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ABSTRACT

Oxide-supported metal single-atom catalysts (SACs) have exhibited excellent catalytic performance for water—gas shift (WGS)
reaction. Here, we report the single-atom catalyst Pt;/FeO, exhibits excellent medium temperature catalytic performance for
WGS reactions by the density functional theory (DFT) calculations and experimental results. The calculations indicate that H,O
molecules are easily dissociated at oxygen vacancies, and the formed *OH and *O are adsorbed on Pt, single atoms and the
adjacent O atoms, respectively. After studying four possible reaction mechanisms, it is found that the optimal WGS reaction
pathway is proceeded along the carboxyl mechanism (pathway Ill), in which the formation of *COOH intermediates can promote
the stability of Pt;/FeO, SAC and the easier occurrence of WGS reaction. The energy barrier of the rate-determining step during
the entire reaction cycle is only 1.16 eV, showing the high activity for the medium temperature WGS reaction on Pt;/FeO, SAC,
which was verified by experimental results. Moreover, the calculated turnover frequencies (TOFs) of CO, and H, formation on
Pt,/FeO, at 610 K (337 °C) can reach up to 1.14 x 107 s '-site”" through carboxyl mechanism. In this work, we further expand the

application potential of Pt;/FeO, SAC in WGS reaction.
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1 Introduction

With the development of economic globalization, excessive
dependence on fossil fuels has led to serious energy crises and
environmental issues [1]. Hydrogen energy, as one of the most
promising clean energy sources, has attracted more attention due
to its characteristics of cleanliness, -efficiency, safety, and
sustainability [2—4]. As is well known, water-gas shift (WGS)
reaction (CO + H,0O = CO, + H,) [5], as an important industrial
reaction for hydrogen production and purification, which can
effectively extract H, from water and remove CO from synthesis
gas, is widely used in the ammonia synthesis, chemicals
production, and fuel cell preparation [6-12]. Ma et al. [13]
prepared interface catalytic structure with high density, highly
dispersed atomic-level Pt species and a-MoC, which can
effectively catalyze the WGS reaction for hydrogen production in
a wide temperature range of nearly from room temperature to
400 °C, breaking the limitations of traditional catalysts with
narrow catalytic temperature range. Wang et al. [14] reported an
efficient Ru,/FeO, catalyst with dual active centers, which exhibits
a much higher reaction rate in WGS reactions than FeO,-
supported Ru nanoparticles and other Ru based catalysts.
Moreover, even under conditions rich in CO, and H,, its
selectivity for WGS reaches 100%, without any methane
byproduct, which is impossible for Ru nanoparticles. Zhang et al.
[10] synthesized a novel layered double hydroxides (LDH)-derived

copper based catalyst (LD Cu) for photo-driven WGS reaction.
The hot electrons generated by the localized surface plasmon
resonance (LSPR) effect of Cu nanoparticles selectively promote
the dissociation of water and the generation of hydrogen,
enhancing the kinetics of H, and CO, release through the carboxyl
pathway. The work demonstrates for the first time that catalysts
based on plasma Cu nanoparticles can effectively drive WGS
reactions at very low temperatures, thus opening up a new
direction for the design of low-cost photo-driven catalysts for
WGS and other catalytic reactions involving water activation.
However, significant challenges remain in WGS reactions, such as
the inevitable occurrence of methanation and other side reactions
at high reaction temperatures, relatively low energy efficiency, and
catalyst stability [8, 15—-17]. Therefore, studying new catalysts with
high stability and activity for medium temperature catalytic WGS
reactions is of great significance for industrial production
processes.

