
Our understanding of the interactions between microbial com-
munities and their niche in the host gut has improved ow-
ing to recent advances in environmental microbial genomics. 
Integration of metagenomic and metataxonomic sequenc-
ing data with other omics data to study the gut microbiome 
has become increasingly common, but downstream analysis 
after data integration and interpretation of complex omics 
data remain challenging. Here, we review studies that have 
explored the gut microbiome signature using omics appro-
aches, including metagenomics, metataxonomics, metatran-
scriptomics, and metabolomics. We further discuss recent 
analytics programs to analyze and integrate multi-omics data-
sets and further utilization of omics data with other advanced 
techniques, such as adaptive immune receptor repertoire se-
quencing, microbial culturomics, and machine learning, to 
evaluate important microbiome characteristics in the gut.
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Introduction

The human gut harbors various microbial entities, including 
bacteria, archaea, unicellular eukaryotes, and viruses (Cani, 
2018). These biological entities are essential components, at-
tributing the inherent features of the gastrointestinal tract. 
Over the last decades, the human gut has attracted increasing 
attention, with studies revealing the genetic and functional 
traits of gut bacteria (The Human Microbiome Project Con-
sortium, 2012a). After the introduction of next-generation 
sequencing technologies in the field of gut microbiology, en-
vironmental microbial genomics first sheds light on “who 
they are”: metataxonomics (i.e., amplification and sequenc-
ing of marker genes, such as bacterial 16S rRNA genes) and 

metagenomics (i.e., shotgun sequencing of DNA extracted 
from samples) have provided valuable insights regarding the 
taxonomic diversity of the microbial community in a defined 
environment, called the microbiota. These omics-based gut 
microbial studies conducted in normal healthy populations 
(Zhernakova et al., 2016; Deschasaux et al., 2018) as well as 
in subjects with illness (Duvallet et al., 2017) have well de-
scribed the characteristics of the gut microbiota in both eu-
biotic and dysbiotic conditions. Accumulating evidence re-
garding the natural members of the bacterial microbiota has 
positioned gut microbial studies in the next research step, 
identifying “what they do”.
  The gut microbiome can be defined as a collection of in-
formation regarding the biotic (i.e., microbes and the sur-
rounding host gut environment), genomic (i.e., the collection 
of genes and genomes of members of the microbiota), and 
abiotic factors (i.e., clinical and environmental metadata). 
In this context, a combination of the environmental micro-
bial genomics with other omics approaches (such as metatran-
scriptomics, metabolomics, and metaproteomics) is a pro-
mising approach to understand genomic, transcriptomic, che-
mical/metabolic, and proteomic interactions between mi-
crobes and/or microbial communities and their niche in the 
gut. This review discusses gut microbiome studies based on 
several recent omics approaches and attempts to describe 
how to analyze and integrate multi-omics datasets to inter-
rogate microbial signatures in the gut.

Omics in gut microbiome analyses

In humans, studies have been largely weighted toward taxo-
nomic and functional profiling of the microbiome in collected 
fecal samples. Although this non-invasive protocol ensures 
the safety of fecal donors, feces only mirror the microbiome 
in the luminal content of large bowels, with a small part of 
host cells being shed from the gut epithelium. However, stu-
dies based on experimental animals have enabled us to explore 
the compartmentally different microbiome from proximal 
to the distal gut with dissection of the luminal and mucosal 
parts of the intestines. Below, we discuss several omics ap-
proaches frequently used in the field of the gut microbiome 
(Fig. 1).

