
Due to accumulating protein structure information and ad-
vances in computational methodologies, it has now become 
possible to predict protein-compound interactions. In bio-
logy, the classic strategy for drug discovery has been to man-
ually screen multiple compounds (small scale) to identify po-
tential drug compounds. Recent strategies have utilized com-
putational drug discovery methods that involve predicting 
target protein structures, identifying active sites, and finding 
potential inhibitor compounds at large scale. In this proto-
col article, we introduce an in silico drug discovery protocol. 
Since multi-drug resistance of pathogenic bacteria remains 
a challenging problem to address, UDP-N-acetylmuramate- 
L-alanine ligase (murC) of Acinetobacter baumannii was used 
as an example, which causes nosocomial infection in hospital 
setups and is responsible for high mortality worldwide. This 
protocol should help microbiologists to expand their knowl-
edge and research scope.

Keywords: drug discovery, docking, ADMET, protein struc-
ture prediction

Overview

The multi-drug resistance of pathogenic bacteria has been an 
alarming issue for decades because of its fatal effects. Given 
that drugs are essential for the treatment and prevention of 
diseases, many attempts have been made to identify drugs to 
treat multi-drug resistance. Traditional approaches, which in-
volve screening chemical compounds to detect hits, require 
a great investment in time, cost, and labor (Myers and Baker, 
2001; Zizalova et al., 2015). However, recent advances in com-
putational technologies and accumulating protein structure 
information have allowed for the prediction of potential drugs 

from the structure of a target protein (Sliwoski et al., 2014). 
In this protocol article, we introduce steps to obtain pro-
tein structures or to predict protein structures and thus pre-
dict the structures of potential drug compounds using mo-
lecular docking.
  Classically, high-throughput screening (HTS) experiments 
that evaluate a large number of compounds with automated 
tools have been commonly used to discover potent drug com-
pounds, but HTS requires a great investment in resources, 
time, and cost (Lavecchia and Di Giovanni, 2013). Thus, phar-
maceutical companies have been looking for plausible sol-
utions to avoid such screening, and consequently computa-
tional technologies have received a lot of attention (Shoichet, 
2004).
  Computer-aided drug design (CADD) offers methods to 
discover and optimize potent drugs in silico (Reddy, 2012). 
Specifically, the purpose of CADD is to virtually screen mil-
lions of compounds to identify chemical compounds that can 
bind both geometrically and chemically to a specific cavity 
(active site or regulatory site) on a target protein (Reddy, 
2012). Thus, CADD tools, which are mostly based on struc-
tures, have acquired popularity and have become an essen-
tial part of lead discovery, lead optimization, and preclinical 
trials (Tang et al., 2006; Bharath et al., 2011).
  In silico drug discovery involves multiple steps to identify 
potent drug candidates for a selected target (Fig. 1). Briefly, 
if the 3D structure of the target protein has not yet been ex-
perimentally determined, in silico structure prediction tools 
can be employed to predict the valid 3D structure of the pro-
tein. Likewise, the active site of the target protein can be pre-
dicted if it has not yet been experimentally identified. Then, 
the molecular docking of a compound with the target allows 
for the identification of potential inhibitors (i.e., drug can-
didates). Thus, compound-target molecular docking is one 
of the most common methods used to predict interactions 
(Meng et al., 2011).
  The in silico approach is able to increase the hit rate because 
it screens far more compounds than traditional experimental 
screening approaches and is thereby able to find more drug-
gable compounds (Tang et al., 2006). In addition, the struc-
ture-based approach is also able to explain the molecular basis 
of drug activity and predict possible derivatives that may 
improve that activity. In silico technologies require three 
major steps: (1) filtering a large number of compounds to 
identify active compounds (lead compounds), (2) optimiz-
ing the lead compounds to enhance their binding affinity, 
and (3) calculating ADMET (Absorption, Distribution, Meta-
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bolism, Excretion, and Toxicity) properties that describe the 
physicochemical properties of a given compound that greatly 
reduce the risk of failure at the preclinical stage (Topliss, 
1995).
  This protocol introduces how to use tools, online servers, 
and databases for in silico drug discovery. Since this proto-
col is a simple guide for experimentalists, we introduce only 
one tool or one webserver for each task. However, there are 
many available tools performing similar tasks. It is recom-
mended to run several similar tools and see if their results 
are reproduced. Such comparison of results from several dif-
ferent tools will improve the accuracy of the predictions.
  The UDP-N-acetylmuramate-L-alanine ligase (murC) of a 
multi-drug resistant pathogen, Acinetobacter baumannii, was 
used as an exemplary model, because A. baumannii causes 
nosocomial infection in hospital setups and is responsible 
for high mortality worldwide (Roy et al., 2018). All available 
tools and databases are briefly introduced, and their usage 
is explained step by step, so experimentalists are able to fol-
low without difficulty.

