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MINIREVIEW

Antisense peptide nucleic acids as a potential anti-infective agent

Antibiotics have long been used for anti-infective control of 
bacterial infections, growth promotion in husbandry, and 
prophylactic protection against plant pathogens. However, 
their inappropriate use results in the emergence and spread 
of multiple drug resistance (MDR) especially among various 
bacterial populations, which limits further administration 
of conventional antibiotics. Therefore, the demand for novel 
anti-infective approaches against MDR diseases becomes 
increasing in recent years. The peptide nucleic acid (PNA)- 
based technology has been proposed as one of novel anti- 
infective and/or therapeutic strategies. By definition, PNA 
is an artificially synthesized nucleic acid mimic structurally 
similar to DNA or RNA in nature and linked one another via 
an unnatural pseudo-peptide backbone, rendering to its sta-
bility in diverse host conditions. It can bind DNA or RNA 
strands complimentarily with high affinity and sequence spe-
cificity, which induces the target-specific gene silencing by 
inhibiting transcription and/or translation. Based on these 
unique properties, PNA has been widely applied for mole-
cular diagnosis as well as considered as a potential anti-in-
fective agent. In this review, we discuss the general features 
of PNAs and their application to various bacterial patho-
gens as new anti-infective or antimicrobial agents.

Keywords: peptide nucleic acid, anti-infective agent, anti-
microbials, antibiotic resistance

Introduction

Public concerns toward the risk of infectious diseases have 
been continuously growing because the number of disease 
outbreaks in humans have increased from 1980 to 2010 (Smith 
et al., 2014). Not surprisingly, it was also reported that appro-
ximately 25% of annual deaths are caused by infectious dis-
eases in worldwide (Fauci et al., 2005). Although the discovery 
of penicillin and other antibiotics has greatly contributed to 

the treatment of infectious diseases (Fleming, 1929; Aldridge, 
1999), their inappropriate usage resulted in the emergence 
and rapid spread of antibiotic-resistant bacteria (Clatworthy 
et al., 2007). Diseases by antibiotic-resistant bacteria cannot 
be treated using conventional antibiotics, which has been do-
cumented all around the world. Therefore, researchers con-
tinue to search for novel anti-bacterial or anti-infective strat-
egies that can overcome therapeutic limitations of conven-
tional antibiotic treatment. Among these strategies, develop-
ment of a new class of antibiotics is the most feasible solution. 
For example, Kim et al. (2018) have recently discovered a new 
class of synthetic retinoid antibiotics that were highly effec-
tive on methicillin-resistant Staphylococcus aureus (MRSA) 
as well as bacterial persisters with highly resistance to anti-
biotics (Kim et al., 2018). However, discovery or development 
of novel antibiotics become more difficult, more expensive, 
and more time consuming over time. To combat continuously 
evolving antibiotic-resistant bacteria, it is necessary to develop 
alternative therapeutic or anti-infective strategies that can 
replace conventional antibiotics.
  Recently, bacteriophages have been considered as an anti-
biotic alternative for biocontrol of some pathogenic bacteria 
such as Salmonella spp. (Atterbury et al., 2007; Hungaro et 
al., 2013), Campylobacter spp. (Loc Carrillo et al., 2005; Con-
nerton et al., 2011), and Escherichia coli O157:H7 (Rozema 
et al., 2009; Carter et al., 2012). However, they have relatively 
narrow-spectrum target specificity, compared to conventional 
antibiotics (Pirisi, 2000; Keen, 2012). Moreover, it is difficult 
to deliver them effectively to target tissues or organs during 
a host infection. Therefore, recent studies have focused on 
developing novel antibiotic alternatives such as non-specific 
immunomodulators (Lillehoj and Lee, 2012), anti-virulence 
agents (Totsika, 2016), and antibiotic adjuvants (Gill et al., 
2015). Peptide nucleic acid (PNA) has been proposed as one 
of such candidates.

