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ABSTRACT

Covalent triazine frameworks (CTFs) are a class of unique two-dimensional nitrogen-rich triazine framework with adjustable
chemical and electronic structures, rich porosity, good stability and excellent semiconductivity, which enable great various
applications in efficient gas/molecular adsorption and separation, energy storage and conversion, especially photo- and electro-
catalysis. Different synthesis strategies strongly affect the morphology of CTFs and play an important role in their structure and
properties. In this concept, we provide a comprehensive and systematic review of the synthesis methods such as ionothermal
synthesis, phosphorus pentoxide catalytic method, polycondensation and ultra-strong acid catalyzed method, and applications of
CTFs in photo- and electro-catalysis. Finally we offer some insights into the future development progress of CTFs materials for

catalytic applications.
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1 Introduction

The increasing scale of industrial development has led to the
massive consumption of non-renewable energy sources, posing an
enormous set of energy and environmental challenges. In order to
reduce dependence on fossil energy sources, it is imperative to
urgently develop clean, green and sustainable energy sources to
achieve the goal of carbon neutrality, which has received
significant attention. Relative to these non-fossil energy resources,
renewable energy sources are relatively more widely distributed in
terms of inexhaustible and recyclable. In addition, photocatalysis
and electrocatalysis driven by solar energy and electric energy, in
particular, have become a key area of research and interest due to
the convenience and rapidity in the use of light and electrical
energy sources [1-4]. Specifically, valuable photocatalysts and
electrocatalysts usually have abundant reaction sites and tunable
properties [5—7]. However, most of the reported photocatalysts [8,
9] cannot meet these requirements due to the low structural
tunability and low utilization of the metal atoms [10, 11], which
greatly limits their applications in the real life.

Covalent organic frameworks (COFs) are a class of structurally
ordered metal-free m-stacked layered organic porous materials
with strong covalent bonding networks, which have the
advantages of large specific surface area, tunable electronic
structure, and good chemical stability, and thus have turned the
attention of the field of vision towards it. As a branch of COFs,
covalent triazine frameworks (CTFs) are a class of organic

polymer porous materials consisting of aromatic 1,3,5-triazine
rings, mostly amorphous, and with a few ordered structures,
which are unique in that they are composed of a series of C=N
connected triazine units. It has excellent physical properties,
chemical stability and good stability thermal due to its strong
planar m-conjugated nature of the aromatic rings. In 2008, Pierre
Kuhn Dr et al. produced for the first time a porous covalent
triazine-based skeleton in high temperature molten zinc chloride
conditions by ionothermal reaction, then, triazine-based materials
have since gained much popularity and attention [12]. Thanks to
the rich pore structure, large specific surface area and excellent
semiconductivity properties of their nitrogen-rich special triazine
frameworks, it has found great applications as sensors in gas
adsorption/separation, efficient energy storage and conversion and
photo- and electro-catalysis particularly [13,14]. With the
deepening and strengthening of research, the application of CTFs
in photo-electrocatalysis has become more and more popular,
mainly due to the following reasons: (1) Compared to inorganic
materials, CTFs are organic porous materials that are structurally
tunable and can be pre-designed based on the structure, which
have highly influential in the field of photocatalysis [15-17]; (2)
the ordered conjugated m structure of CTFs endows their
chemically and thermally stable in most catalytic reactions and
easily recyclable, making them more suitable to act as catalytic
reactants for photo- and electro-catalysis; (3) the high tolerance of
the covalent skeleton to rigorous and harsh reaction treatments
[18], leads to a tighter structural linkage between the precursor

Address correspondence to Guofu Ma, magfiwnwnu.edu.cn; Lei Zhu, Lei.zhu@hbeu.edu.cn; Yuxi Xu, xuyuxi@westlake.edu.cn

it % % wsit

Tsinghua University Press

@ Springer


https://doi.org/10.1007/s12274-024-6779-y
https://doi.org/10.1007/s12274-024-6779-y
https://doi.org/10.1007/s12274-024-6779-y
https://doi.org/10.1007/s12274-024-6779-y
https://doi.org/10.1007/s12274-024-6779-y
https://doi.org/10.1007/s12274-024-6779-y
https://doi.org/10.1007/s12274-024-6779-y

