
Whole genome and metagenome sequencing are powerful 
approaches that enable comprehensive cataloging and pro-
filing of antibiotic resistance genes at scales ranging from a 
single clinical isolate to ecosystems. Recent studies deal with 
genomic and metagenomic data sets at larger scales; there-
fore, designing computational workflows that provide high 
efficiency and accuracy is becoming more important. In this 
review, we summarize the computational workflows used in 
the research field of antibiotic resistome based on genome or 
metagenome sequencing. We introduce workflows, software 
tools, and data resources that have been successfully employed 
in this rapidly developing field. The workflow described in 
this review can be used to list the known antibiotic resistance 
genes from genomes and metagenomes, quantitatively profile 
them, and investigate the epidemiological and evolutionary 
contexts behind their emergence and transmission. We also 
discuss how novel antibiotic resistance genes can be disco-
vered and how the association between the resistome and 
mobilome can be explored.
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Introduction

Methods for the generation and analysis of whole-genome 
sequencing (WGS) data have been actively developed over 
the last few decades. A recently proposed experimental de-
sign for the large-scale WGS-based surveillance of bacterial 
pathogens enables a sequencing cost of 10 USD per strain 
(Perez-Sepulveda et al., 2020). WGS has become an increas-
ingly feasible choice in the laboratories studying clinical or 

antibiotic-resistant isolates, and studies based on WGS data 
have begun to unravel the global epidemiology and evolu-
tionary processes behind the recent emergence of resistance 
against clinically important antibiotics in several pathogens.
  Metagenomics approaches based on high-throughput se-
quencing have become popular tools for studying the distri-
bution and dynamics of antibiotic resistance at the whole 
microbiome scale. A key advantage of the metagenomics ap-
proach is the capacity for unbiased cataloging of antibiotic 
resistance genes (ARGs), whereas there are some differences 
in the results obtained according to specific purposes rang-
ing from analysis of known ARGs to discovery of completely 
novel ARGs. The results from these approaches can also in-
clude the landscape and ecological dynamics of ARGs in host- 
associated microbiomes, monitoring ARGs in sewage for re-
gional surveillance and prediction, investigating human im-
pact on the environmental distribution of ARGs at a local 
scale, elucidating the factors governing the prevalence of re-
sistance in the global ecological context, and finding previously 
unreported ARGs.
  In this review, we provide an overview of the currently po-
pular strategies for the utilization of whole genome and me-
tagenome sequencing data in the studies of antibiotic resis-
tome. For the WGS-based approaches, we include all major 
steps from assembly to species identification, ARG detection, 
and epidemiological investigation. For the whole metagenome 
sequencing (WMS), we cover the approaches for cataloging 
and quantitative profiling of ARGs from microbiome sam-
ples. Identification of novel ARGs and comprehensive ex-
ploration of mobile ARGs are often considered as high-pri-
ority objectives in resistome studies. Hence, we also describe 
the available high-throughput sequencing-based approaches 
for the discovery of novel ARGs and the exploration of mo-
bile resistome.

Genetic determinants of antibiotic resistance

Antibiotic resistance of a bacterium can be defined from two 
different perspectives, either from a clinical point of view 
based on treatment outcomes, or from a microbiological per-
spective based on the bacterial growth response under various 
antibiotic concentrations. In both cases, the acquisition of 
resistance to previously effective antibiotics is achieved mostly 
through mutation or horizontal gene transfer (HGT) occur-
ring in its genome.
  Various molecular and cellular mechanisms neutralize the 
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effect of antibiotics and confer antibiotic resistance pheno-
types. Resistance can be derived mainly via (a) efflux pump, 
(b) modification of the antibiotic target protein by mutation, 
(c) enzymatic degradation (inactivation) of antibiotics, (d) 
overexpression of the proteins targeted by antibiotics, (e) 
metabolic bypasses by acquisition of alternative pathways, 
and (f) reduction in the cell permeability (Ellington et al., 
2017). Intrinsic resistance to certain antibiotics may exist in 
some bacterial clades when the antibiotic target may not exist, 
or the molecular or cellular pathways that neutralize the anti-
biotic action mechanism may be present in most members 
of a given clade.
  Acquired resistance, which is manifested by a subset of mem-
bers within the clade, is achieved by the genomic variations 
that result in the expression of the above-mentioned resist-
ance mechanisms. The causal genomic variations of acquired 
resistance (i.e., the genetic determinant of antibiotic resist-
ance) occur in a variety of forms, including point mutation 
and homologous recombination in protein-coding or non- 
coding sequences, structural variations such as gene ampli-
fication or rearrangement, and acquisition of the mobile ge-
netic elements encoding the enzymes that convey one of the 
resistance mechanisms when expressed.