PNA and its applications

As shown in Fig. 1, PNA is an artificially synthesized nucleic 
acid mimic that is structurally similar to DNA or RNA, with 
its backbone composed of repeating N-(2-aminoethyl)-glycine 
units linked by unnatural pseudo-peptide bonds (Nielsen et 
al., 1991; Nielsen and Egholm, 1999). Unlike DNA and RNA, 
it does not possess any sugar (pentose) moieties or phosphate 
residues. Because of these structural differences, PNAs are 
electrically neutral so that they generate no charge repulsion 
to DNA (or RNA) strands (Nielsen and Egholm, 1999). As a 
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Fig. 1. Chemical structures of PNA, DNA, and RNA.

Table 1. PNA applications in molecular biology and medical fields
Applications Purposes References

Bio-imaging

In vivo
- Detection of cancer cells (breast cancer, prostate cancer, and pancreatic cancer)
In vitro
- Detection of bacteria (from water, patient’s blood)
- Cancer diagnosis

Heckl et al. (2003), Tian et al. (2004, 2005, 
2007), Marciniak et al. (2005), Wilks and 
Keevil (2006), Chakrabarti et al. (2007), 
Forrest et al. (2008)

SNP assay SNP genotyping (basal cell carcinoma, lung cancer, neurodegenerative disease, etc.) Gaylord et al. (2005), Nagai et al. (2005), 
Rockenbauer et al. (2005)

Microarray - Detection of genetically modified organisms (GMOs)
- Detection of hepatitis B virus (HBV) and human papilloma virus (HPV)

Chen et al. (2005), Germini et al. (2005), 
Choi et al. (2009)

Gene therapeutic 
agents

- Antiviral therapy (HIV-1)
- Anticancer therapy (squamous cell carcinoma, lung cancer, etc.)
- Antibacterial therapy (Escherichia coli, Bacillus subtilis, Mycobacterium smegmatis, etc.)
- Antiparasitic therapy (Plasmodium falciparum)

Riguet et al. (2004), Kulyte et al. (2005), 
Faccini et al. (2008), Hatamoto et al. (2009), 
Thomas et al. (2013), Kolevzon et al. (2014)

result, the PNA::DNA complex can bind much stronger than 
the DNA::DNA (or RNA) complex. In addition to high af-
finity and sequence specificity to negatively charged com-
plementary DNAs or RNAs (Nielsen, 2010; Malcher et al., 
2014), PNA is known to be little toxic in vivo as well as very 
stable chemically and biologically (Lundin et al., 2006).
  As a large hydrophilic molecule, PNA is hardy to deliver 
into intracellular space because it cannot cross lipid memb-
ranes easily. This is one of the basic challenges for its clinical 
applications. To overcome this problem, PNA must be con-
jugated with a bacterial penetration peptide (BPP), a short 
amino acid motif that can penetrate bacterial cell wall effec-
tively. Several BPPs have been discovered for different bac-
terial species. For example, a BPP motif, -VLTNENPFSDP-, 
can effectively deliver PNAs into Staphylococcus aureus 
whereas another motif, -YKKSNNPFSD-, is most efficient 
on Bacillus subtilis and E. coli (Rajarao et al., 2002). Both 
-KFFKFFKFFK- and -CFFKDEL motifs have also been de-
monstrated for E. coli (Good et al., 2001; Rajarao et al., 2002).
  Based on their unique features as above, PNAs have been 
applied in various fields such as bio-imaging, detection of 
single nucleotide polymorphism, microarray, and therapeutic 
agents (Table 1) because they are easily designed and modi-
fied in accordance with research purposes (Malcher et al., 
2014). For example, a previous study demonstrated that PNA 
is modified and applied for fluorescence in situ hybridiza-
tion to quantify and visualize heterogeneous biofilm popu-
lations (Almeida et al., 2011). Zhao et al. (2016) have also 

reported a highly sensitive and rapid method for detection 
of KRAS mutations of colorectal cancer using PNA-based 
real time PCR clamping (Zhao et al., 2016). Based on the 
facts that PNAs can bind their target genes and inhibit the 
expression of these genes (Dean, 2000), several studies showed 
that PNAs are useful for treating some bacterial infectious 
diseases and/or cancers (Nekhotiaeva et al., 2004; Kulyte et 
al., 2005; Faccini et al., 2008; Bai et al., 2012; Thomas et al., 
2013).

