un-
suitable for online monitoring systems in the field. The prac-
tice of periodic sampling during microbiological testing is par-
ticularly problematic regarding sample representation, as most 
waterborne microorganisms are present in a viable but non- 
cultivable state in nutrient-limited water, which inevitably leads 
to a low-detection efficiency (Li et al., 2014). Recent attempts 
to introduce molecular methods, including polymerase chain 
reaction, high-throughput sequencing, and oligo-based bio-
sensors, have led to faster and more sensitive detection me-
thods for waterborne microorganisms than culture-based me-
thods (Tan et al., 2015; Nurliyana et al., 2018; Shrestha and 
Dorevitch, 2019). In addition, high-throughput sequencing 
with specific primer sets (e.g., 16S rRNA gene and amoA gene) 
can also provide detailed taxonomy and diversity information 
for aquatic bacterial communities. Despite the rapid devel-
opment of these technologies, they are limited to operate in 
automated or online monitoring because of the interference 
of molecular reactions under the sampling conditions (e.g., 
humic acid and pH), complexity of the experimental process, 
and experimental costs. Thus, there is a need for a new ap-
proach that can overcome the limitations of conventional de-
tection methods.
  Flow cytometry (FCM) is an alternative technology that can 
measure the physical and chemical properties of cells or par-
ticles based on their light scattering behavior and fluorescence 
(Picot et al., 2012). Over the past few decades, developments 
in optical technologies and detectors have improved both 
instrumental performance (e.g., sensitivity and particle size 
resolution) and system ruggedness (e.g., computational ca-
pacity and optics stability). Thus, FCM has been applied to 
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obtain early diagnoses of microbial contamination in foods, 
as well as in clinical and water quality assessment (Buzatu 
et al., 2014; Gillespie et al., 2014; Jelinek et al., 2017). FCM 
provides results with high precision and accuracy compared 
to conventional culture-based technologies and sequencing 
technologies, and its measurement time is fast enough to 
measure more than 10,000 events or cells/min (Krediet et al., 
2015; Props et al., 2016). FCM’s high measurement accuracy 
and large measurement scale have prompted researchers to 
explore its usage regarding online or automated water qu-
ality assessment in water reuse systems, wastewater treatment 
plants, and drinking water supply networks (Props et al., 2016; 
Rockey et al., 2019; Sadler et al., 2020). Here, we describe a fast 
and reliable experimental and analytical procedure that can 
be used to evaluate the microbial properties of water samples 
using FCM to acquire the phenotypic information of bacterial 
communities.

Application

The fluctuation of environmental conditions causes pheno-
typic variations (e.g., cell size, complexity, and cellular bio-
molecules) in bacterial cells (Kim et al., 2020). Such pheno-
typic features are used as important indicators for detect-
ing target bacterial cells or tracking physiological changes 
using optical-based technologies (Hong et al., 2021). FCM 
can obtain phenotypic information on cell size, cell comp-
lexity, and nucleic acid contents using forward scatter, side 
scatter, and fluorescence intensities, respectively. It can also 

provide phenotypic information at a rate of more than 10,000 
events or cells/min, enabling analysis at the community level 
(Props et al., 2016). However, phenotype analysis at the com-
munity level is not conducted in most FCM-based studies be-
cause typical FCM analyses simply count the number of events 
or cells above a certain threshold when measuring light scat-
tering or fluorescence intensity.
  To obtain phenotypic features at community level using the 
FCM, the data should be structurally reconstructed using a 
statistical method called binning. Binning is the process of 
grouping individual data from a secondary planar graph and 
reproducing new datasets by counting the number of data 
points contained in each group. Depending on the shape or 
size of the bin (group), the size and reliability of the data can 
vary. Each data point can be converted to a data format sim-
ilar to the table of operational taxonomic units required for 
16S rRNA amplicon sequencing analysis; this format can 
then be used to calculate microbial diversity indices (Props 
et al., 2016). This diversity index, calculated using binned data, 
is called a phenotypic diversity; it can be used to quantita-
tively evaluate taxonomic diversity in environmental samples, 
in a comparable way to 16S rRNA gene sequencing (Props et 
al., 2018). Although taxonomic information (e.g., name of a 
genus or phylum) cannot be provided at the same time as a 
taxonomic diversity index, the FCM-based phenotypic diver-
sity index, which can be calculated faster and more cheaply 
than experimentally and analytically complex taxonomic di-
versity calculations, is advantageous for water quality assess-
ment applications that require online or automated water 
quality monitoring.