Applications

CADD plays a key role in the discovery of small molecules 
of therapeutic significance (Song et al., 2009). CADD tools 
are employed in almost every stage of the drug discovery pro-
cess, from the generation of small molecule libraries and hit 
finding to the optimization of the affinity and sensitivity of 
the hit molecule. Several early successes in structural design 
include the carbonic anhydrase inhibitor Dorzolamide and 
the HIV protease inhibitors Indinavir, Nelfinavir, Ritonavir, 
and Saquinavir (Kubinyi, 1999). The in silico tools outlined 
in this protocol constitute a simple and easy method to iden-
tify potent drug compounds from a large compound library.

PDB database
Information regarding protein structures is important for 
drug discovery. If the location of each atom and amino acid, 
particularly amino acids around an active site, is known, che-
mical compounds may be designed that fit the pocket of a 

particular active site. Protein databank (PDB) has compiled 
the structures of proteins and protein-chemical complexes 
for decades (Burley et al., 2017). In particular, the number 
of deposited protein structures increased rapidly in the late 
1990s. As of November 2019, the database contained about 
50,000 distinct protein structures, bringing the total num-
ber of deposited structures to 150,000.

3D Structure prediction
Homology modeling : Homology modeling, also termed as 
comparative modeling, uses experimentally determined 3D 
structures as a template to predict the conformation of a query 
sequence (Johnson et al., 1994). Homology modeling assu-
mes that proteins that share high sequence identity also share 
similar structures with similar functions. Therefore, the ac-
curacy of this prediction method highly depends on the se-
quence identity between the query and template sequences. 
If the query sequence shares more than 80% of identity with 
the template sequence, the resulting predicted structure is 
usually of high quality (Kopp and Schwede, 2004). If there 
are no similar proteins with known structures, an ab initio 
modeling approach can be used.
  Homology modeling requires four steps to predict struc-
tures (Sali and Blundell, 1993): (1) the identification of known 
3D structures that show high sequence identity; (2) the align-
ment of these sequences with a target sequence, the selec-
tion of the most identical sequence, and the use of the struc-
ture of the identical protein as a template; (3) the prediction 
of the structure of the query sequence; and (4) the evalua-
tion of the structure using a variety of criteria. If necessary, 
structure prediction is iterated with different templates un-
til a satisfactory structure is obtained.
Ab initio modeling : Template-free modeling, called ab initio 
modeling, employs a conformational search under the guid-
ance of a designed energy function. Therefore, successful 
ab initio modeling depends on three factors (Edwards and 
Cottage, 2001): (1) an accurate energy function with which 
the protein folds into the most thermodynamically stable 
state, (2) an efficient search method that can quickly identify 
the low energy states through a conformational search, and 
(3) a strategy that can select near-native structures from many 

Fig. 1. Workflow for the structure- 
based prediction of compound affi-
nity towards a target receptor.
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thermodynamically similar structures.
  Homology modeling and ab initio modeling have their own 
pros and cons. Thus, a fused approach has been developed, 
which uses local structure information. Locally conserved se-
quences can be found through multiple sequence alignment 
(MSA), and the local sequences share similar structures and 
functions. MSA can be used to find local regions and to pre-
dict the backbone structure of a query sequence like homo-
logy modeling. Furthermore, the spatial contacts of amino 
acid residues can be predicted by correlated mutations (Göbel 
et al., 1994). All local structure information and residue con-
tact information guide the 3D structure prediction with var-
ious techniques, such as gradient-based optimization, dis-
tance geometry, or fragment assembly. Initial 3D structures 
are then built with a minimum representation and coarse- 
grained energy function, and the structures are further re-
fined with energy functions.

Active site prediction
If the active site or regulatory site is not already known, bind-
ing site information may be obtained by comparing the tar-
get protein with other proteins that share similar functions. 
Various in silico tools for binding site prediction are intro-

duced in Table 4.
  The interaction of a protein with other chemicals (e.g., li-
gand and inhibitors) is critical to its function. Ideally, the 
target binding site is a small region similar to a pocket that 
is usually concave with a variety of possible hydrogen bond 
donors and acceptors and hydrophobic properties (Kalya-
anamoorthy and Chen, 2011). Thus, binding site prediction 
is crucial to understand molecular interactions, and physio-
chemical properties are the main characteristics required 
to predict binding sites (Nisius et al., 2012).

Compound databases
Numerous compound libraries are freely available online 
(Villoutreix et al., 2007; Jahn et al., 2009). Compound data-
bases are used to screen potent drug candidates for the target 
protein. Compound databases for virtual screening include 
drug-like small molecules available for purchase or synthesis. 
Computational methods screen the database for molecules 
with desirable characteristics, such as stability and solubility 
in aqueous media, the presence of appropriate functional 
groups to interact with the biological targets, and the absence 
of toxic or undesirable moieties. The compound databases 
are listed in Table 5.