Molecular mechanisms of PNA-mediated gene 
silencing

PNA-mediated gene silencing can be explained by either 
antigene or antisense activities (Nielsen, 2010; Malcher et 
al., 2014). Among them, the antigene activity by PNAs is to 
inhibit the transcription initiation or elongation of target 
gene(s) by complementarily binding of PNAs to the target 
DNA sequences (Hanvey et al., 1992; Nielsen et al., 1994b). 
The antisense activity is to block the translation of target 
gene(s) by interfering the mRNA target sequences. Several 
types of possible PNA::DNA complexes have been reported 
depending on their sequence compositions (% of pyrimidine 
and purine bases), the number of PNA molecules binding to 
the target DNA sequence, and the structural features of PNAs 
(Fig. 2). As shown in Fig. 2A, the complexes are formed by 
triplex binding, triplex invasion binding, duplex invasion 
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(A) PNA/DNA complex

(B) PNA/RNA complex

Fig. 2. Binding patterns and characteristics 
of the PNA-nucleic acid complexes.

binding, double duplex invasion binding, or tail clamp bind-
ing between PNAs and DNAs.
  Triplex binding of PNA::DNA occurs when a cytosine-rich 
homo-pyrimidine PNA molecule binds to the complemen-
tary DNA sequence via Hoogsteen base paring (Wittung et 
al., 1997). This type of complex is known to be formed in the 
major grooves of the DNA double strand where displacement 
of non-complementary DNA is not necessary (Knauert and 
Glazer, 2001). Similarly, triplex invasion binding of PNA::DNA 
is formed when a homo-pyrimidine PNA binds to a homo- 
purine DNA sequence. For example, one PNA molecule forms 
a PNA::DNA complex by binding to the DNA duplex target 
at the major groove via Hoogsteen base paring, while the 
other PNA molecule binds to the other side via Watson- 
Crick base paring (resulting in a PNA::DNA::PNA complex 
by P-loop formation; Fig. 2A) (Nielsen et al., 1994a). Although 
this type of complex has a very slow binding kinetic, it is very 

stable and maintained for a long period of time (Kosaganov 
et al., 2000). In contrast, duplex invasion binding of PNA:: 
DNA is formed when a homo-purine PNA molecule binds 
to a homo-pyrimidine DNA target sequence, which is accom-
panied with the displacement of non-complementary DNAs 
(Nielsen and Christensen, 1996). Thus, this type of complex 
has been recommended for PNAs to contain the purine- 
pyrimidine sequences to improve its binding efficiency (Ni-
elsen and Christensen, 1996). Double duplex invasion bind-
ing of PNA::DNA occurs when two pseudo-complementary 
PNA molecules (i.e., di-aminopurine and 2-thiouracil) bind 
to a target DNA sequence simultaneously (Fig. 2A; Lohse et 
al., 1999). Among these various PNA::DNA complexes, the 
most unusual binding structure is tail-clamp binding (Fig. 
2A). This type of complex is formed when the PNA molecule 
with a short homo-pyrimidine triplex clamp domain (hexa-
mer) and a duplex-forming tail domain (decamer) bind to 
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Table 2. Clinical application in bacterial diseases

Target bacteria Target gene Function Bacterial penetrating 
peptide

Application
(In vitro/In vivo) References

Escherichia coli 23S rRNA Bacterial translation and growth (KFF)3K In vitro Xue-Wen et al. (2007)
ESBLs-E. coli rpoD RNA polymerase sigma factor (KFF)3K, (RXR)4XB In vitro, In vivo* Bai et al. (2012)
MDR-E. coli rpoD RNA polymerase sigma factor (KFF)3K, (RXR)4XB In vitro Bai et al. (2012)
MDR-Salmonella enterica rpoD RNA polymerase sigma factor (KFF)3K, (RXR)4XB In vitro Bai et al. (2012)
ESBLs-Klebsiella pneumoniae rpoD RNA polymerase sigma factor (KFF)3K, (RXR)4XB In vitro Bai et al. (2012)

Campylobacter jejuni cmeABC Multidrug efflux transporter (KFF)3K In vitro Jeon and Zhang (2009), 
Oh et al. (2014)

MDR-Shigella flexneri rpoD RNA polymerase sigma factor (KFF)3K, (RXR)4XB In vitro, In vivo* Bai et al. (2012)