Nano Res. 2024, 17(9): 7830-7839

and the carbonaceous product; (4) the large specific surface area
and large pore structure make it more favorable for exposing more
active sites, thus enhancing the catalytic ability of the reaction; (5)
the special structure of the triazine framework can coordinate with
transition metal atoms, and various heteroatoms can be
introduced to “fix” the transition metal complexes by anchoring
them to N-containing functional groups (triazine groups),
forming a richer matrix structure of metal complexes for CTFs,
which can inhibit large-scale agglomeration of metals. At the same
time, its structural diversity can provide high-affinity binding sites
for various guest species, which will lead to a wide range of
applications for different catalysts [19, 20]. Therefore, CTFs have
been developed as supercapacitor capacitive electrode materials
and their semiconducting properties make them suitable to act as
photocatalysts for CO, capture [21]. It can be seen that the
nitrogen-rich triazine framework has brought light to the dawn of
the new photoelectrically superior catalysts, but there are many
challenges to be solved, such as low crystallinity, severe acid
carbonation, and insufficient exposure of the active sites [22].

The paper summarizes the prevalent synthesis methods of
CTFs, systematically illustrates the advantages and challenges of
each method and the impact on the photo- and electro-catalytic
performance. Meanwhile, the latest advances in the application of
CTFs in CO, capture and photocatalytic hydrogen production are
summarized in detail, and relevant strategies to improve the
photocatalytic performance of covalent triazine skeletons are
briefly outlined. In addition, the application of CTFs-based
materials in electrocatalysis has also been mentioned for research
in recent years. We hope to provide some future expected design
guidance directions for synthesizing CTFs with excellent photo-
and electro-catalytic properties.
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2 Synthesis of covalent triazine

frameworks

strategies

Adjustment of monomers, synthetic methods and synthetic
conditions for synthesizing CTFs is of great importance for
controlling the structures [23]. Of course, different synthetic
methods will form CTFs with different morphologies, which play
an important role in their structures. Herein, the main reported
synthetic methods for CTFs are summarized and discussed.

2.1 Ionothermal synthesis

In 2008, Kuhn's team synthesized a promising new high-
performance covalent triazine backbone by ionothermal dynamic
trimerization reaction using a variety of inexpensive and abundant
aromatic nitriles for the first time, including dicyanobenzene
(DCB), 4,4-biphenyldicyano (DCBP), 2,5-dicarbonitrile thiophene
(DCT), 2,6-dicyanopyridine (DCP) and 5-(4-cyanophenyl)-
[1,1,3,1-terphenyl]-4,4-dicarbonitrile (TCT), at high temperature
by melting zinc chloride and employing ionic liquids as solvents
and catalysts for the polymerization reaction [12]. Nitrile shows
good solubility in this ZnCl, ionic melt due to strong Lewis acid-
base interactions and ZnCl, is a good catalyst for the trimerization
reaction, making it possible to meet all the conditions for
obtaining crystalline porous polytriazines at 400 °C, which allows
for the obtaining of triazinium-based materials with high regular
porosity and surface area (Fig.1(a)). By controlling a single
variable of the reaction: kinetic conditions [24], temperature [25]
and monomer species [26], Kuhn et al. prepared CTFs with
different structures and properties. Although a promising triazine
backbone material was successfully synthesized, when the ZnCl,
content was high, highly porous, ordered, large surface area but

Figure1 (a) The preparation process of CTFs. Reproduced with permission from Ref. [12], © Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2008. (b) The
preparation process of Fe-CTF. (c) DFT calculated potential energy profile for three various conditions. Reproduced with permission from Ref. [27], © Wiley-VCH
GmbH 2023. (d) Space-filling diagrams of P,Os-catalyzed CTF-1 (pCTF-1). (e) Synthetic route of CTF-1. Reproduced with permission from Ref. [28], © Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim 2018. (f) The synthesis of three-dimensional (3D) crystalline CTFs. Reproduced with permission from Ref. [29], © Wiley-VCH