(A) (B) (C)

(D)

Fig. 2. Molecular docking process. (A) 3D structure of a compound, (B) 3D structure of a target protein, (C) multiple compounds docked on the binding 
site of a protein, (D) the best-docked compound and its interaction with protein residues. 
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Molecular docking
Molecular docking is one of the most widely used approaches 
in structure-based drug design because it can efficiently pre-
dict interactions between a compound and the binding site 
of the target protein (Fig. 2 and Meng et al. [2011]). These 
interactions allow for the elucidation of the behavior of the 
compounds and the fundamental biochemical processes of 
the docked complex (Mcconkey et al., 2002). Molecular doc-
king involves two steps: (1) the prediction of the binding 
affinity of a compound and its target protein and (2) the 
prediction of the binding pose of the compound within the 
binding site.
  Docking analysis with a large number of compounds in-
creases the probability of obtaining highly potent chemical 
compounds that interact with the target. The available 
docking tools are listed in Table 6.

Protocols

If you have no prior knowledge on the target protein, start 
from section 1 (Search for your enzyme in PDB). If you al-
ready possess a 3D structure of the target protein and its ac-
tive site has also been identified, proceed to section 6 (Mol-
ecular Docking).

1. Search for your enzyme in PDB
Step 1. Visit the PDB database at www.rcsb.org. PDB is a 
database that compiles protein structure information (Ber-
man et al., 2002).
Step 2. MurC ligase is used in this example (Ahmad et al., 
2019). Enter its protein name UDP-N-acetylmuramate-L- 
alanine ligase and click the Go button (Supplementary data 
Fig. S1). A few structures will be returned. At this moment, 
the 3D structure of MurC for A. baumannii has not yet been 
experimentally determined, but the 3D structures of the mur 
family are available.
Step 3. For more information, click on 4HV4 (Supplementary 
data Fig. S2). Its structure information will thus be shown 
and comprises the following: a structure image, a download 
menu, literature, macromolecule information, experimental 
data, and validation information. Under Macromolecules (Sup-
plementary data Fig. S3), the whole protein structure is iden-
tified except for the gray regions, which are disordered re-
gions for which the specific structure was not determined. 
In this case, since the structure has not yet been discovered, 

the structure of the enzyme should be predicted before for 
further analysis.

2. 3D Structure prediction
2.1. Homology modeling
If the protein structure has not yet been determined, as in 
the case of MurC, the structures of similar proteins (in terms 
of sequence and function) are utilized to predict the struc-
ture by a process called homology modeling. There are sev-
eral tools for homology modeling (Table 1).
  This protocol uses SWISS-MODEL, a web-based tool of 
high reliability (Bertoni et al., 2017). SWISS-MODEL takes 
an amino acid sequence as a query and predicts its 3D struc-
ture from the sequence. Follow the steps below for structure 
prediction.
Step 1. Go to the UniProt website (www.uniprot.org) to ob-
tain the MurC sequence (Apweiler et al., 2004). UniProt is 
a database of protein sequences and other protein-related 
information. The database has collected 561,000 manually 
curated proteins.
Step 2. Enter the name of the target enzyme with a specific 
organism name for sequence retrieval (Supplementary data 
Fig. S4). For example, UDP-N-acetylmuramate-L-alanine 
ligase A. baumannii, and then press Search. Many enzymes 
from the same family will be returned (Supplementary data 
Fig. S5).
Step 3. The result page shows the entry (UniProt accession 
number), protein name, and gene name, organism, and se-
quence length. Use the information to find UDP-N-acetyl-
muramate-L-alanine ligase. In the first column, click on the 
entry A3M9Y0. This is MurC of A. baumannii. More spe-
cific information of the MurC ligase will be shown on the 
web page (Supplementary data Fig. S6).
Step 4. To obtain the MurC sequence, click on Sequence in 
the left menu, and the sequence of the MurC ligase will be 
returned (Supplementary data Fig. S7). Now click on FASTA 
and save the sequence.
Step 5. Go to the SWISS-MODEL web page (swissmodel. 
expasy.org). Click on Start Modeling (Supplementary data 
Fig. S8) and paste the sequence into the Target sequence(s). 
The user can also enter the UniProt accession number (A3-
M9Y0) instead of the sequence. Enter the information for 
Project Title and Email (Supplementary data Fig. S9).
Step 6. Click on Search for Templates and select the sequence 
with highest GMQE score (an estimated accuracy score of 
a predicted structure) and resolution < 2Å (Supplementary 
data Fig. S10). In this protocol, the sequence with the maxi-

Table 1. Homology-based structure prediction tools
Name Description Link

SWISS-MODEL 
(Bertoni et al., 2017)