In 2011, a new concept of “single-atom catalysis” was proposed
for the first time based on the study of the first practical single-
atom catalyst (SAC) Pt /FeO, [18] with ultrastability, which
demonstrates extremely high activity for both CO oxidation and
preferential oxidation of CO in H, reaction (PROX). Compared
with the supported nano-metal catalysts, SACs show higher
utilization of precious metal atoms and higher catalytic activity in
heterogeneous catalysis, which are widely used in the fields of
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thermal catalytic reactions, electrocatalytic reactions, and
photocatalytic reactions [6,7,14,19-82], such as selective
hydrogenation or oxidation [62, 63], WGS reaction [6, 7, 14, 53],
CO, reduction [19, 20], CO oxidation [23-30], oxygen reduction
reaction (ORR) [75], oxygen evolution reaction (OER) [81],
hydrogen evolution reaction (HER) [82], and nitrogen reduction
reaction (NRR) [21, 35]. With the in-depth understanding of the
stability of metal single atoms, the interactions between metal
single atoms and the supports, and their catalytic mechanisms in
the SACs, the concept of single-atom catalysis has been
continuously enriched and developed, and a series of new and
effective SACs have been emerging, such as single-cluster catalysts
(SCCs) [35,61, 83], dynamic single-atom catalysts (DSACs) [84],
dual-atom-site catalysts (DASCs) [6,73,85], and the SACs with
strong covalent metal-support interactions (CMSI) [25, 32, 48].

Noble metal SACs loaded on reducible oxide supports, such as
a-Fe,0;, CeO,, and TiO,, showed remarkable catalytic activity for
WGS reaction [6,7,53,74,86,87], originating from the easy
generation of lattice oxygen vacancies [18,88-90]. Recently, the
reducible oxide-supported SAC Ir,/FeO, has been successfully
prepared, which exhibits exceptionally high activity for WGS
reaction [7]. Our group [6] has also theoretically understood its
high catalytic performance for WGS reaction and proposed a new
dual metal active site (DMAS) redox mechanism based on the
oxygen vacancy (O,,) transfer driven by the synergistic changes of
Fe cation of FeO, support and the loaded Ir, single atom during
the processes of H,O dissociation adsorption, H atom transfer,
and CO, generation and desorption. Similarly, reducible oxide-
supported SAC Pt,/FeO, also exhibits high catalytic activity for
extensive reactions, such as CO oxidation [18,26,91], NO
reduction [92], selective hydrogenation [93,94], and methanol
degradation [95] reactions. However, few studies have investigated
its catalytic activity for WGS reaction and compared it with
Ir,/FeO, SAC.

In this work, extensive calculations have been performed to
investigate the catalytic performance of Pt;/FeO, SAC for WGS
reaction by using density functional theory (DFT), where four
possible WGS reaction mechanisms are considered, including the
traditional redox, DMAS redox, carboxyl, and formate. The
calculation demonstrates that Pt,/FeO, SAC has higher catalytic
activity for WGS reactions than Ir,/FeO, SAC, which is further
confirmed by our further experimental results. These results could
provide solid evidence to further expand the applications of
Pt,/FeO, SAC in WGS reaction.

2 Computational and experimental details

21 Computational details

Based on our previous calculated models [6], the Pt;/FeO, SAC
was constructed by replacing Fe on O3-terminated surface of
Fe,0;(001) with Pt single atoms, which was stabilized by three
surface oxygen atoms. Then all calculations of geometric and
electronic properties were performed by using the Vienna ab initio
simulation package (VASP) [96,97]. The generalized gradient
approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE)
[98] exchange-correlation functional was used in the calculations.
The core and valence electrons were described by using the
projector augmented wave (PAW) [99] method and plane-wave
basis functions with a kinetic energy cut-off of 400 eV [6, 18]. The
mass—velocity and Darwin relativistic effects were included
through the PAW potentials due to the relativistic effects of Pt. A
vacuum distance of 12 A in the direction perpendicular to the
surface was set to eliminate the artificial interplay interaction
between the adjacent units of the periodic nanomaterial. Gamma
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point was used to sample the surface Brillouin zone after ground-
state atomic geometries were obtained by minimizing the forces
on the atoms below 0.02 eV/A, while 2 x 2 x 1 Monkhorst-Pack
grid was used for the partial density of states (PDOS). Considering
the strong d-electron correlation effects of Fe atoms, the
calculations were carried out with the DFT + U method suggested
by Liechtenstein and Dudarev et al. [100-102]. The parameters
were set at Coulomb repulsion parameter U = 4 eV and Hund’s
coupling parameter /] = 1 eV according to previous study [6].
Dimer method [103] and climbing image nudged elastic band (CI-
NEB) [104,105] were used to search the transition states by
relaxing the force below 0.05 eV/A.