GmbH 2022.
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amorphous materials were still produced in the reaction mixture
and crystalline product was not obtained, unfortunately. Based on
that, Xu et al [27] used FeCl; as a catalyst (more Lewis acidic than
ZnCl,, its low boiling point allowed the reaction to be carried out
under very mild reaction conditions), to activate cyano and
promote the catalytic polymerization of cyclo-trimer with a simple
and convenient way under solvent-free conditions, and succeeded
for the first time in obtaining crystalline bi-porous CTFs with a
new molecular network structure and a special laminated shape
(Fe-CTF) (Fig. 1(b)). Relevant control experiments were also
carried out and it was found that synthesis using the FeCl, catalyst
resulted in crystalline CTF catalysts, whereas both the ZnCl,
catalyzed and catalyst-free routes yielded amorphous CTF
products (Fig. 1(c)), which is a great improvement over the former
work and points the way to the development of catalysts for the
preparation of crystalline CTFs.

2.2 Phosphorus pentoxide catalytic method

In order to solve the problem of small specific surface area of the
prepared CTFs, the scientists used non-metallic catalytic
approaches. For example, Beak et al. [28] proposed the use of
phosphorus pentoxide as a catalyst for the preparation of CTFs
(Figs. 1(d) and 1(e)). Using phosphorus pentoxide to catalyze the
direct condensation of aromatic amides to form triazine rings,
compared with the jonothermal synthesis of CTFs using metal
catalysts, the synthesis method not only retains the good
crystallinity of the catalysts, but also has a large specific surface
area and porosity. This preparation method gets rid of the need to
remove residual metal ions and residual inorganic matter, which
has been used in storage and gas adsorption. However, the
synthesis temperature in the method is as high as 400 °C, and
carbonation still exists during the polymerization process,
resulting in the applicability of the method not being highlighted.

2.3 Polycondensation method

To address the pending issues of slow growth of the CTFs and
poor reversible covalent bonding of triazine bonds, Tan et al. [29]
used symmetric tetrahedral benzamidine hydrochloride and
tetrahedral benzaldehyde to synthesize symmetric triangular
triazine rings in the cubic carbon nitride (CTN) topology by
applying a cascade condensation method via a
reversible/irreversible reaction, respectively. It was connected by
planar triangular rings, and two crystalline CTFs were obtained
(Fig. 1(f)). In contrast to the high-temperature conditioned
thermal synthesis prepared by Kuhn and colleagues at 400 °C, the

Table1 Summary of some catalytic properties of CTF-based photocatalysts
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condensation reaction conditions are simple and do not destroy
the structure to cause partial carbonation, ensuring the internal
ordered structure of the CTFs. The relatively mild conditions
provide a potential methodological guide for large-scale industrial
production, but with minor drawbacks such as the long reaction
time.

24 Ultra-strong acid catalyzed method

As early as 2012, Cooper et al. [30] reported a synthetic strategy
using trifluoromethanesulfonic acid (TfOH) superacid-catalyzed
trimerization to synthesize semi-crystalline CTFs with a range of
different colors with low specific surface area at room temperature
and microwave-assisted conditions. This method solves the
problem of structural carbonization at high temperatures and is
more conducive to the preparation of the sheet-like crystals. To
solve the significant drawbacks of the prepared catalysts such as
low specific surface area and non-strong crystalline state, Dai et al.
used a two-step tandem method to prepare highly crystalline
CTFs using a two-step tandem method in 2020 [31]. Firstly, an
ultra-strong acid-catalyzed reaction for 12 h at 250 °C, followed by
a heat treatment at 350 °C under mild, no metal and solvent free
conditions, which yielded highly crystalline CTFs with a specific
surface area of 646 m>g™'. The strategy opens a door for crystalline
CTFs with tunable optoelectronic properties. However, the strong
acidity of the ultra-strong acid catalysis method places high
demands on the synthesis equipment.

3 The application of covalent triazine
frameworks in photo- and electro-catalysis

3.1 Photocatalytic fields

CTFs possess a strong m-conjugated structure, and their triazine
rings are rich in nitrogen and have high electron mobility to
provide more active sites for the reaction [32, 33]. In recent years,
CTFs have been applied in photocatalysis, including water
splitting and CO, reduction reactions. Table 1 summarizes some
of the catalytic performance parameters of CTFs-based
photocatalysts.