Consists of three modeling modes: 1) automated mode, 2) alignment mode, 
and 3) project mode. https://swissmodel.expasy.org

PSIPRED 
(Buchan and Jones, 2019)

Comparative modeling and fold recognition incorporates two feed-forward 
neural networks and uses stringent cross validation to evaluate performance. http://bioinf.cs.ucl.ac.uk/psipred/

3D-Jigsaw 
(Moal et al., 2018)

Automatic and interactive mode, distant homology detection, and 
profile-profile comparison algorithm for sequence alignment. https://bmm.crick.ac.uk/~svc-bmm-3djigsaw/

Phyre-2 
(Kelley et al., 2015) Predicts and analyzes protein structure, function, and mutation. http://www.sbg.bio.ic.ac.uk/phyre2/html/

page.cgi?id=index
ModWeb 
(Pieper et al., 2014)

Uses modpipe for template collection from the PDB and UniProt databases 
to perform homology modeling.

https://modbase.compbio.ucsf.edu/modbase-cgi/
index.cgi
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mum GMQE and resolution of 2.2Å was selected as a tem-
plate. Click on Build Model to generate the 3D structure. 
Prediction results will be returned on the screen (Supple-
mentary data Fig. S11).
  Template selection is a critical step in homology modeling, 
because the prediction is made based on the structure of a se-
lected template. Thus, it is recommended selecting the struc-
ture as a template with highest sequence identity and best re-
solution to perform more accurate homology modeling.
Step 7. Click on Structure Assessment to validate the pre-
dicted structures. More than 85% of the residues should ap-
pear in the favored region (Ramachandran Favored), few out-
liers (Ramachandran Outliers) should be present, a positive 
QMEAN in the Quality Estimate should also be present, and 
a low MolProbity Score should be visible (Supplementary data 
Fig. S12).
  Structure assessment tools are used to assure the reliability 
of 3D structure prediction. Structure validation with multi-
ple assessment tools can improve the structure assessment 
analysis.
Step 8. Click on the Download icon to download the predic-
tion details along with the PDB file of the predicted model.

2.2. Ab initio modeling
If the structures of similar proteins have also not yet been 
determined, the protein structure should be predicted from 
scratch. This is called ab initio modeling, and molecular dy-
namics is a main feature of this type of modeling. There are 
several tools for ab initio modeling (Table 2).
  This protocol uses I-Tasser, an online tool to perform ab 
initio modeling. I-Tasser is easy to use and produces more 
reliable results (Yang and Zhang, 2015). To perform ab ini-
tio modeling with I-Tasser, follow the steps below.
Step 1. To use I-Tasser services, an academic email is required 
and the user should register before first use. Visit zhanglab. 
ccmb.med.umich.edu/I-TASSER/ and look for Registration 
(Supplementary data Fig. S13). After registering, the user 
will receive a password that will be used to submit queries 

in I-Tasser.
Step 2. Paste the sequence into the textbox and enter the email 
address and password obtained after registration. Then click 
Run I-TASSER (Supplementary data Fig. S14).
Step 3. The user will receive an email from I-Tasser with a 
web link containing the predicted structure results. Structure 
prediction generally requires one day and depends on the 
length of the query sequence. Open the web link to view the 
prediction details and structures (Supplementary data Fig. 
S15). Download the PDB files of the predicted structures by 
clicking on Download Model.
  I-Tasser server uses C-Score (a combined measure for eval-
uating global and local similarity between query and tem-
plate protein) values to rank predicted structures. The score 
ranges from 0 to 1, and a higher value represents more con-
fident prediction result. Download the model with the highest 
C-Score for further analysis.

3. Structure validation
Once the structure has been predicted, it should be validated 
prior to further analysis. Several web servers are available 
for structure validation (Table 3).
  This protocol uses SWISS-MODEL by which predicted struc-
tures can be evaluated using Ramachandran plot, Quality fea-
tures, and MolProbity. To perform the validation, follow the 
steps below.
Step 1. Go to the SWISS-MODEL main page (swissmodel. 
expasy.org), click on Tools, and select Structure Assessment. 
Upload the predicted PDB file by clicking on Upload Coor-
dinate File and then press Start assessment (Supplementary 
data Fig. S16).
Step 2. The validation results are presented graphically to fa-
cilitate their understanding. More than 85% of the residues 
should be in the favored region (Ramachandran Favoured), 
there should be few outliers (Ramachandran Outliers), a po-
sitive QMEAN in the Quality Estimate, and a low MolProbity 
score (Supplementary data Fig. S12).