WGS-based analysis for antibiotic resistance

Cataloging and quantitative profiling of known antibiotic 
resistance determinants in a set of genomic or metagenomic 
sequences is conceptually straightforward, because it simply 
needs the comparison between known resistance determi-
nants in the databases and the sequences from given samples. 
Figure 1 presents the schematic context for antibiotic resis-
tome research using genomics and metagenomics appro-
aches. Typical workflows in the WGS-based analysis of an-
tibiotic resistance start with the assembly step, followed by 
species identification, strain subtyping, annotation of genes 
and mutations associated with antibiotic resistance, and the 
post-analyses for evolutionary processes. The following sub-
sections address each of these steps. We will focus mostly on 
the known ARGs; therefore, the discovery of novel antibiotic 
determinants will not be addressed in detail.

Assembly
A common starting point in WGS data analysis workflow is 
read quality preprocessing and assembly. Assembly quality 
has an overarching influence on the downstream analyses, 
especially regarding the recovery of mobile genetic element 

Fig. 1. Genomics and metagenomics 
approaches in antibiotic resistome 
research.
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(MGE) structures that are frequently encountered around 
the horizontally acquired ARGs because the repetitive nature 
inherent to those MGEs hinders the assembly process. The 
achievement of high-quality assembly (i.e., contig generation 
with only a few remaining gaps, low error rate, and circu-
larized plasmids) depends on multiple factors, including the 
genomic organization, sequencing strategy, and assembly me-
thod. According to the surveillance across NCBI RefSeq re-
cords, the most popular sequencing method in bacterial WGS 
has been Illumina platforms, followed by the PacBio plat-
forms, whereas the WGS data generated from Nanopore plat-
forms have been increasing recently (Segerman, 2020). The 
principal trade-off in the sequencing platform is between the 
scale of the isolate panel (i.e., the number of strains to se-
quence) versus the completeness of each assembly. Assembly 
workflows involve read pre-processing, assembly generation, 
and optionally the polishing of final assembly, and the choices 
of tools and parameters for the optimal performance depend 
on the sequencing platforms. Popular assembly tools used 
for bacterial genomes include SPAdes (Bankevich et al., 2012) 
for short reads, and Flye (Kolmogorov et al., 2019) and mi-
niasm/minipolish (Wick and Holt, 2020) for long reads. For 
the extensive guides covering the pre-processing and poli-
shing steps, we recommend a useful web page (github.com/ 
rrwick/Trycycler/wiki/Guide-to-bacterial-genome-assembly), 
which provides an interactive guide for the optimal assembly 
procedure based on sequencing methods and user-specific 
priority.

Assembly-free workflows
There are certain cases where the assembly step is omitted to 
streamline the computational process. It is typically the case 
in studying genetically monomorphic pathogens with pan- 
genomes such as Mycobacterium tuberculosis, where the strains 
are not assumed to display significant structural variations 
and the screening of point mutations is considered to be suf-
ficient for cataloging the resistance determinants (Cohen et 
al., 2019).
  A series of analytical workflows is developed for analyzing 
raw reads generated from the metagenomes of clinical speci-
mens (e.g., infected body fluids) using Nanopore technology, 
for which the key objectives are to achieve taxonomic iden-
tification, subtyping, and antibiotic resistance prediction at 
the genome level within a few hours of sequencing run (Břinda 
et al., 2020). Due to the short turnaround time, nanopore se-
quencing-based analysis of clinical metagenomes is a prom-
ising point-of-care testing method that may support or re-
place cultivation-based diagnostic assays.

Species identification
Species-level identification sets the basis for subsequent steps, 
such as strain subtyping, choice of guideline for antibiotic 
susceptibility testing, identification of antibiotic resistance- 
associated mutations, and epidemiological and evolutionary 
interpretation. Workflow for species-level identification based 
on WGS data could be accelerated by narrowing down the 
candidate taxonomy of the query genome using rough but 
efficient identification methods. Typical options for such pur-
poses include 16S rRNA gene sequence extraction and search-

ing against reference 16S rRNA gene-based taxonomy data-
bases such as EzBioCloud (Yoon et al., 2017), extraction of 
universally conserved core genes and the subsequent search 
against reference databases (Chaumeil et al., 2019), and the 
use of rapid whole-genome similarity calculators such as 
Mash (Ondov et al., 2016) against the entire bacterial geno-
mes. Conclusive identification can be drawn based on the 
pairwise average nucleotide identity values against the panel 
of reference genomes. Selection of reference genomes can be 
guided by data repositories specialized for prokaryotic type 
strains such as gcType (Shi et al., 2020) and EzBioCloud (Yoon 
et al., 2017). The entire workflow outlined above can also be 
accomplished using web-based tools such as TYGS (Meier- 
Kolthoff and Göker, 2019) and gcType (Shi et al., 2020). For 
high-throughput applications with a large number of geno-
mes, it might be more appropriate to use GTDB-Tk (Chau-
meil et al., 2019), which is locally executable, or in-house 
pipelines built by the user themselves.