3.1.1 Water splitting

Establishing appropriate insertion distances in CTFs can regulate
light absorption and electronic structure, which has become a
research direction for photocatalytic hydrogen evolution [44].
Chlorine (Cl) with a relatively suitable ionic radius (1.81 A) is well

Hydrogen production rate

CO production

Photocatalyst Reaction types Ilumination range (umol-gh") Cyclic performance AQE rate (umol-g h") References
CI-ECF Water splitting A>420 nm 1296 16 h — — [34]
CTFS-1-10 Water splitting A >420 nm 4992.3 26h 1.3% — [35]
CTFSe-1-10 Water splitting A > 420 nm 5782.8 26 h 1.7% — [35]
CTE-TPE@Co-3 V€T SPIUING €O 3, 420 nm 5978 7h - 6616 [36]
CTF-Bpy-Co-3 Water splitting 420 nm 1503 5h 0.233% — 137]
Bpy-CTF Water splitting A>420 nm 322 5h 0.56% — [38]
CTF-amide-1 Water splitting 420 nm 1133 12h 0.79% — [39]
Co-FPy-CON CO, reduction 420 nm — — — 1681 [40]
Fe,O;@Por-CTF10 CO, reduction A > 420 nm — — — 400 [41]
FC1 CO, reduction 400 nm — 96 h 0.298% 29,100 [42]
Ni (CI)ON;Por CO, reduction A >420 nm — — 2.73% 24,700 [43]
Ni (Cl)SN;Por CO, reduction A > 420 nm — — 4.29% 38,800 [43]
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suited for insertion into layered CTFs, but the strong van der
Waals force of covalent CI” makes its insertion into the interlayer
of CTFs difficult to achieve at present. Notably, Wu and others
prepared Cl-intercalated CTF-1 (CI-ECF) photocatalysts [34] by
synthesizing CTF-1 through the reported thermal oxidation
method at first, and then CI" insertion into the interlayer channels
of CTFs was easily achieved by simple ball-milling exfoliation and
strong acid-assisted preparation (Fig.2(a)). The ball milling
process can easily overcome the strong covalent interlayer van der
Waals forces by generating heat and mechanical shear, thus
enabling stable covalent CI” embedding in layered CTFs by ball
milling stripping in combination with the non-oxidizing acid HCI
and improving its electronic structure and promoting charge
transfer. The hydrogen production rate of the Cl-ECF catalyst
reached 1.296 mmol"h™ under visible light irradiation (Fig. 2(b)),
and the stability in the catalytic reaction hardly decreased after
16 h of continuous irradiation, showing excellent photocatalytic
ability (Fig. 2(c)). In addition, Li and colleagues designed a novel
molecular heterojunction photocatalyst based on benzothiadiazole
(BT) and thiophene (Th) doped into a covalent triazine
framework for photocatalytic H, production [45]. The research
team analyzed the optical band gap using diffuse reflection
spectroscopy (DRS) and pointed out that CTFs (CTF-BT/Th) red-
shifts of the absorption edge with increasing Th content, and the
staggered arrangement of the band gaps allows for the opposite

essessssssssssosm
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migration of photoexcited electrons and holes across the
heterojunction (Fig. 2(d)).

This electronic structure makes it favorable for photocatalytic
hydrogen production. The hybridized CFT-BT/Th exhibited a
high hydrogen production rate of 6.6 mmolg™h™ and an
Apparent quantum efficiency (AQE) of 7.3% at a specific 420 nm
wavelength (Figs. 2(e) and 2(f)). Its excellent electrocatalytic
performance mainly depends on the heterostructure can greatly
improve the charge-carrier-separation efficiency (Fig. 2(g)) [46].
Wang et al. constructed related polymer photocatalysts using Th
or BT units as dopant monomers similarly [47]. The density
functional theory (DFT) calculation results demonstrated that the
modified CTF-0.5BT and CTF-0.5Th produce significant
anisotropic charge transfer behavior, which enhances the intensity
of light absorption. Thus, the copolymer of this molecular unit has
a great impact on improving the performance of photocatalytic
hydrogen production (Figs. 2(h) and 2(1)).