Metagenomics of gut microbiota
Metagenomics is a tool used to analyze the collection of ge-
nomes and genes obtained via shotgun sequencing of ex-
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tracted DNA from samples. It usually comprises an anno-
tation step after assembly or mapping of sequences to a ref-
erence database (Marchesi and Ravel, 2015) (Fig. 1). For the 
bacterial microbiome, metagenomics can be used to obtain 
genomic information of unculturable microbes in the gut. 
A recent study by Almeida et al. (2020) has reported over 
200,000 non-redundant metagenome-assembled genomes 
(MAGs) from the human gut microbiome by binning de no-
vo-assembled contigs into putative genomes. Although the 
human gut microbiota consists of several hundreds of in-
dividual bacterial taxa, it exerts its effects as a whole on the 
human host. Metagenomics enabled profiling of the whole 
gene repertoire of a study group, referred to as the pan-ge-
nome. Pan-genomic analyses have advantages not only for a 
precise determination of the whole genomic contents within 
a sample but also for species definition from closely related 
taxa and analyzing pathogenic microbes (Rouli et al., 2015). 
Additionally, by aligning the metagenomic reads to protein 
databases, researchers can assess the enzymatic functions of 
the entire gut microbiome (Tanes et al., 2021).
  Metagenomics has become more useful when applied to 

the field of viral ecology because there are no marker genes 
to amplify, such as 16S rRNA genes in bacteria, in the viral 
genome. In the human gut, viruses infecting bacteria (bac-
teriophages or phages) are central members of the gut mi-
crobiota and play essential roles in the relationship among 
viruses, bacteria, and gut epithelial cells (Mirzaei and Mau-
rice, 2017). Viral metagenomics has shed light on viral eco-
logy in the gut. Kim et al. (2011) investigated viral commu-
nities in fecal samples from five healthy Korean subjects based 
on viral metagenomics and reported diverse single-stranded 
DNA bacteriophages in the human gut. By comparing the 
prophage genomes with the metagenome of free bacterio-
phages, they further reported that bacteriophage generalists 
contribute to the prevalence of lysogeny in the mammalian 
gut ecosystem (Kim and Bae, 2018). Considering these viral 
metagenome studies, our views on gut bacteriophages now 
converge on Kill-the-Winner dynamics, i.e., the bacterium- 
phage infection networks of lytic models (Weitz et al., 2013), 
coupled with the Piggyback-the-Winner model, i.e., the 
high-density/high-growth lysogeny (Knowles et al., 2016).

Fig. 1. A schematic model for omics approaches to study the gut microbiome. General procedures for metagenomics, metataxonomics, metatranscriptomics, 
and metabolomics used to study the gut microbiome are shown.
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Metataxonomics of gut microbiota
Metataxonomics can be defined as a high-throughput pro-
cess for characterization of the entire microbiota (Marchesi 
and Ravel, 2015). Metataxonomics is based mostly on the 
amplification and sequencing of marker genes (i.e., bacte-
rial 16S rRNA genes), where the conserved and variable re-
gions exist (Hilton et al., 2016) (Fig. 1). Metataxonomic tree- 
based hierarchical clustering analyses enable community- 
wide taxonomic classifications and demonstrate the phylo-
genetic relationships between all sequences obtained. There-
fore, metataxonomics has shed light on the structure and 
composition of gut bacterial communities in humans (Kim 
et al., 2013; Lee et al., 2020a), mice (Shin et al., 2014; Stacy 
et al., 2021), and insects (Yun et al., 2014; Whon et al., 2017). 
Along with identification of the bacterial microbiota, meta-
taxonomics can be applied to archaeal community analysis 
in the gut. Recently, Kim et al. (2020) surveyed archaeal com-
munities of fecal samples collected from 897 East Asian sub-
jects living in South Korea. The archaeal 16S rRNA gene- 
targeted amplicon sequencing identified extensive coloniza-
tion of the Korean gut by halophilic archaea. In terms of the 
fungal component in the gut, called the gut mycobiota, the 
nuclear ribosomal internal transcribed spacer (ITS) region 
and fungal 18S rRNA genes are mainly subjected to ampli-
fication and sequencing for metataxonomic analysis (Richard 
and Sokol, 2019). Importantly, neither metataxonomics is the 
same as metagenomics, nor is metataxonomics included in 
the category of metagenomics; therefore, the two words must 
not be used interchangeably.