Table 2. Tools for ab initio structure prediction
Name Description Link

I-Tasser 
(Yang and Zhang, 2015)

Uses three steps for modeling: 1) identification of similar folds from PDB, 2) the 
reassembly of folds into a full-length model by replica-exchange MC simulation, and 
3) fragment assembly from the SPICKER cluster centroid 

https://zhanglab.ccmb.med.umich.edu/
I-TASSER/

Raptor-x 
(Ma et al., 2013) Predicts 2D structure, 3D structure, solvent accessibility, and disordered regions. http://raptorx.uchicago.edu/

Robetta 
(Conchúir et al., 2015)

Performs homology modeling or de novo structure prediction. Protein domain 
prediction. http://robetta.bakerlab.org/

PSIPRED 
(Buchan and Jones, 2019)

Performs fold recognition and homology modeling and incorporates two feed-forward 
neural networks that perform an analysis of the output obtained from PSI-BLAST. http://bioinf.cs.ucl.ac.uk/psipred/

Table 3. Structure assessment tools
Name Description Link

SWISS-MODEL 
(Bertoni et al., 2017) Calculates the Ramachandran plot with model quality at global and local levels. https://swissmodel.expasy.org/

Verify-3D 
(Eisenberg et al., 1997)

Operates on the “3D-1D profile” of the protein structure, which includes the statistical 
preferences for the following criterial: 1) the buried residue area, 2) fraction of the 
side-chain area that is covered by polar atoms, and 3) the local secondary structure.

http://servicesn.mbi.ucla.edu/Verify3D/

Ramachandran Plot 
(Arlaud et al., 2002)

Describes amino acid torsional angles (phi and psi). Visualizes the favored backbone 
regions.

http://mordred.bioc.cam.ac.uk/~rapper/
rampage.php
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4. Protein active site prediction
If the active site of a target protein has not yet been identi-
fied experimentally, there are several approaches to predict 
its active site. The classical identification of the cavity in the 
protein structure is the roughest approach. For a more ac-
curate prediction, the key amino acids involved in the re-
action and the nearby region should be predicted to find an 
active site. Several computational tools and online servers 
can be used for this purpose (Table 4).
  This protocol uses CASTp to identify active sites and is 
easy to use (Tian et al., 2018). Follow the steps below for the 
analysis.
Step 1. Open the CASTp main page (sts.bioe.uic.edu/castp/ 
index.html) and click on Calculation from the menu (Sup-
plementary data Fig. S17).
Step 2. Upload the PDB file of the target protein and press 
the SUBMIT button (Supplementary data Fig. S17).
Step 3. The predicted results will be displayed in a 3D rep-
resentation, and the active residues for the binding site will 
be highlighted in grey under Sequence (Supplementary data 
Fig. S18).
Step 4. To show all the other predicted active sites, click on 
SHOW POCKETS and check all the boxes in the Show column. 
Then click UPDATE (Supplementary data Fig. S19). All the 
active pockets will be displayed in the view screen (Supple-
mentary data Fig. S20).
  CastP uses α shape and the pocket algorithm to delineate 
and measure the active pockets in proteins. CastP ranks pre-
dicted active pockets on the basis of atomic and quantita-
tive characterization (interacting residues inside the pocket, 
accessibility of ligand, volume and area of pocket) including 
active pocket formation. Hence, the top-ranked predicted 
active pocket is regarded as the best active site and can be 
used for further analysis. Moreover, the user can use prior 
knowledge on the active pocket if available.

5. Compound databases
Compound databases can be used for the high-throughput 
screening of new drug compounds. The available databases 
are listed in Table 5. Download the SDF or Mol2 file from 
the compound libraries of the databases.
  This protocol uses the Asinex database (Lipinski, 2004) as 
the target database for screening.
Step 1. Visit the website www.asinex.com and select the com-
pound category from the Research Area according to the 
nature of the target (Supplementary data Fig. S21).
Step 2. As this protocol uses a bacterial protein, select Anti-
bacterial. Click SDF in the Download menu and save the 
SDF file.

6. Molecular docking
Computational approaches and machine learning techniques 
can play a notable role in the prediction of potential inter-
actions between chemical compounds and target proteins. 
Several web-based and commercial tools for docking are listed 
in Table 6.
  In order to investigate the reproducibility of compound- 
bound structure, blind docking is generally used. It puts a 
compound in any position randomly and do the calculation 
to find the binding region. If the binding pose is the same 
regardless of starting positions, it is considered reproducible. 
Otherwise, the parameters of docking software should be 
tuned.
  The PyRx tool is used for docking analysis in this protocol. 
Follow the steps below for molecular docking.
Step 1. Download PyRx (sourceforge.net/projects/pyrx/), 
run the setup, and open the program (Supplementary data 
Fig. S22).
Step 2. Add the target library by clicking File – Import, select 
Chemical Table File – SDF, and click NEXT (Supplementary 
data Fig. S23).