3.1.2 CO,reduction reactions

Due to the abundance and high affinity of nitrogen in CTFs,
attention has been directed towards utilizing it for CO, capture
and fixation. Coskun and his colleagues synthesized charged
triazine framework catalysts (cCTF) for the first time by
ionothermal trimerization using violet alkene diketones as
monomers [48]. By controlling the reaction temperature, it was
found that cCTF-500 has richer mesoporous structure compared
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Figure2 (a) The preparation process of CI-ECF. (b) The rates of hydrogen evolution (c) and the cycling tests under visible light irradiation. Reproduced with
permission from Ref. [34], © Elsevier B.V. 2020. (d) Photocatalytic hydrogen production capacity of different catalysts. (¢) Average hydrogen-production rates. (f)
Wavelength-dependent AQE. (g) Facilitated charge-carrier separation diagram. Reproduced with permission from Ref. [45], © Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim 2019. DFT calculations (h) the theoretical band structures. (i) Charge density distribution of the lowest unoccupied molecular orbital (LUMO)

(blue) and LUMO+1 (yellow). Reproduced with permission from Ref. [47], © Wiley-VC
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Reproduced with permission from Ref. [55], © Wiley-VCH GmbH 2023.

to ¢cCTF-400 and cCTF-450 (Fig. 3(a)), which made it easier to
open up the triazine ring to break covalent bonds. The multilevel
network structure formed is more favorable for CO, conversion. It
shows significant heat of CO, adsorption (43 kJ-mol™) and affinity
also up to 133 mg-g™ (1 bar) at zero coverage (Fig. 3(b)). The study
provides a new way to fix CO, by conversion of charged porous
organic polymers. Wang et al. also constructed a bipyridine-based
ionic CTF catalyst (ICTF) using ionothermal polymerization
reactions [49]. By freely adjustable exchange of the anion Cl” and
1,1’-bis(cyanomethyl)-[4,4’-bipyridine]-1,1’-diium thiocyanate (IL-
SCN) increases the specific surface area and affinity for gases,
which was found to be more than 1 bar for the ability of catalysts
to capture CO, at different temperatures (Fig. 3(c)). Meanwhile,
higher CO, uptake was observed for ICTF-Cl compared to ICTF-
SCN (Fig. 3(d)), which was attributed to the high nucleophilicity
of CI. Chen groups produced heterojunction photocatalysts of
CdS@CTF-HUST-1 (HUST = Huazhong University of Science
and Technology) with core-shell structure for CO, reduction by
combining CFT with cadmium sulfide nanospheres through the
introduction of amino groups in the coating of CdS nanospheres
[50]. It was shown that the catalyst has a high CO yield rate of
168.77 pymol-g*h™ and all the heterojunction catalysts exhibit

heterojunction catalysts (Fig. 3(h)). The adsorption energy of CTF-
HUST-1-0.47 eV is lower than the adsorption energy of the (002)
crystalline surface of CdS-0.28 eV alone by DFT calculations (Figs.
3(e) and 3(f)), and the core-shell structure can improve the
strength of CO, adsorption [51-53]. As shown by the Gibbs free
energy diagram (Fig. 3(g)), the heterojunction structure can
effectively reduce the reaction energy potential during the CO,
reduction process [54], which is also an important reason for
optimizing the CO, adsorption conversion. Low charge separation
efficiency and difficult charge transfer resistance are large
impediments to the low efficiency of the catalytic conversion of
carbon dioxide. In order to solve this problem, Fan’s group [55]
prepared a Schottky heterojunction catalyst (Ru-Th-CTF/reduced
graphene oxide (RGO)) with a large n-domain and n-stacking for
photocatalytic reduction of CO, to formate (Fig. 3(i)). The main
method was in situ growth of the multicascade donor acceptor
structure D-A1-A2 system (Ru-Th-CTF) onto the surface of
reduced graphene oxide by bonding cooperation and m-m
stacking. The synergistic effect of the heterojunction with the
system allows for effective charge separation and transport in the
lateral separation as well as in the vertical separation [56]. The unit-
site Ru unit in the heterojunction catalyst Ru-Th-CTF/RGO is an
effective secondary electron acceptor for multilevel charge