The adsorption energy (E,) of an adsorbate (X) on the
adsorbent Pt,/FeO, was defined by Eq. (1)

Eads = E»ubslmchrX - Esubstm(e - EX (1)

where E e Esubstrato @A Ex represent the total energy of the
X-Pt;/FeO, adsorption system, Pt;/FeO,, and free X species,
respectively. The electron density difference was defined by Eq. (2)

AP =P =P Py 2)

where p,p, pa, and pg are the charge densities of the whole system
and its components A and B, respectively. Microkinetic
simulations was carried out using the CatMAP software package
[106]. The calculated details were defined in the Electronic
Supplementary Material (ESM).

2.2 Experimental details

2.2.1 Chemicals

Ferric nitrate nonahydrate (Fe(NO;);9H,0) was purchased from
Aladdin. Sodium carbonate (Na,CO;) was purchased from Guang
Fu. Hydrogen hexachloroiridate(IV) hexahydrate (H,IrCl,6H,0)
and chloroplatinic acid hexahydrate (H,PtCl;:6H,0) were
purchased from Energy Chemical. All reagents were analytical
reagent (AR) and were used directly without further purification.
Deionized water was obtained from a Clever-S30 autopure system
(ZhiAng Instruments Co., Ltd.).

2.2.2  Synthesis of Pt;/FeO, and Ir /FeO,

The iron oxide supported Pt and Ir single-atom catalysts were
prepared by a coprecipitation method as reported previously [7,
18]. In detail, 0.52 mL H,PtCl, solution (3.8 mgp/mL) or 0.42 mL
H,IrClg solution (49 mg/mL) was added into 25 mL
Fe(NO3);9H,0 (1 mol/L) aqueous solution. Then the mixture was
added dropwise into 50 mL aqueous solution of Na,CO;
(1 mol/L) under vigorous stirring with the final pH of the solution
being controlled at approximately 8. A different precipitation
temperature (50 and 80 °C) was used to guarantee a higher ratio of
the H,PtClg and H,IrCly in the solution was precipitated and
loaded onto the FeO, support [7,18]. After being stirred
continuously for 4 h and aged for 2 h, the resulting precipitate was
filtered and washed with pure water. The recovered solid was
dried at 60 °C for 12 h and calcined at 400 °C for 5 h to afford
SACs, which were denoted as Pt,/FeO, and Ir,/FeO.,.

2.2.3 Characterization

The actual Ir and Pt loadings of catalysts were determined by
inductively coupled plasma-optical emission spectroscopy (ICP-
OES) on an ICPS-8100 instrument (Shimadzu).
Aberration-corrected high-angle annular dark field scanning
transmission electron microscopy (AC-HAADF-STEM) analysis
was performed on an ARM300 microscope (JEOL) operated at
300 kV. Before measurements, the samples were ultrasonically
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dispersed in ethanol, and then a drop of the solution was put onto
the carbon film supported by a copper grid.

2.2.4  Evaluation of activity of water-gas shift reaction

The catalytic activity of the SACs in water—gas shift was evaluated
at ambient atmosphere by using a fixed-bed reactor (quartz tube
with outer diameter of 10 mm). For the purpose of providing a
more accurate comparison, the catalysts’ intrinsic activity was
measured in a differential mode and expressed as specific rate and
turnover frequency (TOF). For each test, 50 mg catalysts were
diluted by 200 mg quartz sand (80-120 mesh). Before test, the
catalysts were in situ reduced in H, (10 vol.% H,/N,, 30 mL/min)
at 300 °C. After He was purged for 30 min and temperature
became stable, feed gas of 1 vol.% CO, 10 vol.% H,O, and balance
He (30 mL/min) was allowed to be introduced to the fixed-bed
reactor at different flow rates, giving rise to different weight hourly
space velocities (WHSVs) to control the CO conversion below
20% and guaranteeing the measurement of the intrinsic activity in
the kinetic region. With the aim of being comparable to the DFT
calculation results, the intrinsic activity was measured at the
temperatures of 300 and 350 °C, which are close to, one is slightly
higher and one is slightly lower than, the temperature used in
DFT calculation. The reactor temperature was recorded with a
thermocouple inserted close to the catalytic bed of the reactor. For
measurements at each temperature, at least three conversion data
within 60 min were averaged, and all the data’s difference was
smaller than 5%, suggesting the catalysts were stable in the test
reaction time. Gas composition at the inlet and outlet was
analyzed by online gas chromatograph (GC-2014, Shimadzu)
equipped with a thermal conductivity detector (TCD), with
helium used as carrier gas. CO, and CO were separated by a
Porapak N column connected to the TCD. The CO conversion,
turnover frequencies (s™), and specific reaction rate (mol/(g.'h))
were calculated as follows:

F..—F. .
Conversion (X¢p) = ———% x100% (3)
Specific rate of CO =
F x X
. 0 X 60 (4)
Weight of catalyst X Wy, X 22.4 X 10°
TOF =
F x Xco
Dispersion (5)

Weight of catalyst X Wy, X X 22.4 x10° X 60
where F, represents the total flow (mL/min); w,,. is the metal
loading (wt.%); M is the molar mass (g/mol); F,, i, and F, oy
represent the inlet and outlet concentration of CO, respectively.

3 Results and discussion

3.1 Adsorption of H,O and CO

For Pt,/FeO, SAC [18], the surface Fe atom on the O3-terminated
surface of iron oxide (FeO,) is replaced by a single Pt atom with
an O, near the Pt atom to simulate the reduced FeO,, surfaces, as
shown in Fig. 1(a). The single bonds [107] of Pt-Op, (1.892 A) and
Pt-O. (1.882 A) are formed through the strong CMSI [32]
between Pt atom and Og and O atoms due to the high overlap of
the 5d orbitals of Pt and the 2p orbitals of Oy and O near the
Fermi level in the partial density of states and the enrichment of
electron density on Pt-Op and Pt-O bonds in the electron
density difference, as shown in Figs. 1(b) and 1(c). Moreover, the
oxygen vacancies, which play an important role in molecule
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adsorption activation, dissociation, and chemical reactions, are
reducible [6, 14, 18,25-28,34,92,108]. As shown in Fig 1(d),
H,O molecules are preferentially dissociated and adsorbed on the
oxygen vacancies and the adjacent Op, atoms on the surface of
Pt,/FeO, with the adsorption energy of —1.37 €V, resulting in the
formation of the higher-oxidation-state Pt(III) single atom [25],
which can effectively promote the adsorption and activation of
CO molecule on it. As shown in Figs. 1(e) and 1(f), the calculated
PDOS and electron density difference exhibit that there is a strong
interaction between Pt 5d and C 2p after CO adsorption on Pt
single atom, originating from 50 - 5d donation interaction and
5d - 2m* back-donation interaction between the 5d orbital of Pt
and the 50 and 2n* orbitals of CO adsorbate [18, 25]. Therefore,
the effective co-adsorption of CO and H,O provides prerequisites
for the WGS reaction.

3.2 WGS reaction mechanism on Pt,/FeO, SAC

Based on the co-adsorption of CO and H,O on the surface of
Pt,/FeO, SAC, we explore WGS reaction by calculating four
possible (Fig.S1 in the ESM) noble metal-assisted Mars—van
Krevelen (MvK) mechanisms [31,90, 109], in which the FeO,
support provides the surface lattice oxygen to participate in the
reaction, namely traditional redox [110, 111], DMAS redox [6],
carboxyl [10], and formate [112]. Figures 2 and 3 and Figs. S2-S8
and Tables S1-S3 in the ESM display the calculated energy profiles
with the optimized structures and the selected bond lengths.