Table 5. Compound databases
Name Description Link

Asinex (Lipinski, 2004) Lead-like, natural, and commercially available compound database. http://www.asinex.com/
Zinc database (Irwin 
and Shoichet, 2005) Commercially available chemical database. https://zinc.docking.org/

PubChem 
(Kim et al., 2018)

Contains small and large molecules, such as nucleotides, carbohydrates, lipids, and peptides. 
Data are collected from chemical vendors, journal publishers, and government agencies. https://pubchem.ncbi.nlm.nih.gov/

ChEMBL 
(Davies et al., 2015) 

Manually curated chemical database of bioactive molecules with drug-like properties main-
tained by the European Bioinformatics Institute (EBI). https://www.ebi.ac.uk/chembl/

ChemSpider 
(Ayers, 2012)

 Chemical structure database providing fast access to over 77 million structures, properties 
and associated information collected from over 270 data sources. http://www.chemspider.com/

Table 4. Online webservers for binding site prediction
Name Description Link

3Dligandsite 
(Wass et al., 2010)

Finds structural similarity with known ligand-binding sites by using a MAMMOTH 
search of the structure library. http://www.sbg.bio.ic.ac.uk/~3dligandsite/

Metapocket 
(Zhang et al., 2011)

Performs three steps: 1) based-method calling, 2) meta-pocket site generation, and 
3) binding-residue mapping. 

https://projects.biotec.tu-dresden.de/
metapocket/

Fpocket 
(Schmidtke et al., 2011)

Detects cavities based on Voronoi tessellation. Designed to search for conserved 
pockets in protein families http://fpocket.sourceforge.net/

CASTp 
(Tian et al., 2018)

Includes annotated functional information of the active residues in the protein 
structure for active pocket prediction. Annotations are derived from PDB, 
Swiss-Prot, and OMIM, etc. 

http://sts.bioe.uic.edu/castp/index.html?2pk9
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Step 3. Select the downloaded SDF file of the antibacterial 
library and click Open (Supplementary data Fig. S24).
Step 4. All compounds will show up in the Open Babel menu 
below the 3D view with the column headers: Title, Formula, 
Weight, and Number of atoms (Supplementary data Fig. S25).
Step 5. Place the mouse curser on any compound in the Con-
trols view and right-click. Then select Minimize All in the 
pop-up menu (Supplementary data Fig. S26). Minimization 
time depends on the number of compounds, and the esti-
mated time will be displayed on the screen.
Step 6. After minimization, right-click on any compound 
in the Controls view once again and select Convert All to 
AutoDock Ligand (pdbqt; Supplementary data Fig. S27). The 
estimated time will be displayed on the screen.
Step 7. Once the compounds are converted, all compounds 
will then appear in the Ligands box. Click Vina Wizard in 
the Controls view and then click Start (Supplementary data 
Fig. S28)
Step 8. To add the target protein, click Add Macromolecule, 
select the target protein, and click Open. The protein will 
be displayed in 3D view and in the Macromolecules box (Sup-
plementary data Fig. S29). The user can use the pdb, pdbqt, 
or mol2 file of the protein in the PyRx tool as an input.
Step 9. To select all ligands, single click on the first ligand 
then press and hold the SHIFT button on the keyboard, drag 
the bar down to the last ligand, click on the last ligand, and 
release the SHIFT button (Supplementary data Fig. S30). All 
ligands will be selected, and the total number of selected li-
gands will be displayed in the Controls menu box.
Step 10. Click Forward in the Controls menu box. The protein 
with a Coordinate Selection box will appear in the 3D View 
menu. This coordinate box is used to define the binding site 
of the protein. The user can move and change the size of the 
box with the help of the mouse cursor (Supplementary data 
Fig. S31).
Step 11. Place the box at a predicted binding site of the pro-
tein or try to place the box where it can surround the predicted 
binding site by increasing or decreasing the size of the coor-

dinate box and then click Forward (Supplementary data Fig. 
S32).
  The PyRx tool will predict the binding sites inside the box 
and generate nine models for each ligand with different poses 
and positions inside the coordinate box. It may take hours 
to complete docking with each ligand.
Step 12. The results will be displayed in tabular form in the 
Controls view box with different column headers to ensure 
easy interpretation for the user (Supplementary data Fig. S33). 
Lower negative values indicate higher binding affinity, and 
the Mode column contains the generated model number for 
each ligand.
Step 13. Click in the Binding Affinity (kcal/mol) column to 
sort the results in ascending order (Supplementary data Fig. 
S34). Note down the ligand names that show high binding 
affinity and mode number.
Step 14. Click the File – Export menu to retrieve the docked 
models and save them in the desire destination folder with 
the default file name PyRx_AutoDocl4.tar.gz by clicking on 
Browse and then click Finish (Supplementary data Fig. S35).
Step 15. To save the docking score in Excel, click on the blue 
disk button in the upper-right corner, set the destination 
folder, and click Save after designating the desired file name 
(Supplementary data Fig. S36).
Step 16. Open the destination folder and extract PyRx_Auto-
Docl4.tar.gz.
Step 17. Open the Macromolecules folder and navigate to 
the folder murC. Find the pdbqt file of the protein. In this 
protocol, murC.pdbqt is the target protein file and the rest 
of the files are compound files (Supplementary data Fig. 
S37). The Pyrx docking tool converts all input files into the 
pdbqt format for use and provides the results in the same 
format.
  To remove the ligands and macromolecules for the next 
use, select all the desired ligands, right-click on the selection, 
and click Delete (Supplementary data Fig. S38).
Step 18. To visualize the results in 3D, download BIOVIA 
Discovery Studio Visualizer (www.3dsbiovia.com/products/ 