better ~photocatalytic ~performance than the individual
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separation/transport in the transverse direction, which efficiently
separates and modulates the energy band positions. In addition,
graphene stacked by bonding cooperation is regarded as a hole-
extraction layer, and its enhanced - stacking ability constructs
favorable charge migration m-delocalized channels. The
photogenerated electrons can be fully utilized for the relevant
reduction reactions to accelerate the separation/transport of
photogenerated charges in the vertical direction of the catalyst.
The construction of an efficient charge transfer pathway in CTFs
for the oriented transport of photoexcited electrons resulted in an
unprecedented catalytic conversion of 11,050 pmol-g™h™ (Fig.
3(j)), highlighting the importance of the Schottky and D-A1-A2
systems for CO, reduction.

In some other studies, deposition-anchored Co, Cu single
atoms embedded in CTFs [57,58], bipyridine-based CTFs
introduced with single-dot cobalt (CTF-Bpy-Co) [59], boron-
doped CTFs [60], perfluorinated CTFs [61], crystalline CTFs
nanosheets [62, 63] and photo-deposition enabled Pt single-atom-
anchored CTFs [64] have also been widely used in the field of
photocatalysis for water splitting and CO, reduction. In the field of
improving the photocatalytic performance of catalysts, wide visible
light absorption range, suitable energy band structure, and high
photocurrent density are undoubtedly important. Of course, the
high specific surface area and rich pore structure of the materials
also help to enhance their catalytic activity. The catalytic
mechanism needs to be deeply investigated to improve the catalyst
activity, stability and production selectivity in order to meet the
demand, which indicates certain research directions for the future
work.

3.2 Electrocatalytic fields

CTFs have a unique structure with a high nitrogen content in their
triazine rings, and their open pore structure and large specific
surface area have attracted extensive attention in the field of
electrocatalysis. To address the problems of poor catalyst
conductivity due to low nitrogen content, the researchers
conducted a series of studies on CTF-based heteroatom-doped
materials and CTF-based carbon materials, which effectively
promoted charge and ion transfer within the catalysts and
increased the relevant electrocatalytic properties. Table 2
summarizes some of the catalytic performance parameters of
CTFs-based electrocatalysts.

Fan et al. prepared Fe/N/S/C electrocatalysts based on CTF
derivatives using six aromatic nitriles [75]. The high ratio of nitrile
groups to benzene rings in CTF precursors could form more N-
doped micropores and increase the reactive active sites of Fe-N,.
At the same time, the S doping centered the Fe/N/C catalysts and

Table2 Summary of some catalytic properties of CTF-based electrocatalysts
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increased the reactive active sites, which resulted in the
improvement of oxygen reduction reaction (ORR) performance
(Fig. 4(a)). Zhang et al. [76] proposed a metal-free catalyst material
formed in situ by thermal initiation of the CTFs using no
template. A hollow mesoporous carbon spheres (N/S-HMCS)
material with rich mesoporous structure was obtained. When the
heteroatom-doped nitrogen and sulfur contents were 6.1 at.% and
1.3 at.%, N/S-HMCS900 exhibited excellent ORR performance
near 20% Pt/C (Fig. 4(b)). The excellent structural properties gave
the material excellent performance in zinc-air batteries, and the
specific capacity of the batteries exceeded 800 mAh-g™ (Fig. 4(c)).
Jena and co-workers [77] reported a metal-free covalent triazine
skeleton electrocatalyst based on phosphorus references to
produce phosphorus CTFs (PCTFs) for water splitting reaction by
using hexakis-(4-cyanophenyloxy)cyclotriphosphazenes (P-CN) as
the raw material and adjusts different synthesis conditions
(temperature and ZnCl, content) of the relevant ionic heat (Fig.
4(d)). The linear sweep voltammetry (LSV) curves showed that the
reduction current increased of PCTF-10500 (ZnCl, content of 10
equiv and reaction temperature of 500 °C), the hydrogen
evolution was high when the sweep rate was 20 mV-s™ (Fig. 4(e)).
The presence of the heteroatom P generates a high electron
density on the carbon atom, forming more site defects and greatly
improving the catalytic performance, as shown by the relevant free
energy calculation. Wang et al. utilized the synthesized
nanotubular CTFs as the precursor [78], via one-pot
hydrothermal and metal-organic framework (MOF) doping,
obtained noble metal-free CTF@MOF-x (x = 15 wt.%, 24 wt.%
and 33 wt.%) catalysts for the first time. The obtained MC-24-700
catalyst by carbonization can achieve ORR catalytic performance
of 0.770 V under alkaline conditions, which is slightly less than
commercial Pt/C. The greatest benefit of this report is to provide a
new CTE-MOF doped catalysts, which makes it difficult for CTF
to collapse and aggregate during pyrolysis, and thus the catalytic
activity can be greatly improved. All of these literature reports
favor the preparation of doped materials and thus promote the
electrocatalytic performance, and very few reports tend to prepare
crystalline CTFs, because the development of the crystalline CTF
technology method is not so mature. Recently, Xu and his groups
synthesized crystalline layered bi-porous Fe-CTF catalysts using
ferric  chloride-catalyzed = polymerization of  2,6-pyridine
dihydropyridine (DCP) for the first time [27]. The experiments
were carried out under solvent-free conditions, followed by ball-
milling stripping to obtain few-layer crystalline nanosheets (Fe-
CTF NSs) simply (Fig. 4(f)). The unique Fe-Nj structure enables it
to exhibit significant ORR catalytic activity (E,;, = 0.902 V),
excellent zinc-air battery performance (specific capacity of