Subtype identification at the strain level
Subtyping of strains using the schemes that are convention-
ally used in the field would provide highly informative epi-
demiological contexts. Importantly, epidemiological studies 
on resistant bacteria are often carried out in the subtype con-
text. The genetic relationship at the subtype level has a strong 
association with variations in antibiotic resistance phenotypes 
(MacFadden et al., 2020). Well-established subtyping schemes 
usually exist for extensively characterized pathogenic species, 
but not for most non-pathogenic species. Of the phenotype- 
based subtyping schemes, serotyping is probably the most 
widely used method across different pathogenic species. The 
WGS-based serotype prediction has been developed only for 
a few pathogens, including Escherichia coli (Joensen et al., 
2015), Salmonella spp. (Yoshida et al., 2016), and Klebsiella 
pneumoniae (Wick et al., 2018), but not for most pathogens. 
For the genotype-based typing schemes, multilocus sequence 
typing (MLST) is the most popular approach for pathogens. 
PubMLST functions as the central repository for MLST sche-
mes and currently hosts the scheme databases for 127 taxa 
defined at species or higher ranks (Jolley et al., 2018). Tools 
available for WGS-based MLST typing using the PubMLST 
schemes, such as MLSTcheck (Page et al., 2016), allow high- 
throughput subtyping of WGS data.
  Strain subtyping methods that utilize variations at the whole 
genome scale have been developed more recently. Whole- 
genome subtyping methods can be classified into core genome 
MLST (cgMLST), SNP-based methods, and genome-wide 
k-mer methods. cgMLST methods can be viewed simply as 
the extension of classical MLST, which uses many loci. Data-
bases organized for the species-specific cgMLST schemes and 
isolate information are provided at EnteroBase (Zhou et al., 
2019) and the cgMLST.org server (Ridom GmbH). Recently, 
the approach developed for strain subtyping using k-mers, 
the PopPUNK method, uses variable-length k-mers to clus-
ter the genomes based on sharing of core and accessory ge-
nome sequences (Lees et al., 2019). PopPUNK is fast enough 
to be scalable over many input genomes. PopPUNK cluster 
numbers have already been utilized in the literature to refer 
to clones defined at high resolution. The effectiveness of a 
subtyping scheme as a means of providing epidemiological 
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contexts depends on the popularity of the scheme. The more 
studies use the same method and nomenclature, the more 
epidemiological information accumulates under the consis-
tent rule. The whole-genome scale subtyping methods have 
not yet gained popularity as classical MLST and serotyping. 
However, considering that the field of WGS-based epide-
miology still has a short history, it is expected that it will be-
come increasingly popular and standardized in the upcom-
ing years.

Identification of antibiotic resistance genes and mutations
Several databases are available that provide the collections 
of known ARGs. Databases, which are highly popular, ac-
tively maintained, and contain original curations, include 
the CARD (Alcock et al., 2019), ResFinder (Bortolaia et al., 
2020), ARG-ANNOT (Gupta et al., 2014), DeepARG (Arango- 
Argoty et al., 2018), and AMRfinder (Feldgarden et al., 2019) 
(the reference sequences of AMRfinder are also available at 
BioProject PRJNA313047). Most of these databases have an 
accompanying annotation tool designed specifically for the 
database. Annotation tools typically perform the sequnce 
alignment search and filtering at reliable cutoffs. For example, 
the Resistance Gene Identifier (RGI) annotation tool coupled 
with CARD uses blast bit score cutoffs manually curated to 
maximize the differentiation of each CARD entry against the 
background NCBI nr proteins (Alcock et al., 2019) and these 
cutoff values can be referred to from the ‘blastp_bit_score’ 
field associated with each protein homolog model. The AMR-
finder tool uses the bit score cutoffs manually curated for each 
of the profile hidden Markov models (HMM) constructed 
from the reference ARG families (Feldgarden et al., 2019) and 
cutoff value information can be obtained from the TC (trusted 
cutoff) field in each HMM file of reference ARGs. DeepARG 
evaluates each blast alignment (i.e., a metagenomic read 
aligned to each reference ARG) by calculating the probability 
that it represents a true-positive hit using pre-trained deep 
learning models (Arango-Argoty et al., 2018). Although Deep-
ARG does not require bit score thresholds to be defined for 
each ARG, this tool allows users to set a probability threshold 
(e.g., 0.8) to filter out non-specific hits. Cutoffs for alignment 
identity, score, and coverage breadth should not be set with 
somewhat arbitrary decisions because these cutoffs often 
have a dramatic impact on the final list of ARGs detected. 
As such, it is highly desirable to use the software package 
provided in conjunction with the corresponding database to 
utilize the gene family-specific adjusted alignment cutoffs. 
Apart from the databases made up with the original cura-
tion, there are packages such as ABRICATE (https://github. 
com/tseemann/abricate) that integrated several independent 
databases and provided its own wrapper script for convenient 
one-stop annotation.
  For certain species, it may be desirable to identify the point 
mutations that are known to cause resistance against certain 
antibiotics. A majority of known resistance mutations are 
located on the genes encoding central cellular functions such 
as gyrA, rpoB, or ribosomal RNAs. There are a number of 
species-specific curated databases available for known point 
mutations associated with antibiotic resistance. These data-
bases also provide annotation tools for detecting target mu-
tations in the input genomes. PointFinder (Zankari et al., 