Fig. 1. Overview of the operational workflow for investigating the phenotypic diversity of a groundwater microbiome using FCM.
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Phenotypic diversity can be measured at different scales in 
a similar way to species diversity measures: alpha and beta 
diversity, allowing for the similarities of bacterial commu-
nities in different environmental samples to be compared. 
Previous studies have reported that the phenotypic diver-
sity of bacterial communities increase rapidly when organic 
or bacterial contamination occurs in a bioreactor (Sadler et 
al., 2020). As water contamination or ecological disturbances 
can be assessed by monitoring the phenotypic diversity us-
ing FCM, it is a promising diagnostic technology for water 
quality assessment, as well as for food quality or clinical 
assessments.

Methods

Collecting the groundwater microbiome
Groundwater sampling: Prior to sampling, the top layer (~3 L) 
of groundwater was discarded and 2 L of groundwater was 
collected using a biobailer (Biobailers). The samples were stored 
in ice during transportation and were analyzed immediately 
after arrival at the laboratory. For diagnostic purposes, back-
ground (undisturbed, G01-10) and test (disturbed, T01-05) 
groundwater samples were collected.
Cell concentration: Groundwater samples were filtered using 
a two-step process (Fig. 1). First, coarse abiotic particles in 
groundwater were filtered out using 8-μm alpha-cellulose pulp 
filters (Whatman). Then, cells in 1 L of prefiltered groundwater 
were harvested onto 0.22-μm mixed cellulose ester (MCE) fil-
ters (Millipore). All filtration processes were conducted us-
ing a vacuum pump system. Cells on the MCE filters were 
detached into 20 ml of filtered groundwater in 50-ml conical 
centrifuge tubes by vortexing them at the maximum speed for 
five minutes. Finally, the 50× concentrated groundwater mi-
crobiome was obtained.

Investigation of phenotype data
Cell staining and flow cytometry: Each microbiome sample 

(100 μl) was diluted with 900 μl of phosphate-buffered sal-
ine (PBS) buffer in an amber colored microcentrifuge tube. 
Cells in the diluted sample were stained using 5 μM SYTO9 
(excitation/emission at 482/501 nm) and 30 μM propidium 
iodide (PI; excitation/emission at 493/636 nm) provided in 
the LIVE/DEAD BacLight Bacterial viability kit (Invitrogen; 
Fig. 1). Then, the samples were incubated at room temperature 
for 15 min in the dark. Stained cells were analyzed using a 
CytoFLEX flow cytometer (CytoFLEX V0-B3-R2, Beckman 
coulter). The sheath buffer (Beckman coulter) was used as 
carrier fluid for FCM; the threshold was set to 8,500 on the 
forward scatter channel. Events were collected for 1 min at 
the flow rate of 10 μl/min; the signals of green (fluorescein 
isothiocyanate [FITC], 525/40 nm) and red (phycoerythrin 
[PE], 585/42 nm) fluorescence and forward (FSC) and side 
(SSC) optical scattering were recorded.
Denoising: The FCM results, which are outputted in the “.fcs” 
format, were converted into “.csv” files using the R packages 
“flowCore” and “biobase.” Events with intensity values sati-
sfying the criteria of: “{(FSC > 103) (SSC > 103) (FITC 
> 103) (PE > 103)}” were collected, and subsequently, these 
filtered data were subjected to a denoising process (Fig. 2). 
Noise signals can be derived from various circumstances, 
especially when analyzing environmental samples. Particles 
containing attached debris fragments, cell aggregates, or self- 
fluorescent generating bacteria are typical sources of noise 
(Frossard et al., 2016). To solely collect true cell data, it is ne-
cessary to exclude the events of noise signals from the dataset. 
Here, negative control samples were prepared in two ways: 
heat-killed (autoclaved at 121°C for 15 min) and unstained. 
On the FCM biplots, which were generated using the Cyt-
Expert program (ver. 2.4.0.28, Beckman coulter), the area on 
the FITC–PE biplot where the events of negative control were 
observed was specified as the “noise-area.” Scatter plots were 
generated with FITC and PE intensity values on the x- and 
y-axes, respectively, avoiding the noise-area defined above. 
The region where the cellular events were observed was iden-
tified and gated using the R package “alphahull” (Fig. 2). For 
SYTO9 and PI fluorescence, live cells were identified accord-

Fig. 2. Data analysis pipeline for deducing phenotypic diversity from FCM results. The entire process comprises “denoising,” “cellular data extraction,” 
“normalization,” and “binning.”



882 Hong et al.

ing to the fluorescence intensity ratio; hence, the intensity 
values of the events observed in the gated area were extracted 
as a live cell dataset.