Table 6. Tools for Molecular docking 
Name Description Link

PyRx
(Dallakyan and Olson, 2015)

Virtual screening software. Uses AutoDock, AutoDock vina, and open 
Babel. https://sourceforge.net/projects/pyrx/

GEMDOCK 
(Yang and Chen, 2004)

Integrated environment of heavily modified tools: protein-ligand profiles, 
pharmacological interactions, compound clusters, scoring functions, and 
evolutionary algorithms.

http://gemdock.life.nctu.edu.tw/dock/

Glide 
(Friesner et al., 2006)

Uses two different scoring functions to rank compounds: 1) SP scoring 
and 2) XP GlidScore. https://www.schrodinger.com/glide

GOLD 
(Jones et al., 1997)

Uses genetic algorithms for protein-ligand docking and allows for full 
ligand and partial protein flexibility.

https://www.ch.cam.ac.uk/computing/
software/gold-suite

ICM-Dock (Fernandez- 
Recio et al., 2005)

Provides a unique set of tools for accurate ligand-protein docking, 
peptide-protein docking, and protein-protein docking. http://www.molsoft.com/docking.html

Molecular Operating 
Environment MOE 
(Vilar et al., 2008)

An integrated drug discovery software that is able to design ligands and 
ligand modifications, providing correlation plots, activity relationships, 
and the visualization of hydrophobic and charged protein surfaces.

https://www.chemcomp.com/Products.htm

Patch Dock 
(Schneidman-Duhovny 
et al., 2005)

Implemented geometry-based molecular docking algorithm with a server 
for rigid and symmetric docking that performs protein-protein docking 
and predicts protein-small molecule complexes.

https://bioinfo3d.cs.tau.ac.il/PatchDock/
php.php

BIOVIA Discovery Studio 
(Schuster et al., 2010)

Software suite for small molecules and macromolecule simulation. 
Performs MD simulations, QM simulations, ligand design, pharmacophore 
modeling, QSAR, and ADME.

https://www.3dsbiovia.com/products/
collaborative-science/biovia-discovery-studio/
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collaborative-science/biovia-discovery-studio/) and click on 
Download: Discovery Studio Visualizer (Supplementary data 
Fig. S39).
Step 19. Provide the required information and click Submit. 
Select the Client based on the computer operating system (e.g., 
Windows or Linux) and click on the available link below the 
desired operating system to obtain the setup file (Supple-
mentary data Fig. S40).
Step 20. Run the setup file, install the program, and open 
DS visualizer (Supplementary data Fig. S41).
Step 21. Drag and drop the files to open the protein and com-
pound files in the same tab of DS studio. First drag the pro-
tein file murC.pdbqt from the result folder and drop into the 
welcome screen of DS visualizer. The protein will be dis-
played in 3D view (Supplementary data Fig. S42).
Step 22. Select the compound based on the binding affinity 
score, and drag and drop the pdbqt file of the compound into 
the same screen of discovery studio to visualize the docked 
pose with the protein. In this protocol, the compound murC_ 
BDA_25045353_uff_3=757.63 was selected for visualization 
based on its binding affinity (Supplementary data Fig. S43). 
Use one compound at a time to visualize the docking pose 
with the protein.
Step 23. Right-click and use the mouse wheel to rotate, zoom 
in, and zoom out of the 3D complex. Clicking on the dif-
ferent models of the compound will show the different bind-
ing locations and poses. Compare the compound binding 
position with the predicted binding site and choose the com-
pound model that shows binding with the predicted bind-
ing position and high binding affinity. In this protocol murC_ 
BDA_25045353_uff_3=757_model_0 was selected based on 
its high binding affinity and binding position.
Step 24. Click on Check box of the compound model and 
click File and then Save As. Set the destination folder, enter 
the desired file name, and select the Protein Data Bank file 
extension (*.pdb:*.pdb1:*.ent; Supplementary data Fig. S44). 
This will generate a single complex file (protein-ligand) with 
the selected model of the compound. Repeat these steps for 
each compound.
Step 25. Open the saved complex file in DS visualizer again 
and click Show 2D Diagram. This will show all interaction 
sites and the binding patterns of the compound and protein 
(Supplementary data Fig. S45).