Metatranscriptomics of gut microbiota
Metatranscriptomics is designed to profile the regulation 
and expression of RNA in complex microbes within natural 
environments. In general, synthesized clonal DNA (cDNA), 
followed by RNA extraction from samples, are subjected to 
high-throughput sequencing (Fig. 1). While the transcriptome 
mirrors a comprehensive set of RNA encoded by the genome 
of an organism, the metatranscriptome encompasses all tran-
scripts encoded by genes of a group of microbial communities. 
Given that the majority of the extracted RNA is ribosomal 
RNA (rRNA represents almost 95% of total RNA), removal of 
this unnecessary part using commercial kits was a key pro-
cedure to obtain as many messenger RNAs (mRNAs) as po-
ssible. However, in the last decade, the above patterns have 
changed quickly because the cost of high-throughput sequ-
encing is decreasing and the sequencing output is increasing. 
At present, the method that sequences much and excludes 
much is preferred. Specifically, researchers prefer to conduct 
RNA-Seq on intact RNA and remove in silico rRNA prior 
to sequencing using programs such as SortMeRNA (Kopylova 
et al., 2012).
  Extracted gut RNA (e.g., from intestinal specimens, intes-
tinal luminal contents, or fecal samples) inevitably possesses 
the host RNA of gut epithelial cells (Williams et al., 2015; Stau-
ber et al., 2016). In the case of gut (or fecal) samples collected 
from the host with antibiotic treatment, extracted gut RNA 
probably mainly consisted of host RNA with a very small 
proportion of microbial RNA. A high host RNA background 
can simply be depleted using commercial kits targeting the 

polyA tail of eukaryotic RNA (Marsh et al., 2017). Interes-
tingly, increasing sequencing output now makes host RNA 
removal unnecessary and facilitates the use of another op-
tion, such as dual transcriptomics, to profile transcriptomic 
changes in the host and microbes simultaneously. Recently, 
we conducted dual transcriptomics on rectal luminal sam-
ples of diarrheic calves to understand the multifactorial na-
ture of calf diarrhea (Whon et al., 2021). The inter-transcrip-
tomic relationship between the bovine host and gut bacteria 
indicated that the diarrheic gut constitutes a distinct environ-
mental niche, as exemplified by elevated sulfur metabolism, 
immune responses, and gut motility. These conditions favor 
the growth of aerobes and/or facultative anaerobes, such as 
those belonging to the genus Escherichia.

Other omics approaches to study the gut microbiome
Gut metabolites can be regarded as the products of gut mi-
crobial activities followed by transcriptomic and proteomic 
regulations. The omics approach to identify the metabolite 
profiles in any given strain or single tissue, called metabolo-
mics, is also frequently used in gut microbiome studies (Fig. 
1). Metabolomics is the measurement of the amounts (or 
concentrations) and locations of all the metabolites in cells 
or tissues. Metabolites are the small molecules transformed 
in the process of metabolism (in most cases they are substrates 
and products of enzymes). The term “metabolomics” must 
not be interchangeably used with “metabonomics”, the ap-
proach to generate metabolite profiles from complex systems 
(Marchesi and Ravel, 2015). However, the terms metabono-
mics or metametabolomics are not frequently used when de-
scribing the analysis of metabolites derived from environ-
mental samples because, in most cases, we are not able to dif-
ferentiate the metabolites depending on the microorganism. 
Nuclear magnetic resonance (NMR) spectroscopy and liquid 
chromatography-mass spectroscopy (LC-MS) separation sys-
tems are the most favored platforms for metabolome char-
acterization. In addition, metaproteomic data can represent 
microbial activity more directly in human gut environments 
than any other omics approaches. For instance, Lobel et al. 
(2020) have recently reported kidney protection by dietary 
modification of gut microbial metabolism. They could not 
observe changes in the composition of the gut microbiota 
from the metataxonomic datasets. However, by using meta-
proteomics, they could successfully demonstrate that a diet 
with high levels of sulfur-containing amino acids is able to 
modify a microbial enzyme in the gut bacteria that can mo-
dulate renal function.
  Such omics approaches become more powerful when ap-
plied together. Given that metataxonomics, the most frequ-
ently used approach in the field of gut microbial ecology, only 
identifies microbial abundance with phylogenetic identity 
relative to the total microbial abundance and phylogeny within 
a sample, this approach could not define whether the sample 
contains a responsible microbial community or mostly the 
microbial DNA from dead cells. In this case, a combination 
of metataxonomics with other omics, including metatran-
scriptomics and/or metabolomics, can provide information 
regarding the transcriptionally/metabolically active microbes. 
Gut microbiome studies based on a combination of omics 
approaches have been increasingly reported. Metataxono-
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mics combined with metatranscriptomics was used to identify 
microbial compositional dysbiosis and functional dysbiosis 
in the gut of diarrheic calves (Whon et al., 2021), and meta-
taxonomics combined with metabolomics to identify cas-
tration-induced gut microbial alteration and further meta-
bolic phenotypes in male cattle (Whon et al., 2020), as well as 
long-term effects of fecal microbial transplantation on calf 
diarrhea and further growth performance (Kim et al., 2021). 
The abovementioned bovine gut microbiome studies collec-
tively imply that understanding crosstalk between microbes 
and/or host and microbes by using multi-omics approaches 
is key to produce high-quality animal products. In addition, 
the combined work of metataxonomics and metabolomics 
has identified the role of the gut microbiome and metabo-
lites involved in liver fibrosis pathogenesis in humans (Lee 
et al., 2020b) and radio-protective gut microbes and meta-
bolites in mice that received a high dose of total body radi-
ation (Guo et al., 2020). Metagenomics combined with me-
tabolomics and genome sequencing identified several bio-
markers of Clostridioides difficile infection in pediatric in-
flammatory bowel disease patients (Bushman et al., 2020).