Measurement of phenotypic diversity
Data normalization and binning: Cells harboring different 
phenotypes were observed from different positions on the 
FCM scatter plot. The distribution pattern of FCM events 
on a scatter plot can be a proxy for the phenotype fingerprint. 
Using a fixed-bin approach, the FSC–SSC scatter plot was 
partitioned into 10 × 10 equally sized bins, and the frequency 
of events in each bin was counted and summarized as a fea-
ture table (Fig. 2). All the data analysis processes were con-
ducted in R (ver. 4.0.2, http://www.R-project.org); the ‘FCM- 
based phenotypic diversity’ script is available at GitHub re-
pository (https://github.com/ecobiolab/FCM-based-pheno-
typic-diversity.git).
Ecological assessment based on the phenotypic alpha and beta 
diversity: The Shannon’s diversity index was calculated using 
the feature table generated from the binning process and the 
R package “vegan” (Oksanen et al., 2020). The significance of 
the difference in the alpha diversity between undisturbed and 
disturbed groups was evaluated using the Wilcoxon signed rank 
test, which was calculated using the R package “ggpubr”. The 
interrelationships of samples were investigated and visualized 
using principal component analysis (PCA) plots, which were 
constructed with R package the “stats”. The significance of 
each clustered group on each PCA plot was tested using the 
permutational multivariate analysis of variance (PERMANOVA) 
in the “vegan” package. Ecological disturbance was evaluated 
based on the distance to the test samples from the centroid of 
the cluster of the undisturbed samples on each PCA plot.

Materials

Reagents
• SYTO 9 (3.34 mM in dimethylsulfoxide [DMSO]) and PI 

(20 mM in DMSO) from the LIVE/DEAD BacLight bac-
terial viability kit (Invitrogen; CAS 25535-16-4)

• PBS buffer adjusted to pH 7.2–7.4 (0.13 M NaCl, 0.01 M 
NaH2PO4, and 0.01 M Na2HPO4)

• Sheath fluid (Beckman coulter, B51503)
• FlowClean cleaning agent (Beckman coulter, A64669)

Materials
• Clear polyvinyl chloride BioBailer (4.1 cm × 9.0 cm; 1 L; 

BioBailers, BB-154)
• Grade 2 filter paper (alpha-cellulose pulp; 8-μm pore size; 

110-mm diameter; Whatman, 1002-25)
• Membrane filter (MCE; 0.22-μm; 47-mm diameter; Milli-

pore, G SWP04700)
• Pipette tips (20, 200, and 1,000 μl; Axygen)
• Amber color microcentrifuge tube (1.5 ml; SPL, 62015)
• Conical centrifuge tube (50 ml; SPL, 50050)

Equipment
• CytoFLEX flow cytometer equipped with two optical de-

tectors and five fluorescent detectors (Beckman coulter, 
CytoFLEX V0-B3-R2)

• Vacuum pump (Air capacity, 32 L/min; maximum 60 psi; 
GAST, DOA-P704-AC)

• A 2-L filtering flask (Vissal, JF-3000-002)
• Filtration assemblies (500-ml glass funnel; 47-mm diame-

ter vacuum filtration fritted glass base; clamp; Vissal, 
JF-3000-002)

• Pipette set (Eppendorf)
• Vortex mixer Genie2 (maximum 3,200 rpm; Scientific 

Industries, SI-0256)
• Vertical 50-ml tube holder for vortex mixer (six tubes; 

Scientific Industries, SI-V506)

Programs
• CytExpert (ver. 2.4.0.28, Beckman coulter)
• R program (ver. 4.0.2, http://www.R-project.org)
• “flowCore” package (Bioconductor ver. 3.13, 

https://bioconductor. org/packages/flowCore/)
• “Biobase” package (Bioconductor ver. 3.13, 

https://bioconductor.org/packages/Biobase/)
• “alphahull” package (ver. 2.2, 

https://CRAN.R-project.org/package=alphahull)
• “vegan” package (ver. 2.5-7, 

https://github.com/vegandevs/vegan/issues)
• “ggpubr” package (ver. 0.4.0, 

https://rpkgs.datanovia.com/ggpubr)
• “stats” package (ver. 4.0.2, 

https://stat.ethz.ch/R-manual/R-devel/library/stats)

Protocols

Construction of groundwater microbiome library
A. Groundwater sampling
1. Wash bailer and sample container with distilled water 

(DW) and then with groundwater.
2. Discard 3 L of top layer and collet 2 L of groundwater 

using bailer.
3. Store the groundwater samples in ice until further use.