2017) currently provides the databases for 10 bacterial taxa, 
including E. coli, Salmonella enterica, Campylobacter jejuni, 
Mycobacterium tuberculosis, Enterococcus faecalis, Entero-
coccus faecium, Helicobacter pylori, Klebsiella spp., Neisseria 
gonorrhoeae, and Staphylococcus aureus. The annotation 
algorithm used in PointFinder is based on the blastn search 
against known mutations. The RGI tool of the CARD pro-
vides an extensive list of known resistance mutations, cur-
rently housing 1,704 SNPs across 58 taxa (Alcock et al., 2019). 
The AMRfinder currently covers seven taxa with a catalog of 
682 point mutations and a detection module (Feldgarden 
et al., 2019). ARG-ANNOT also provides the annotation of 
resistance mutations for E. coli, M. tuberculosis, and Acineto-
bacter baumannii (Gupta et al., 2014), although it is not as 
extensive as the previously mentioned databases. In addition 
to databases covering multiple species, there are several re-
sources specialized for the resistance mutations in single pa-
thogen, such as M. tuberculosis.

WGS-based prediction of antibiotic resistance
The logic of phenotype prediction for antibiotic resistance 
differs from one method to another. The early type of pre-
dictors used predefined sets of known resistance determi-
nants, such as the Mykrobe predictor (Bradley et al., 2015). 
Prediction based on the presence of resistance determinants 
in the genome could be arguably the most straightforward 
method, but it has drawbacks mainly due to the risk of en-
countering novel resistance mechanisms and the incomple-
teness of our current knowledge on the genetic determinants 
of resistance. More recently, several studies used machine- 
learning approaches to address these problems. The input data 
used in the training and classification of machine-learning 
models can be the clustered catalogs of protein-coding genes 
(Van Camp et al., 2020) or the genome-wide k-mers (Mahé 
and Tournoud, 2018). VAMPr provides 93 prediction mo-
dels for nine well-studied bacterial species (Kim et al., 2020). 
A highly accurate MIC prediction for non-typhoidal Sal-
monella has been demonstrated using the machine-learning 
model based on genomic k-mer features that are not rest-
ricted to known ARGs (Nguyen et al., 2019). For E. coli and 
Neisseria, the pre-defined k-mers associated with resistance 
phenotypes were used to rapidly classify the phenotypic re-
sistance of such strains present in samples (Břinda et al., 2020). 
Interestingly, both promising results were based on genomic 
k-mer features that were not selected based on prior know-
ledge of ARG determinants.
  According to systematic evaluation studies on the reliability 
of phenotypic resistance profiles (i.e., antibiograms) predicted 
from WGS data, predictions made by the current state-of- 
the-art methods are highly variable and lack reliability (El-
lington et al., 2017; Doyle et al., 2020). While the methods for 
WGS-based prediction of antibiograms are still premature and 
unable to replace the traditional culture-dependent assays, the 
field is still growing with some promising developments made 
in recent years. As the increase in the available WGS data 
paired with clinical metadata is expected to aid the develop-
ment of accurate models for the WGS-based prediction of 
resistance phenotypes, it is expected that the prediction ca-
pacity of WGS will be improved in the future.
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Evolutionary and epidemiological analyses
For several research objectives, the interpretation of the WGS 
and phenotypic antibiotic resistance data of the given strain 
could be improved, when the WGS and the linked pheno-
typic resistance data (antibiogram) of closely related strains 
are available. Organized resources that meet such needs can 
be found at PATRIC (Antonopoulos et al., 2019) and NDARO 
(Sayers et al., 2020). It is also possible to search for NCBI Bio-
Samples that have related antibiogram data using a query term 
including “antibiogram[filter]” to retrieve the list of samples 
that have the linked Sequence Read Archive data as well as 
the linked phenotypic data such as antibiotic susceptibility 
testing (AST) data (Kim et al., 2020).
  Interpretations regarding evolutionary or epidemiological 
circumstances can be derived from WGS data based on phy-
logenetic inferences. A typical workflow for whole-genome 
scale phylogenetic inference comprises three steps. First, the 
list of loci, either gene orthologs or single-nucleotide poly-
morphisms (SNPs), which are shared across all strains, are 
defined. This can be achieved using whole-genome multiple 
alignment tools such as progressiveMauve (Darling et al., 2010) 
and Mugsy (Angiuoli and Salzberg, 2011), ortholog clustering 
methods such as Roary (Page et al., 2015) and Pirate (Bayliss 
et al., 2019), or the SNP calling tools that use a single reference 
genome such as Mummer (Marçais et al., 2018) and Harvest 
suite (Treangen et al., 2014). Once these loci are collected and 
aligned, the positions affected by homologous recombination 
can be removed using high-throughput screening tools such 
as Gubbins (Croucher et al., 2015) and BratNextGen (Mart-
tinen et al., 2012) to improve the accuracy of phylogenetic 
inferences. Then, a maximum likelihood tree is usually con-
structed from the large alignment matrix using highly scal-
able tools such as FastTree (Price et al., 2010) and IQ-Tree 
(Minh et al., 2020). A phylogenetic tree can be used to esti-
mate the timing of the divergences among the genomic lin-
eages using tools such as BacDating (Didelot et al., 2018) and 
BEAST (Bouckaert et al., 2014). This type of approach can be 
used to investigate long-term scenarios of emergence of cer-
tain resistant variants emerge within the pathogenic species. 
A short-term epidemiological scenario (i.e., transmission 
path) of resistant clones could be tracked from the phylo-
geny using transmission tracking tools such as TransPhylo 
(Didelot et al., 2017).