. Overpotential E,, Power density . s

Electrocatalyst ~ Reaction types Battery electrolyte (J=10mAcm?) (Vvs.RHE) (mW-cm?) Cycling stability (h) References
HNPC-900 ORR 6 M KOH + 0.2 M Zn(OAc), 0.85 120 380 [65]
ACTF-a-900 ORR 6 M KOH 0.86 651 80 [66]
NPE-CNF-800 OER,ORR 6 MKOH + 0.2 M Zn(OAc), 330 mV 0.85 159 120 [67]
ACTP-2 ORR 6 M KOH + 0.2 M Zn(OAc), 0.80 190 35 [68]
SP-NC ORR 6 M KOH 0.87 209 20 [69]
N-HCNFs OER,ORR 6 MKOH + 0.2 M Zn(OAc), 243 mV 0.84 170 70 [70]
NPE-CNS OER,ORR 6 MKOH + 0.2 M Zn(OAc), 340 mV 0.81 144 125 [71]
Fe-TTF-800 OER,ORR 6 M KOH + 0.2 M Zn(OAc), 154 mV 0.891 214.2 550 [72]
Co-NTMCs@NSC ~ OER,ORR 6 M KOH + 0.2 M Zn(OAc), 284 mV 0.833 262 — [73]
FeNi-CNC-800 OER,ORR 6 M KOH + 0.2 M Zn(OAc), 320 mV 0.840 115 250 [74]

‘RHE: reversible hydrogen electrode.
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Figure4 (a) ORR polarization curves. Reproduced with permission from Ref. [75], © Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2018. (b) LSV curves of
various materials. (c) Discharge curves of Zn-air batteries. Reproduced with permission from Ref. [76], © Elsevier Inc. 2021. (d) Synthesis process of P-CTF. (e) LSV
curves at 20 mV-s. Reproduced with permission from Ref. [77], © American Chemical Society 2023. (f) The preparation of Fe-CTF NSs. (g) Structural models of Fe-
N; and Fe-N,. (h) Gibbs free energy diagrams at U= 1.23 V. (i) Long cycle stability curves. Reproduced with permission from Ref. [27], © Wiley-VCH GmbH 2023.

811 mAh-g”, power density of 230 mW-cm™) and superior long
cycle stability (Fig. 4(i)). X-ray absorption spectroscopy and DFT
calculations reveal the dynamic evolution of Fe-Nj to Fe-N,, and
the conversion step of Fe-N, from *OH to OH" requires a small
reaction energy barrier (0.51 eV) (Figs. 4(g) and 4(h)), which is
one of the reasons why the electrocatalytic reaction works so well.