S. aureus
fmhB Cell wall biosynthesis (KFF)3K In vitro Nekhotiaeva et al. (2004)
gyrA DNA replication (KFF)3K In vitro Nekhotiaeva et al. (2004)

MRSA mecA Penicillin-binding protein (PBP2a) (KFF)3K In vitro Goh et al. (2015)
Streptococcus pyogenes gyrA DNA gyrase (KFF)3K In vitro Patenge et al. (2013)
Mycobacterium smegmatis inhA Mycolic acid biosynthesis (KFF)3K In vitro Kulyte et al. (2005)
* In vivo application of PNA in BALB/c mice.
ESBL, Extended-spectrum beta-lactamases; MDR, Multidrug-resistant; MRSA, Methicillin-resistant S. aureus.

Fig. 3. Antisense activity of the BPP- 
conjugated PNAs.

target DNAs (Bentin et al., 2003). Because of the unique struc-
tural characteristics of tail-clamp PNAs, they have been ap-
plied for inhibition of targeted mRNA translation, visual 
detection of virus, and targeting of micro-RNAs (miRNAs) 
(Knudsen and Nielsen, 1996; Schleifman et al., 2011; Kaihatsu 
et al., 2013; Ghidini et al., 2016).
  Similar to DNA, PNAs can bind RNAs to form a PNA::RNA 
complex. As shown in Fig. 2B, the PNA::RNA complex is 
formed by duplex or triplex binding. Duplex binding occurs 
when a single PNA molecule binds to a single RNA strand. 
Triplex binding occurs when one PNA molecule forms the 
PNA::RNA complex via Hoogsteen base paring, and the 
other PNA binds to other side via Watson-Crick base paring, 
ultimately resulting in a PNA::RNA::PNA complex (Almar-
sson and Bruice, 1993; Brown et al., 1994; Li et al., 2010). By 

doing these interactions, PNAs can block the mRNA trans-
lation and suppress the synthesis of the target proteins, which 
is referred to as the antisense activity by PNAs (Fig. 3). A 
previous study demonstrated that the antisense activity by 
PNAs depends on the position of target DNA sequences. For 
example, the highest antisense activity was demonstrated 
when PNAs were targeted to the translation initiation region 
such as the Shine-Dalgarno sequence (Dryselius et al., 2003).

Application of PNAs as an anti-infective agent

It is well known that RNA interference (RNAi) via either 
short interfering RNAs (siRNAs) or miRNAs requires the 
protein complex to induce degradation or cleavage of the 
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target mRNAs (Watts and Corey, 2012). Unlike siRNAs or 
miRNAs, however, PNAs can induce RNAi without the aid 
of other factors since they physically interfere mRNA trans-
lation (Fig. 3). For this reason, they have been applied to in-
hibit bacterial essential genes required for bacterial survival. 
Both in vitro and in vivo anti-bacterial activities have been 
demonstrated against various bacterial pathogens, includ-
ing Gram-positive (Nekhotiaeva et al., 2004; Patenge et al., 
2013) and -negative bacteria (Xue-Wen et al., 2007; Bai et al., 
2012), as well as Mycobacterium species (Kulyte et al., 2005) 
(Table 2). Recently, Patenge et al. (2013) demonstrated that 
HIV-1 Tat peptide-conjugated PNAs specific for the essen-
tial gyrase A gene (gyrA) can inhibit the growth of Strepto-
coccus pyogenes, an exclusively human pathogen that causes 
necrotizing fasciitis (flesh-eating disease) or streptococcal 
toxic shock syndrome (Patenge et al., 2013). Interestingly, 
the PNA conjugates displayed antimicrobial synergistic ef-
fects with the gyrase-targeting antibiotics such as levofloxacin 
and novobiocin.
  Several studies have focused on the synergistic effect of PNAs 
in combination with conventional antibiotics. For example, 
a previous work showed that antibiotic resistance of MRSA 
to oxacillin is greatly reduced by applying the BPP-conjugated 
anti-mecA PNAs that can target the penicillin-binding pro-
tein (PBP2a) gene (Goh et al., 2015). Similarly, growth of anti-
biotic-resistant bacteria was effectively suppressed by cipro-
floxacin and erythromycin after the co-treatment of PNAs 
able to interfere the CmeABC efflux pump-encoding genes 
in Campylobacter jejuni (Jeon and Zhang, 2009; Mu et al., 
2013; Oh et al., 2014) (Table 2). More recently, Castillo et al. 
(2018) demonstrated the adjuvant effect of mRNA targeted 
PNAs in E. coli O157:H7 (Castillo et al., 2018). Using the 
standard checkerboard assay with the essential acyl carrier 
protein (AcpP)-targeting PNAs (namely, anti-acpP PNA), 
they found two novel synergistic combinations of antibiotics; 
anti-acpP PNA with polymyxin B and anti-acpP PNA with 
trimethoprim. These imply that mRNA targeted PNAs can 
maximize the bactericidal effects of certain antibiotics by sup-
pressing the expression of target genes functionally asso-
ciated with antibiotic resistance. Interestingly, it should be 
noted that antisense PNA molecules can specifically down- 
regulate both a stably expressed transgene as well as an en-
dogenous essential gene in Plasmodium falciparum, the caus-
ative agent of malaria in humans, resulting in a significant 
reduction in viability of the pathogenic parasites. Therefore, 
PNA can be applied for designing novel anti-infective stra-
tegies against various microbial infectious diseases by viruses, 
bacteria, or parasites.