Antibiotic resistome analysis based on whole 
metagenome shotgun sequencing

Computational workflows for the cataloging of ARGs re-
siding in the microbiomes using the metagenome shotgun 
sequencing data share several procedures in common with 
the WGS-based workflows described in the previous section. 
One of the key differences for the analysis of metagenome 
data is the objective of quantitative profiling in addition to 
the cataloging of the list of ARGs in samples. Another im-
portant difference is that for the sequences (i.e., raw reads or 
contigs) obtained from metagenome data generally cannot 
be decisively assigned with the origin of species. For this rea-
son, the scope of the analysis is usually limited to the pro-
filing of ARG families that can be identified based on homo-

logy alone, excluding the profiling of highly context-depen-
dent resistance determinants such as point mutations.

Choice of workflows regarding the use of assembly step
The overall structures of computational approaches for meta-
genomic analysis of ARGs can be divided into three classes, 
based on the involvement of the assembly step. Analysis of 
sequence reads without assembling them offers quantitative 
profiles of the reference ARGs in samples. The resulting data 
are qualitatively equivalent to what can be achieved from 
highly multiplexed quantitative PCR assays, although the se-
quencing depth used limits the sensitivity of ARG detection. 
The use of assembly step in the workflow allows a wide range 
of downstream analyses, including the in-depth analysis of 
ARG sequences, taxonomic assignment of hosts carrying the 
ARGs, and investigation of MGE-ARG associations. One of 
the major concerns in the application of assembly-based ap-
proaches is the loss of information particularly when samples 
are from a complex microbiome and the sequencing data has 
low throughput. Gene-targeted assemblers provide the inter-
mediate strategy, where the cataloging of full-length ARGs 
(i.e., as in the assembly-based approach) can be achieved with 
high sensitivity (i.e., as in the read-based approach).

Direct profiling of ARGs using metagenome sequencing reads
Using blastx or equivalent alignment tools, it is possible to 
directly profile the relative abundance of each reference ARG 
in samples using the unassembled raw reads as input. Because 
the relative abundance of ARGs represented by the number 
of reads aligned to each reference ARG sequence can be biased 
depending upon the length of each ARG and sequencing depth 
of each metagenome sample, appropriate normalization pro-
cesses need to be done. To achieve normalized profiles (i.e., 
average copies per genome) of ARGs, two blastx runs are re-
quired against the ARG references and the standard marker 
genes, respectively. Standard marker genes need to be univer-
sal across bacteria, and 16S rRNA gene or a set of single-copy 
core genes can be used for this purpose. Blastx alignments 
against ARGs are normalized based on the length of each 
ARG and sequencing depth (e.g., reads per kb per million 
reads). Then, average per-genome copies of ARGs can be 
obtained by dividing the normalized reads of ARGs by those 
of universal single-copy genes or 16S rRNA gene. ARGs-OAP 
(Yin et al., 2018) and DeepARG (Arango-Argoty et al., 2018) 
are representatives of easily accessible computational pipe-
lines serving this workflow. These pipelines also provide ad-
vantages by offering well-structured annotation of ARGs and 
adjusting blastx alignment cutoffs. However, many studies 
have been conducted with the manual, in-house pipelines 
possibly in pursuit of flexible database choices and high- 
throughput data processing in local computers. These read- 
based approaches provide higher sensitivity than the assem-
bly-based approaches but have some restriction that no other 
information can be achieved than quantitative profiles of 
the reference ARGs.