In addition, Voort et al. [79] synthesized tailored CTF networks
with strong oxidation using hexaazatriphenylenes (HAT) as a
monomer, showing high H,O, yield. Ye et al. used self-doped
pyrolysis to encapsulate amorphous MnO, sheets into CTFs to
obtain A-MnO,/NSPC carbon spheres for ORR/oxygen evolution
reaction (OER) bifunctional catalysis [80]. These research
methods are simple and readily available, but few crystalline-based
CTF catalyst materials have been reported. Moreover, the
preparation of crystalline CTFs and their application in
electrocatalysis is still a considerable challenge that requires
continuous efforts from researchers.

4 Summary and outlook

In conclusion, for the rich pore structures, large specific surface

area and excellent semiconductivity of special CTFs, it has found
great applications in acting as a sensor in gas
adsorption/separation, efficient energy storage, photo- and electro-
catalysis in recent years. So far, the classical synthetic methods for
the preparation of CTFs are mainly: ionothermal synthesis,
phosphorus  pentoxide-catalyzed method, polycondensation
method and ultra-strong acid-catalyzed method. Although the
synthesis methods of CTFs have been improved, the synthesis of
CTFs in the crystalline state is still very limited. Certainly, CTFs
have made some achievements in the field of photo- and electro-
catalysis, but there are still some challenges to be solved. In order
to design high-performance materials for functional CTFs, some
points are made below:

(1) Highly crystalline state of CTFs. Most of the prepared CTFs
are non-crystalline, however, high crystallinity facilitates charge
separation and transfer, which can lead to highly tunable
molecular structure and porosity, increase the active sites for
catalytic reactions, and the catalytic activity of such crystalline
carriers will be more superior compared to amorphous CTFs.
Constructing hydrogen bonds and assembling crystalline
frameworks all provide research ideas for crystallized CTFs.
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Therefore, obtaining crystallized CTFs under suitable and simple
reaction conditions still requires a great deal of exploration and
research.

(2) Avoid severe carbonization. It is known from the synthesis
method of CTFs, like phosphorus pentoxide catalyzed method
such synthesis method is the same. The use of high reaction
temperatures in synthesis will cause severe carbonization during
polymerization, resulting in a certain collapse of the structure and
causing certain defective structures, thus destroying the ordered
structure, which is not conducive to the production of excellent
catalytic effects in photo- and electro-catalysis. Therefore, to make
the carbonation not so severe and to increase the catalytic effect, it
is necessary to choose the appropriate synthesis temperature and
to allow the reaction to proceed in a fast and orderly manner.

(3) Large-scale production. Although the preparation of CTFs
has been widely studied, most of the research methods do not
meet the requirements of large-scale production in terms of
reaction temperature, reaction conditions, and reaction time,
which forces us to pay attention to the issue of yield for large-scale
production.

(4) Reaction mechanisms. In-depth investigation of the reaction
mechanism of the CTFs in photo- and electro-catalysis by in situ
characterization and DFT calculations. By understanding the
structure-function connectivity between active structures and
catalytic behaviors for the CTFs and deepening their
structure-function related property relationships have significant
values in influencing the design of high-performance CTFs-based
catalysts.

(5) Future applications in catalysis. The tailored optical and
semiconductive properties of the CTFs make them promising
metal-free polymeric photocatalysts. Meanwhile, the low skeletal
density and large specific surface area structure of the CTFs
provide channels for good hydrogen storage, which provides
theoretical guidance for the design of excellent CTFs-based
photocatalysts. In addition, the abundant nitrogen content in the
structure of the CTFs and the good porosity make them widely
used in the electrocatalytic field. In the process of future
development, constructing the CTFs-based catalysts with
conductive materials such as carbon nanotubes, graphene oxide,
and carbon quantum dots is an effective method to improve the
electrocatalytic conductivity of the CTFs, which leads to a wide
range of applications for CTFs-based catalysts in the catalysis and
energy storage materials areas.

Although CTFs have made great progress in photo- and electro-
catalysis, there are still significant limitations in producing
economically viable, high activity and high crystalline state
catalysts. The further evolvement of photo- and electro-catalytic
monomers based on CTFs have the ideal potential to be candidate
catalysts for rapid sustainable and stable development of photo-
and electro-catalysis.
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