Safety and stability

In order to apply PNAs as a therapeutic agent, drug selecti-
vity on bacterial pathogens is one of the key aspects because 
PNAs must not interfere with any other host genes and/or 
cellular processes. Previous studies showed that both siRNAs 
and miRNAs with the antisense effects activate the host im-
mune system through the toll-like receptors, and thus pro-
mote cytokine induction (Sioud and Sorensen, 2003; Kariko 
et al., 2004; Fabbri et al., 2012). However, it has been re-

ported that PNA does not induce any immune responses 
during a host infection because it is not recognized by in-
tracellular proteins (Demidov et al., 1994).
  As shown in Fig. 1, its unusual backbone structure seems to 
allow high stability of PNA although the in vivo safety and 
stability of PNAs need to be more intensively demonstrated. 
A previous study revealed that the administered PNAs can 
last for several hundred days under appropriate physiological 
circumstances (Kosaganov et al., 2000). Furthermore, PNAs 
are not degraded by host nucleases and proteases during 
administration (Demidov et al., 1993; Nielsen and Egholm, 
1999).

Future directions

PNA is considered as one of the most promising candidates 
to treat various antibiotic-resistant infectious diseases. How-
ever, the underlying technology is premature to discuss its 
application to humans, as there are unresolved issues that 
are necessary for being addressed to reduce the potential risks. 
As mentioned above, its high bio-stability within host cells 
is a strong advantage (Demidov et al., 1994). On the other 
hand, however, it is likely problematic because its biological 
half-life, in vivo disposal and the potential side-effects on 
host cells have not been yet addressed, which require further 
investigation in future. Improving the delivery efficiency of 
PNA should also be addressed in order to maximize the bio-
logical significance of PNA-derived therapeutics. Although 
(KFF)3K is the most commonly used BPP for a wide range 
of bacteria (Vaara and Porro, 1996), only the limited num-
ber of BPPs are currently available. Thus, discovery of novel 
BPPs with various functions of either wide- or narrow-spec-
trums are being needed.
  Since antibiotics generally have a broad-spectrum antibac-
terial activity, they may affect both pathogenic bacteria and 
the normal microflora. In contrast, the highly-sequence spe-
cific PNAs are capable of selectively killing pathogenic bac-
teria, but not the normal microflora; a previous work de-
monstrated the species-specific killing using the bactericidal 
PNAs conjugated with BPPs (Mondhe et al., 2014). In addi-
tion, as certain bacteria can acquire antibiotic resistance via 
one or more point mutations within the gene sequences re-
sponsible for antibiotic resistance (Jaktaji and Mohiti, 2010; 
Johnning et al., 2015), targeting of such DNA regions may 
allow for PNA to distinguish between antibiotic-sensitive and 
-resistant bacteria. These unique features of PNAs can be use-
ful to develop novel therapeutic agents against severe diseases 
caused by MDR bacteria without disturbing the bacterial 
community in a host, which suggests PNAs as one of the 
strong candidates to MDR diseases.
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