Cataloguing ARGs by target protein-specific assemblers
The DNA or protein sequences of ARGs in metagenome sam-
ples are not determined in the read-based analysis. If a re-
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search interest includes cataloging of the sequence variants 
present in the resistome of samples or the discovery of novel 
resistance genes, an assembly step is required. Protein-level 
assembly, as implemented in PLASS (Steinegger et al., 2019), 
and the target gene family-specific assemblers, such as fAR-
Gene (Berglund et al., 2019), can produce an order of mag-
nitude more ORFs than the whole metagenome assembly 
approach, which will be described later. These tools are also 
computationally less demanding compared to the whole me-
tagenome assembly. Moreover, this approach does not pro-
vide any linkage information on the host genomic context or 
taxonomy, and in the case of gene family-targeted assemblers, 
the assembly process should be repeated as many times as the 
number of gene families to be cataloged.

Cataloguing and quantitative profiling of ARGs using whole 
metagenome assembly
The assembly step demands the largest computational re-
sources and time throughout the workflow, acting as a bottle-
neck in the assembly-based data analysis. The choices made 
for the tool and parameters in the assembly step can often be 
limited by the available computational resources. The two 
assemblers that are most popular in the metagenomics studies 
include Megahit (Li et al., 2015) and metaSPAdes (Nurk et 
al., 2017). The key parameter to adjust for performance op-
timization of these assemblers is the list of k-mer sizes to 
be used for de Bruijn graph construction.
  Once the assembly is finished and the contigs are obtained, 
the next essential steps for the studies of antibiotic resistome 
are gene prediction and annotation of ARGs. Technically, per-
forming these two steps with metagenome assemblies and 
draft genome assemblies does not differ. Therefore, the tools 
and databases used for WGS analysis are mostly applicable to 
metagenome analysis. Rapid blastp-like alignments are often 
used, as implemented in packages such as Diamond (Buchfink 
et al., 2015) and MMSeqs (Steinegger and Söding, 2017), in-
stead of tools such as AMRfinder and RGI originally imple-
mented with the target databases (e.g., AMRfinder and CARD) 
to speed up the analysis of large metagenomic data.
  Once the ARG sequences have been catalogued from the 
contigs, in the following steps the ARGs are going to be quan-
titatively profiled and linked to the taxonomic assignments 
made at the contig-level. These two steps are unique aspects 
of metagenomic workflows. The gene-by-gene relative abun-
dances within the metagenome of the sample can be calcu-
lated based on the coverage depth of the corresponding con-
tig. The coverage depth of each contig, when not available 
in the assembler’s output, should be calculated by mapping 
the raw reads against the contigs. Normalized abundance 
values that are suitable for inter-sample comparison can be 
calculated using the universal single-copy core genes as the 
standards. For assembly-based workflow, unlike in the case 
of raw read-based workflow, the use of 16S rRNA gene as the 
standard could be problematic because the 16S rRNA genes 
are known to be difficult to assemble. There are a number 
of metagenome taxonomic “profilers” available, which can 
estimate the taxonomic compositions from the input reads, 
such as MetaPhlAn (Beghini et al., 2020), but for the purpose 
of linking the ARGs to the taxonomy of the carrier bacteria, 
the right type of tools that can be used is “classifier”, which 

assigns the taxon name to each input sequence. Centrifuge 
(Kim et al., 2016) and Kraken (Wood et al., 2019) are argu-
ably the most popular metagenomic sequence classifiers in 
the field, both of which use k-mer exact matches between the 
query sequences and the taxonomy-linked reference genomes. 
However, these methods can lead to unambiguous taxonomic 
assignments at varying taxonomic ranks, from species to phy-
lum, depending upon the length and sequence features of 
contigs. It is challenging to resolve taxonomy at low ranks 
(e.g., species or genus) when contigs are short or contain ho-
rizontally transferred sequences that are high homologous.