As seen from Fig.2 and Fig.S2 in the ESM, for the redox
mechanism in pathway I, the adsorbed H,O is directly dissociated
on the O, and the adjacent surface Op, atom to form two *OH on
the surface of Pt;/FeO, SAC. Subsequently, CO is adsorbed on Pt;
single atom and then attacks the O atom connected to Pt; to
generate *CO, through TS1 with an energy barrier of 1.11 eV
(*CO + O¢ > *CO,, 2-TS1-3), resulting in the generation of a
new O,,. around Pt; single atom after the first CO, desorption.
Then the *OH from H,O dissociation is further dissociated into
*H, and *Og atoms (*OH > *H, + *Op), which is a characteristic of
redox mechanism for WGS reaction [6, 111]. The H diffusion to
the single Pt atom (4-5) in Fig. 2 corresponds to the steps of v-vii
in Fig. S2 in the ESM, in which the *H, is transferred to Pt; single
atom with a relatively high energy barrier of 1.77 eV (*Og-H, >
*Of + Pt)—*H,, v-TS3-vi), and the *H,, atom is easily transferred
from Op, to O single atom with a small barrier energy of 0.28 eV
(*Op-Hy, > *Op—*Hy, vi-TS4-vii) and then further transferred to
Pt through the highest energy barrier of 1.83 eV (*Op-Hy, > *Og +
Pt,—*H,, 5-TS3'-6). Subsequently, two *H on Pt; single atom
react directly to generate *H, (*H, + *H, > *H,, 6-7) and desorb
from the surface of Pt;/FeO, SAC. It is found that the second H,O
is dissociatively adsorbed on the new O, to form the intermediate
ii-2 in Fig. §3 in the ESM, which can promote the Pt;/FeO, SAC to
return to its original state. Similar to the WGS reaction catalyzed
by Ir,/FeO, SAC [6], it is very difficult for two protic H atoms of
Op-H and Op-H to directly form H, on the surface of Pt,/FeO,
SAC via the redox mechanism in pathway II (8-TS3"-9) due to its
energy barrier of up to 3.46 eV (Fig.2 and Fig. S4 in the ESM).
Furthermore, the calculated Bader charges for Pt, single atom, the
second-neighboring Fe atom (Fig. 1), the C atom of absorbates,
and two H atoms from H, of the structures in pathway I for the
whole WGS reaction (Fig. S2 in the ESM) are collected in Fig. S5
in the ESM. It is obvious that the Bader charge of the second-
neighboring Fe atom changes in the co-adsorption of H,O and
CO on Pt, single atom from the step i - iii through the bridge of
Fe*-O--Pt*-0,,, then in the process of the generation and
desorption of the CO, molecule (iii > v), and subsequently in the
process of both the remaining two H atoms migrating to Pt, single
atom (v > viii). These results indicate that the active site in the
redox mechanism of pathway I is delocalized around Fe and Pt, of
Fe*'-O--Pt*-0,,, and thus DMAS redox mechanism [6] at Pt,
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(d)
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Figure1 The local atomic arrangement of the geometric models ((a) and (d)), the PDOS ((b) and (e)), and the electron density difference ((c) and (f)) of Pt,/FeO,
and Pt;/FeO, with CO and H,0 adsorption, respectively (isovalue = 0.004 a.u.). The O,, Og, O¢, Op, and O represent the surface lattice O atoms of the support. O is
from H,O dissociation, and O, is located at the right side of the Pt atom. The red surface O atoms are around Pt atom. The O (dark green) and C (pink) are from CO.

H atom (white), Pt atom (blue), and Fe atom (purple) are depicted.

and Fe was clearly demonstrated in the Pt;/FeO, SAC in redox
pathway I for WGS reaction.

Carboxyl mechanism of WGS reaction over Pt/FeO, SAC
differs from redox mechanism, which involves the formation of
carboxyl species (*COOH) [10]. As seen from Fig. 3 and and Fig.
S6 in the ESM, based on the co-adsorption of CO and H,0, the
WGS reaction in pathway III undergoes the following steps. The
*OH anchored on O,, easily migrates to Pt; single atom by
climbing over two small energy barriers of 0.41 and 0.33 eV. Then
the cis-*COOH intermediate is formed by the reaction of *CO and
*OH on the Pt single atom with a relatively low energy barrier of
0.63 eV (*CO + *OH - cis-*COOH), followed by the transfer of
H, from Oy, to Pt, single atom with the highest energy barrier of
1.16 eV (3-TS1"-4). Subsequently, the cis-*COOH on the Pt;
single atom rotates to trans-*COOH with a small energy barrier of
0.38 eV (4-TS2"-5), followed by the release of CO, (5-TS3"-6)
from the surface of Pt;/FeO, SAC through the cleavage of the
O-H bond with the energy barrier of 0.90 eV (trans-*COOH >