Note: experimental procedures must be conducted at most 
24 h after sampling.

B. Cell concentration
1. Pre-filter 2 L of groundwater using 8-μm filter paper and 

vacuum pump system.
2. Filter 1 L of prefiltered groundwater with 0.22-μm mem-

brane filter using vacuum pump pressure.
3. Put the membrane filter and 20 ml of filtered ground-

water (both from step 2) into a 50 ml tube and vortex at 
~3,200 rpm for 5 min to detach the cells.

4. Discard the membrane filter from the 50× concentrated 
groundwater microbiome sample.
Note: concentrated groundwater microbiome samples have 
to be subjected to next experimental step immediately.
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FCM for the microbiome sample
A. Cell staining and flow cytometry
1. Take 100 μl of the microbiome sample and mix with 900 

μl of PBS buffer in an amber color microcentrifuge tube.
Note: at the FCM step, if the observed events per second 
exceed 1,000, increase the dilution ratio.

2. Add 1.5 μl of each of SYTO9 and PI solution and in-
cubate at room temperature for 15 min in the dark.

3. Keep the stained sample on ice until the next step.
Note: as the fluorescent intensities of both fluorophores 
decrease drastically, FCM should be performed at most 
2 h after staining.

B. FCM
1. Clean the probe and tubes of the flow cytometer with spe-

cific cleaning solution and DW before analysis.
2. Load the stained sample into the microtube rack and run 

the flow cytometer.
3. Set the acquisition settings, such as threshold and gain val-

ues, for each detecting channel.
Note: the intensity threshold and signal amplification units 
(also called gain) are the general acquisition settings; these 
can be set for each detection channel. The acquisition set-
tings used in this study were as follows: intensity thresh-
old for FSC channel, 8,500; gain value for FSC, 124; SSC, 
300; FITC, 210; and PE, 370. However, the acquisition set-
tings for the flow cytometer must be decided according to 
the operational conditions, such as the machinery speci-
fications and the target cell type. When using the flow cy-
tometer for bacterial cells for the first time, it is recom-
mended to first determine the acquisition settings using 
cells from an axenic culture of model organisms, such as 
E. coli, prior to the experiment.

4. Record the observations of cells from samples, including 
background, test, and negative controls, for 1 min with a 
flow rate of 10 μl/min.

Phenotypic data analysis
A. Extract cellular events from FCM data
1. Define the “noise-area” on the FITC–PE scatter plot gen-

erated from negative control samples using the CytExpert 
program.
Note: to clarify the noise signal, it is essential to use the 
FCM plot constructed using the fluorescent signal varia-
bles (SYTO9 and PI in this study).

2. Convert the FCM data obtained from the groundwater 
microbiome from “.fcs” format into “.csv” format using the 
R packages “flowCore” and “biobase.”

3. Filter the events based on the intensity values according 
to the criteria of “{(FSC > 103) (SSC > 103) (FITC > 
103) (PE > 103)}.”

4. Transform the filtered intensity data onto a logarithmic 
scale.

5. Create the FITC–PE scatter plot and make gating of the 
“cell-area,” avoiding the “noise-area” using the R package 
“alphahull.”

6. Extract the data of events observed from the “cell-area.”
B. Normalization and binning
1. Transform the four variables (FSC, SSC, FITC, and PE) 

to a standardized 0–1 range.

2. Resample the dataset using the smallest data size among 
the samples.

3. Choose two phenotypic variables and plot the values on 
the scatter plot.
Note: according to which combination of variables are used 
for this step, different phenotypes can be investigated. With 
FSC–SSC, the physiological features of cells can be consi-
dered (such as size and complexity), whereas FITC–SSC 
can reflect nucleic acid contents and cell complexity.

4. Divide the scatter plot into a square grid (n × n) with 
equally sized bins.
Note: in this study, the plots were divided into 10 × 10 bins.

5. Count the events in each bin and summarize them into a 
table (defined as a “feature table” in this study).

Phenotypic diversity calculation and ecological assessment
A. Calculation of alpha and beta diversity
1. Calculate the Shannon’s diversity index using the feature 

table with the R package “vegan.”
2. Test the normality of the Shannon’s diversity values of 

the samples using the Shapiro–Wilk test in R.
3. Test the significances of the differences in the Shannon’s 

diversity between the disturbed and undisturbed groups 
using the Wilcoxon signed rank test provided in the R 
package “ggpubr.”

4. Create the PCA plot with the feature table using the R 
package “stats.”
Note: various distance matrices and ordination algorithms 
can be used for this step. Here, a PCA plot based on Eucli-
dean distances was used.