Identification of previously unknown ARGs and 
mobile resistome

Unknown ARGs
Considering how fast the emergence of novel ARGs has be-
come a threat to antibiotic therapy that previously worked, 
there is undoubtedly an urgent need for cataloging the un-
known ARGs present in diverse reservoirs. Such efforts ex-
pand the databases of the known ARGs and fill in the gaps 
between what could potentially emerge as a novel resistance 
in the clinic and what could be detected through WGS- or 
WMS-based surveillances.
  Functional metagenomics has served as a key approach for 
culture-independent discovery of novel ARGs residing in 
diverse microbiomes. Generally, functional screening is per-
formed on random fragments of metagenomic DNA in 1–5 
kb of size, but it is also possible to construct a targeted library 
(e.g., integron gene cassettes) for functional screening (Böhm 
et al., 2020).
  The databases and tools described in the previous sections 
are focused on the detection and annotation of the close ho-
mologs of ARGs that have been previously characterized in 
isolates, typically of well-characterized species. As a result, 
what can be cataloged as ARGs in the genomes and meta-
genomes are expected to be biased toward the branches of 
bacteria that have often been experimentally tested for an-
tibiotic resistance. Indeed, the resistome of infant gut mi-
crobes cataloged by functional metagenomics shared a me-
dian identity of 32% with the reference protein sequences in 
the CARD (Gasparrini et al., 2019), emphasizing a wide gap 
between the true diversity and the known diversity of ARGs.
  Searching for the distant homologs of known ARGs pro-
vides an alternative to find novel candidate ARG families. 
A number of recent studies have taken this approach to dis-
cover novel ARG families, including novel tetracycline re-
sistance genes from various habitats (Berglund et al., 2020), 
novel colistin resistance genes from the gut microbiome of 
great apes (Campbell et al., 2020), and a total catalog of un-
described ARG families in the human gut metagenomes by 
aligning the sequences at the three-dimensional structure 
level (Ruppé et al., 2019). Tools developed in those studies, 
such as PCM (Ruppé et al., 2019) and fARGene (Berglund 
et al., 2019), can be employed in any projects sharing similar 
objectives.
  It could also be useful to have additional ARG databases, 
instead of relying entirely on core ARG databases such as the 
CARD and AMRfinder. Putatively useful databases include 
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the Mustard database derived from the MetaHIT human gut 
microbiome protein catalogs (Ruppé et al., 2019) and the 
FARME database containing sequences of metagenomic frag-
ments that were functionally screened to confer antibiotic 
resistance (Wallace et al., 2017).

Mobile resistome
The mobility of ARGs is considered to be correlated with the 
potential ability to spread rapidly across the globe as seen in 
the cases of blaKPC and mcr genes (Sheppard et al., 2016; 
Wang et al., 2018). The frequency of MGEs in the genomes 
varies substantially from one pathogen to another, suggest-
ing that the contribution of the mobile ARGs to the overall 
antibiotic resistance development likely varies across species. 
Indeed, the known resistance determinants are dominantly 
point mutations in some species such as M. tuberculosis and 
N. gonnorhoeae, whereas acquired mobile genes comprise the 
majority of known resistance determinants in some patho-
gens such as those in Enterobacteriaceae species (Ellington et 
al., 2017). For several reasons, it is valuable to assess the mo-

bility of ARGs detected in the genomes and metagenomes.
  We propose the definition of mobile resistome in a broad 
sense to include the following: (a) the ARGs located within 
the MGEs, thereby indicating mobilization in the recent past 
and prone to future mobilization and HGT (the MGE-borne 
ARGs), and (b) the ARGs whose phyletic distribution shows 
the signatures of previous mobilization across bacterial lin-
eages, namely HGT, irrespective of their current linkage to 
the MGE context (the mobilized ARGs). In accordance with 
the broad definition of mobile resistome that we explained 
above, the approaches for identifying mobile resistome can 
be employed in two ways.
  One group of approaches is targeted at the identification 
of MGE-borne ARGs. Of the known forms of MGEs, plas-
mids, integrative and conjugative elements (ICEs), insertion 
sequences (ISs), transposons, integrons, and phages could be 
named as the most extensively characterized MGEs for their 
involvement in the mobilization of ARGs among bacteria. 
Computational tools can be used to screen for MGEs in ge-
nomic or metagenomic sequences, such as MOB-suite and 

Table 1. Useful tools and databases for the sequencing-based studies on antibiotic resistance
Step Tool/Database Note & Website Applied to (mostly)

Pre-processing 
and assembly

Fastp (Chen et al., 2018) Short-read pre-processing and quality control
github.com/OpenGene/fastp WGS, WMS

SPAdes/MetaSPAdes 
(Bankevich et al., 2012; Nurk et al., 2017)

Short-read WGS/WMS assembly
cab.spbu.ru/software/spades WGS

Flye/metaFlye 
(Kolmogorov et al., 2019, 2020)

Long-read WGS/WMS assembly
github.com/fenderglass/Flye WGS, WMS

Megahit (Li et al., 2015) Short-read WMS assembly
github.com/voutcn/megahit WMS

PLASS (Steinegger et al., 2019) Protein-level WMS assembly
github.com/soedinglab/plass WMS

Species 
identification

GTDB/GTDB-Tk 
(Parks et al., 2018; Chaumeil et al., 2019)

Curated database for genome taxonomy with the standalone tool for 
species ID for genomes with strength in uncultured prokaryotes
gtdb.ecogenomic.org

WGS

EzBioCloud (Yoon et al., 2017) Taxonomy-curated 16S rRNA genes and genomes
www.ezbiocloud.net WGS

Strain
subtyping

PubMLST (Jolley et al., 2018) Collection of publicly available MLST schemes
pubmlst.org WGS