Tsinghua University Press

CO, + *H). Then the remaining two *H atoms react to form H,
(*H + *H > H,). Compared to pathway III, pathway IV for the
carboxyl mechanism undergoes a direct transformation from
cis-*COOH to trans-*COOH with a very low energy barrier of
0.31 eV (3-TS1V-8), as shown in Fig. 3. However, the subsequent
cleavage of the O-H bond of trans-*COOH, which leads to the
formation of *CO,, requires a relatively high energy barrier of
1.29 eV (8-TS2V-9), which is the rate-determining step (RDS) in
pathway IV. Finally, as the *CO, desorbs from the surface of the
catalyst with a very small energy barrier of 0.33 eV, the remaining
two *H atoms overcome a relatively small energy barrier to react
with each other to form H,, which then desorbs from the surface
of the catalyst, as shown in Fig. 3 and Fig.S7 in the ESM. In
addition, the formate mechanism of WGS reaction on Pt,/FeO,
SAC is also considered. However, the stable formate intermediate
cannot be formed, because when *H atom gradually approaches
the Pt, single atom, the *CO moves away from the Pt;, as shown
in Fig. S8 in the ESM.
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Figure3 (a) The proposed carboxyl reaction pathways III and IV and the calculated relative energies (eV) for WGS on the Pt,/FeO, catalyst. (b) The corresponding

optimized structures in pathway III.

Accordingly, these thermodynamic data indicate that the
formation of *COOH intermediate in carboxyl reaction pathway
111 is favorable for WGS reaction catalyzed by Pt,/FeO, SAC.

3.3 Origin of WGS catalytic activities of Pt,/FeO,

Based on the above, it is obvious that the RDS of the optimal
carboxyl reaction pathway III is the *H, atom transfer from

surface Op atom to Pt; single atom (*Op-Hy, »> *Op + Pt;—*H,)
with the energy barrier of 1.16 eV. Herein, to reveal the nature of
high-catalytic-activity Pt/FeO, SAC for WGS reaction, we
analyzed the electronic properties of the related structures of
intermediates vi and vii at RDS in pathway III, and the electron
density difference, the Bader charge analysis, the PDOS, and the
negative integrated crystal orbital Hamilton population (ICOHP)
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are displayed in Fig. 4 and Table S5 in the ESM. As shown in Fig.
4(a), the electronic density is depleted in the blue areas; conversely,
the density is enriched in the yellow areas. With the transfer of
*H, from Op, in vi to Pt; single atom in vii, the electron density on
*H, significantly increases, showing that more electron transfer
from Pt single atom to Hy in vii, which is consistent with the
difference (+0.53 |e|) of the Bader charge of *Hj, in Op-H,, (+0.66
le]) and Pt,-Hy (+0.13 |e|), as shown in Fig. 4(b). Moreover, the
PDOS indicates that the interaction between the 2p of Op, and 1s
of Hy, in vi is stronger than that between 5d of Pt and 1s of Hy, in
vii, owing to the lower energy level of o bonding of Op-H,, than
that of Pt,—Hy, as shown in Figs. 4(c) and 4(d). The calculated
ICOHP values for the bonds of Op-Hy, in vi and Pt,-H, in vii are
—3.23 and —1.35 (Figs. 4(e) and 4(f)), respectively, which also show
that Op—H,, bond is stronger than Pt;-H, bond. Therefore, the
transfer of *H, from Op to Pt; single atom is endothermic
reaction. However, for the RDS of *Op-Hj, > *Og + Pt,—*H,, vii >
viii in the redox pathway I, the calculated Bader charge (+0.70 [e])
of Hy, on O and the ICOHP value (—4.07) of Op-H, in vii (Fig. S9
in the ESM) are larger than those in the optimal carboxyl pathway
111, indicating that the stronger interaction between Op and Hy, in
vii leads to the higher energy barrier of 1.83 eV when the *H,
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atom transferred from Oy to Pt; single atom in the RDS of redox
pathway L.

In addition, the Bader charges of Pt; and the second-
neighboring Fe atom on the surface of Pt/FeO, are
complementary with the H,O and CO co-adsorption from step i
to iii (Fig. 4(b) and Fig. S6 in the ESM), showing that this process
involves a DMAS [6]. However, after the migration of *OH from
surface to Pt; single atom (iii > iv) in Fig. S6 in the ESM, the Bader
charges of second-neighboring Fe atom almost unchanged (about
+1.57 |e]), while the Bader charges of Pt; single atom is constantly
changing during the next process of WGS reaction in pathway III,
as shown in Fig 4(b), indicating that the catalytic effect of
Pt,/FeO, SAC for WGS reaction is mainly attributed to the Pt
single atom active center. Compared with Ir; of Ir,/FeO,, Pt of
Pt,/FeO, [6] participates in more electron transfer in the WGS
reaction, thus effectively promoting its catalytic activity (Fig. S10
and Table S6 in the ESM).