5. Test the significance of the group (disturbed) to group 
(undisturbed) distance based on ANOSIM using the R 
package “vegan.”

B. Assessment of ecological disturbance in the microbiome
1. Calculate the centroid coordinate of the polygon formed 

by undisturbed samples on the ordination plot.
2. Compute the distance of each test sample point from the 

group centroid of the undisturbed samples.
3. Elicit the disturbed samples among the test samples based 

on this distance.
Note: the median, mean, and other statistics of the dis-
tance to the undisturbed samples from the centroid can 
be applied as cutoffs to determine the disturbance.

Expected Results

The most frequently detected contaminant from ground-
water ecosystems is volatile organic carbon (e.g., trichloro-
ethylene, perchloroethylene, or trichloroethane; [Kret et al., 
2015]; [Stroo and Ward, 2010]). Organic carbon and its in-
termediate molecules can be source of a carbon for the growth 
of some species. The changes in bacterial phenotypes follow-
ing exposure to organic contaminants vary according to the 
metabolic capacity of the cells composing the microbiome. 
The expected physiological states and phenotypic characteri-
stics of bacterial cells in a microbiome, with consideration of 
the organic contaminants, are as follows: i) cells that can as-
similate the organic contaminant in question will show larger 
cell sizes and higher complexities; ii) cells susceptible to the 
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given organic contaminant will display smaller cell sizes and 
less complex cellular contents; iii) cells that do not interact 
with organic contaminants will exhibit marginal changes in 
their phenotypes. Therefore, at the community level, distur-
bances in the microbiome will cause high intra-heterogeneous 
phenotypes, resulting in high phenotypic diversity. The fre-
quency of the bins can reflect this diversified phenotypic fin-
gerprint, enabling the comparison of microbiome-based phe-
notypes obtained from various environments.
  For this study, a total of 15 groundwater samples (ten un-
disturbed samples and five disturbed samples) were collected 
and compared to verify if the phenotypes of their groundwater 
microbiomes changed with or without disturbance (e.g., or-
ganic contamination). The disturbed samples were obtained 
from groundwater contaminated with the tetrachloroethylene 
and trichloroethylene. Using FCM, phenotypic information 
of at least 3,383 cells per sample were investigated, and a fea-
ture table was generated from the binning process using the 
datasets of FSC–SSC and FITC–PE combinations, respectively.
  The phenotypic diversity of the disturbed samples was sig-
nificantly higher than that of the undisturbed samples in both 
datasets, as expected (Wilcoxon signed rank test, P < 0.05) 
(Fig. 3A and B). To validate that the phenotypic diversity can 

reflect the results of conventional taxonomic diversity, bac-
terial 16S rRNA gene amplicon sequencing was performed. 
Taxonomic diversity was also significantly higher in the dis-
turbed samples than the undisturbed samples (Wilcoxon signed 
rank tests P < 0.05)(Fig. 3C). The Shannon’s diversity index 
calculated from the FSC-SSC feature table showed strong 
correlation (Spearman’s rank correlation, rho = 0.76; P = 
0.002) with the taxonomic diversity, whereas the correlation 
between the FITC-PE phenotypic diversity and taxonomic 
diversity was insignificant. When the phenotype feature tables 
were calculated for beta diversity, the disturbed samples were 
distantly clustered from the undisturbed samples along the 
PC1 axis. Furthermore, the distances between cluster of undis-
turbed and disturbed samples were significant (PERMANOVA, 
P < 0.01 in Fig. 4A and B). In contrast, with using 16S rRNA 
gene OTUs table, samples were undistinguishable on the PCA 
plot (PERMANOVA, P = 0.547 in Fig. 4C). This finding in-
dicates that disturbance can be recognized based on the phe-
notypic fingerprint of microbiomes. Moreover, the distance 
between environmental and the background samples on a 
PCA plot could potentially be utilized as a metric to quan-
tify the disturbance level of a microbiome (Fig. 4B).

(A) (B) (C)

Fig. 3. Alpha diversity calculated from the phenotypic feature table retrieved from the FCM results. The cellular areas in the FCM biplots of (A) FSC–SSC and 
(B) FITC–PE combinations were partitioned into 100 bins (10 × 10) and the Shannon’s diversity index was calculated. Shannon’s diversity index calculated 
with (C) taxonomic features using 16S rRNA gene sequencing.

(A) (B) (C)

Fig. 4. Principle component analyses plot based on phenotypic features with (A) FSC–SSC and (B) FITC–PE, and (C) taxonomic features using 16S rRNA 
genes. 
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