MLSTcheck (Page et al., 2016) MLST assignment on the input genome assembly using PubMLST schemes
github.com/sanger-pathogens/mlst_check WGS

PopPUNK (Lees et al., 2019) Strain clustering based on whole genome k-mers
github.com/johnlees/PopPUNK WGS

ARGs

CARD/RGI (Alcock et al., 2019)
Manually curated database of experimentally validated ARGs and the 
annotation tool applicable to assembled sequences
card.mcmaster.ca/

WGS, WMS

AMRFinder (Feldgarden et al., 2019)
ARG database curated by NCBI and the annotation tool applicable to 
assembled sequences
ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder

WGS, WMS

ResFinder/PointFinder 
(Zankari et al., 2017; Bortolaia et al., 2020)

Tools for identification of acquired ARGs and point mutations based 
on the databases curated by CGE
cge.cbs.dtu.dk/services/ResFinder

WGS, WMS

ARGs-OAP/SARGs (Yin et al., 2018) Direct profiling of ARGs from metagenome reads
smile.hku.hk/SARGs WMS

DeepARG (Arango-Argoty et al., 2018) Direct profiling of ARGs from metagenome reads
bench.cs.vt.edu/deeparg WMS

Inter1pretation
NDARO (Sayers et al., 2020)

Database of antibiotic resistant organisms including the antibiograms 
and genome sequences
ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance

WGS

PATRIC (Antonopoulos et al., 2019) Database of pathogens including phenotypic resistance and genome sequences
www.patricbrc.org WGS

 ARG, antibiotic resistance gene; WGS, whole genome sequencing; WMS, whole metagenome sequencing.
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Platon for plasmids (Robertson and Nash, 2018; Schwengers 
et al., 2020), I-VIP for integrons (Zhang et al., 2018), ISEScan 
(Xie and Tang, 2017) for conjugative transposons, and ICE-
finder for ICEs (Liu et al., 2019). Alternatively, targeted me-
tagenomic sequencing strategies have been used to achieve 
deep sequencing of the plasmidome (Kothari et al., 2019), 
integron cassettes (Ghaly et al., 2019), extracellular DNA (Yuan 
et al., 2019), and associated resistomes. From shotgun meta-
genomes, spacegraphcats (Brown et al., 2020), and Meta-
Cherchant (Olekhnovich et al., 2018) can be used to extract 
the ARG’s neighboring contexts over complex assembly graphs 
to search for MGE signatures.
  The other group of approaches utilizes the evidence of HGT 
indicated by either phylogenomic analysis or innovative se-
quencing strategies that produce linkage information about 
bacterial hosts carrying the ARGs. Comparison of the genomes 
of closely related strains can reveal the genomic islands that 
are present only in a few strains, indicating the horizontal ac-
quisition of the genomic region. Phylogenomic analysis can 
reveal clusters of almost identical (or highly similar) genes 
shared across distant bacteria (e.g., different species) (Smillie 
et al., 2011). This logic has been applied to a variety of data 
sets to characterize the shared mobile resistome across taxa 
and ecosystems (Lee et al., 2020). There are also recently de-
veloped innovative sequencing techniques, such as Hi-C (Kent 
et al., 2020), epic-PCR (Spencer et al., 2016), and sequencing 
of CRISPR-Cas spacer sequences (Munck et al., 2020), which 
can provide evidence of transfer and acquisition events in 
real time when applied to time-series data sets.
  A recent study revealed that chromosomal locations of 
horizontally transferred genes often lack MGEs (Oliveira et 
al., 2017). It has also been suggested that the structural parts 
of MGEs can be lost rapidly in the recipient’s genome through 
pervasive deletion and recombination (Smillie et al., 2011; 
Brito et al., 2016). Furthermore, MGE-borne ARGs may not 
always show evidence of HGTs in the available genome data-
set. Therefore, the evidence of HGT and the presence of MGE 
structure are complementary to each other as the means of 
identifying mobile reistome and are often sought one after 
another to corroborate the mobile nature of the ARGs.

Conclusion

There is a wealth of data analysis tools available for WGS- 
or WMS-based cataloging of known ARGs in the bacterial 
isolates or communities (see Table 1 for the short list of use-
ful tools and databases). Methodological innovations are still 
ongoing in the exploration of mobile resistome, and advance-
ments in sequencing technologies such as long-read sequenc-
ing and Hi-C libraries, which facilitate new approaches to 
explore mobilome-resistome connections. Sequencing-based 
prediction of phenotypic resistance remains relatively im-
mature at present, but the accumulation of genome data linked 
to phenotypic data will improve the overall situation. Con-
sidering a variety of analytical tools and newly developed 
rapid methods, it is critical to properly understand and select 
appropriate tools and methods when designing new studies 
on the antibiotic resistome and mobilome.
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