7. ADMET properties predictions
During drug development ADMET properties analysis of a 

lead compound is important given that most compounds 
are withdrawn because of ADMET deficiencies during pre-
clinical stages. Computational approaches help predict these 
properties of a compound, and online servers are available 
to predict ADMET properties (Table 7). PreADMET is used 
in this protocol for ADMET analysis. Most of the tools ac-
cept MOL files, which are generally classified as data files that 
contain molecular data, atom, bond, coordinate, and con-
nectivity information, or SMILES files, which are simple, con-
cise, and contain rather readable molecule structure speci-
fication formats, as inputs. To create the MOL or SMILES 
file of a compound, follow these steps.
Step 1. Visit chemdrawdirect.perkinelmer.cloud/js/sample/ 
index.html#, which is an online platform to draw 2D struc-
tures and to convert a structure into multiple formats. Users 
can easily draw the 2D structure of compounds using the 
drawing menu or can obtain MOL files with the compound 
name (Supplementary data Fig. S46).
Step 2. To draw a structure, select the desire chemical compo-
nent (e.g., ring or bond) from the tool bar with a single left- 
click and then click on the sheet to draw. To join two compo-
nents together, select the component from the tool bar, place 
the mouse cursor on the joining point, and left-click to draw 
when the blue color appears (Supplementry data Fig. S47). 
Click on the A button to add a single letter representation of 
an atom in the compound. Users can use the 2D interaction 
diagram of DS studio to draw the compound structure.
Step 3. The user can use the compound name to obtain a 
CDXML file by clicking on Utilities and selecting Convert 
Name to CDXML. Enter the name in the search box and click 
OK or draw the structure of the compound (Supplementary 
data Fig. S48).
Step 4. A CDXML file will show in the text box. Click Copy 
and then Close (Supplementary data Fig. S49).
Step 5. Click Structure and select Load CDXML and Paste 
the CDXML file in the box and click OK (Supplementary 
data Fig. S50). A 2D structure will appear on the screen.
Step 6. Once the structure is displayed on the screen, click 
Structure again and select Get MOL. Then, click Copy and 
Close (Supplementary data Fig. S51). Users can convert the 
structure into multiple formats, such as Smiles or InChlKey, 
from the same menu.
  Use this text of the MOL file as a query tool for ADMET 
prediction. In this protocol, preADMET was used to eval-
uate the compound. Follow these steps to predict ADMET 
properties.

Table 7. ADMET property prediction tools
Name Description Link

SwissADME 
(Daina et al., 2017)

Computes physicochemical descriptors, ADMET parameters, pharmacokinetic 
properties, the druglike nature, and medicinal chemistry friendliness of small 
molecules. 

http://www.swissadme.ch/index.php

PROTOX 
(Banerjee et al., 2018)

Incorporates molecular similarity, pharmacophores, fragment propensities, and 
machine-learning models to predict the toxicity, hepatotoxicity, cytotoxicity, 
carcinogenicity, mutagenicity, and immunotoxicity of a compound.

http://tox.charite.de/protox_II/

ADMET Modeler 
(Gola et al., 2006)

A QSAR/QSPR model building module in the ADMET predictor. Model building 
algorithms are artificial neural networks that employ regression, kernel partial least 
square, and multiple linear regression techniques. 

https://www.simulations-plus.com/software/
admetpredictor/admet-modeler/

PreADMET 
(Lee et al., 2004)

Builds drug-like library and predicts ADMET data. The four principle components 
are: 1) a molecular descriptor calculation, 2) a drug-likeness prediction, 3) the ADMET 
prediction, 4) and a toxicity prediction.

https://preadmet.bmdrc.kr/
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Step 1. Visit preadmet.bmdrc.kr/ and select the prediction 
target from the menu. As ADMET properties were selected 
to be predicted, click ADME Prediction (Supplementary data 
Fig. S52).
Step 2. Click on the Open button (yellow folder), paste the 
text of the MOL file of the compound into the input box, 
and click Load (Supplementary data Fig. S53).
Step 3. This tool translates the MOL file into a 2D structure 
that will be displayed in the input box. Click submit to pre-
dict properties (Supplementary data Fig. S54)
Step 4. In the results window, each property has a specific 
value. Based on these values, a compound can be evaluated 
(e.g., whether the compound is absorbed in the intestine). 
Click on the Green Plus button for a more detailed descrip-
tion of each property (Supplementary data Fig. S55).
  The user can predict toxicity and drug-likeness using the 
menus Toxicity Prediction and Drug-Likeness Prediction.

Conclusion

For decades, in silico drug discovery has paved a new path 
for the discovery new drug candidates. The available com-
putational tools have become easy to use, even for experi-
mental biologists. These tools will expand the scope of re-
search areas by allowing microbiologists to perform in silico 
drug discovery.
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