Immune repertoire sequencing

Given that a large amount of microbial biomass in the gut 
microbiota comprises non-self antigens, it is reasonable to 
assume that the gut microbiota is one of the biggest chal-
lenges to the host immune system (Savage, 1977). The mam-
malian intestinal tract is equipped with a variety of effective 
and efficient defense/immune mechanisms to maintain a pre-
cise balance between immunity and tolerance (Martens et 
al., 2018). The interaction between the gut microbiota and 
the host immune system is a principal requirement for their 
symbiotic homeostasis; thus, it is necessary to gain an in-
tegrated insight into the bidirectional response of microbes 
and their host.
  Adaptive immunity, mainly mediated by B- and T-cells, is 
responsible for determining the mode of the immune res-
ponse in an antigen-specific manner. Because B- and T-cells 
express antigen-specific receptors, these cells undergo somatic 
rearrangement of the complementarity-determining region 
3 (CDR3), comprising variable (V), joining (J), and/or di-
versity (D) gene segments, in T cell receptor (TCR) or B cell 
receptor (BCR)/immunoglobulin (Ig)-encoding loci to di-
versify the range of recognizable antigens (Tonegawa, 1983; 
Patten et al., 1984). The integration of multi-omics appro-
aches is being leveraged to decipher the whole landscape of 
adaptive immune receptor repertoires, estimated from a few 
thousand to more than billions, at a sequence level based on 
the high-throughput nature of next-generation sequencing. 
The introduction of this advanced methodology to immune 
profiling, i.e., high-throughput sequencing of CDR3 ampli-
cons, enables us to unveil the mechanism or principle of host 
immune response against the gut microbiota, which was pre-
viously unrecognized by targeted investigation using qPCR 
for mRNA expression, fluorescence activated cell sorter or 
microarray. For example, recent studies have revealed how 
the BCR repertoire is shaped by the microbiota (Chen et al., 
2018; Li et al., 2020) and the contribution of the gut micro-

biota to liver fibrosis in terms of the TCR repertoire (Liang 
et al., 2020).
  In future studies, analyses combining the developing mul-
ti-omics techniques, such as cellular indexing of transcrip-
tomes and epitopes using sequencing (CITE-seq), single-cell 
assay for transposase-accessible chromatin using sequencing 
(ATAC-seq), or high-throughput liquid chromatography 
tandem mass spectroscopy (LC-MS/MS), will provide more 
clarified insights into how the immune system works at the 
single-cell and amino acid-sequence levels.

Omics data analysis

QIIME2 (Bolyen et al., 2019) is currently the most commonly 
used bioinformatics platform to analyze metataxonomic se-
quencing data. QIIME2 is a free, open-source, and commu-
nity-developed program. One outstanding feature different 
from those in QIIME1 is the view function in the QIIME2 
that allows users to securely share and interact with analy-
tical results without installing QIIME2. The source code is 
available at https://github.com/qiime2, and help for QIIME2 
is provided at https://forum.qiime2.org. In terms of the me-
tagenomic sequencing data, recovery of microbial genomes 
from the human gut metagenomes can be achieved by using 
IDBA-UD (Peng et al., 2012) and DAS Tool (Sieber et al., 2018). 
MetaPhlAn provides reference to genome-based analytical 
methods (Segata et al., 2012). Nubeam provides a clustering 
analysis of metagenomic sequencing data with a reference- 
free approach (Dai and Guan, 2020).
  There exist several workflow pipelines to comprehensively 
analyze the omics data. QIIME2 plugins currently provide in-
itial support to analyze metabolomic and metagenomic data 
(Bolyen et al., 2019). The HUMAnN2 program employs me-
tagenomic or metatranscriptomic sequencing data to profile 
the presence/absence and abundance of microbial pathways 
in a community (Franzosa et al., 2018). The original version 
of this program was developed during The Human Micro-
biome Project Consortium (2012b); thus, the program is 
advantageous for analyzing human samples, including the 
gut metagenome and/or metatranscriptome. The source code 
is available at https://huttenhower.sph.harvard.edu/humann2.
  Lastly, we recommend that researchers studying the gut mi-
crobiome pay more attention to the machine learning (ML) 
approach for analyzing multi-omics datasets. ML focuses on 
how computers learn and improve from available data. The 
models created by learning algorithms are able to make de-
cisions and predict results without performing experimental 
tasks. Deep learning is a subfield of ML algorithms that builds 
on large multi-layer neural networks inspired by the brain 
structure and function (Cammarota et al., 2020; Oh and 
Zhang, 2020). Moreover, ML algorithms are frequently used 
to predict disease state based on multi-omics datasets includ-
ing random forest, multi-layer perceptron, and support vector 
machine. Metagenomic, metataxonomic, metatranscriptomic, 
and metabolomic data can all be sources of ML training sets, 
and trained ML models enable researchers to analyze new 
data and identify important microbiome characteristics. ML 
has increasingly been applied to gut microbiome studies for 
the diagnosis and prediction of a variety of diseases (Aryal et 
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al., 2020; Cammarota et al., 2020). Moreover, ML combined 
with rapidly expanding public biological databases can bridge 
the scattered open reference data to explore specific hypoth-
eses without conducting new experiments (Cammarota et 
al., 2020).

Conclusion

With recent advances in sequencing and analytical tech-
nologies, the integration of metagenomics/metataxonomic 
sequencing data with other omics data to study the gut mi-
crobiome is becoming common. However, downstream an-
alysis after data integration and interpretation of complex 
omics data still remain challenging because i) most analytics 
programs introduced in this review are script-based and too 
computer-demanding, ii) the step-by-step approach to an-
alyzing large multi-omics datasets by individual researchers 
lacks standardized protocols, and iii) most importantly, mul-
ti-omics data analyses are largely dependent on correlation- 
based analysis. These problems are not exclusive of gut mi-
crobiome study, but of all microbiology studies, including 
environmental microbiology. Along with the correlation re-
sults on multi-omics datasets, evaluation of the causative role 
of gut microbes in the metabolic/disease/clinical phenotypes 
of the host will become increasingly important.
  Given that most of the microorganisms present in the envi-
ronment cannot be cultured using the existing culture me-
thods (Amann et al., 1995; Nichols et al., 2010), microbial cul-
turomics (i.e., a high-throughput culture approach) to obtain 
key microbial taxa from the gut samples continues to be an 
essential technique. Such a culture-dependent approach with 
the combined use of a gnotobiotic animal model, i.e., animals 
harboring defined microbial communities in their gut, will 
reciprocally elucidate the causative roles of microbes. Taken 
as a whole, a combinatory use of multi-omics datasets, micro-
bial culturomics, and ML can be an accurate and cost-effec-
tive approach that reduces the use of experimental animals 
to study the signature of the gut microbiome.
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