3.4 Microkinetic simulations

To further evaluate the WGS reaction activity on Pt,/FeO, under
realistic conditions, microkinetic modeling based on the reaction
pathway and energies was conducted to obtain the TOFs of WGS
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reaction production on Pt)/FeO, under the temperature range of
300-800 K and the pressure range of 1-100 bar, as shown in Fig. 5
and Table S7 in the ESM. The relevant elementary reaction steps
of WGS reaction in pathways I and III are listed in Table S8 in the
ESM. As seen from Fig. 5 and Table S6 in the ESM, the TOF of
CO, and H, formation on Pt,/FeQ, at 610 K (337 °C) can reach
1.14 x 107 s™site” in the carboxyl pathway III, comparatively close
to the experimental TOF values [113, 114] of metal oxide catalysts,
while the TOF of WGS reaction production at 610 K on Pt,/FeO,
is as low as 4.04 x 107 s™site™ in the redox pathway I, indicating
that the Pt)/FeO, SAC has high catalytic activity for WGS reaction
above 610 K (337 °C) through carboxyl mechanism. Moreover,
TOF values are not affected by the pressures under the
temperature range of 300-800 K due to the constant volume
before and after the WGS reaction (CO + H,O = CO, + H,). As
shown in Fig. 5(c), when the temperature is 610 K, the TOF values
in pathway III approximately five orders of magnitude higher than
those in pathway 1. However, at a pressure of 1 bar, the TOF value
gradually increases with the rise of temperature (Fig. 5(d))
especially in carboxyl pathway III, showing that the TOF values
are significantly affected by temperature, and the catalytic activity
of the Pt;/FeO, for WGS reaction is significantly improved above
the medium temperature [113,115,116] through carboxyl
mechanism.

3.5 Experimental results

3.5.1 Characterizations of the catalysts

The Pt)/FeO, and Ir)/FeO, catalysts were synthesized by a
coprecipitation method with a normal metal loading of 0.1% to
ensure the atomic dispersion. The actual loadings of the catalysts,
detected by ICP-OES, were only 0.016 wt.% for Pt,/FeO, and
0.033 wt.% for Ir,/FeO,. This suggests a serious metal loss during
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the catalyst preparation process, consistent with our previous
results [7, 18].

The high dispersion of Pt and Ir was examined by AC-HAADF-
STEM. AC-HAADF-STEM images with relatively low
magnification reveal clearly that neither Pt/Ir NPs nor small Pt/Ir
clusters are visible (Figs. 6(a) and 6(c)), whereas high-
magnification images unambiguously demonstrate the existence
of single atoms of Pt and Ir dispersed on the FeO, support (Figs.
6(b) and 6(d)).

3.5.2 The performance of Pt,/FeO, and Ir;/FeO, catalysts

The intrinsic activity of both Pt;/FeO, and Ir,/FeO, SACs in WGS
reaction was measured at 300 and 350 °C, and the results are
summarized in Table 1. It shows that at both temperatures, the
Pt,/FeO, SAC exhibits higher intrinsic activity than Ir,/FeO, SAC,
in good agreement with the DFT calculated results.

4 Conclusions

In this study, first-principles theoretical calculations and
experiments have been performed to explore the catalytic
mechanism and activity of Pt;/FeO, SAC for WGS reaction, where
four possible reaction mechanisms, namely the redox, carboxyl,
formate, and DMAS, are investigated. The results indicate that the
Pt)/FeO, SAC has high catalytic activity for WGS reaction at
medium temperature, and the most favorable pathway is the
carboxyl mechanism with the transformation of cis-COOH to
trans-COOH on Pt; single metal active center. The carboxyl
intermediate is beneficial for promoting the production and
desorption of CO, molecule with energy barrier of 1.16 eV. It is
also high energy consumption (> 3.0 eV) for the direct formation
of H, by the two protic H atoms from two different OH groups
over the surface of Pt;/FeQ,, similar to the Ir,/FeO, for WGS
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Figure5 Microkinetic simulations. (a) and (b) TOF maps of products of WGS reaction on Pt;/FeO, SAC in pathways I and III with pressure (1-100 bar) and
temperature (300-800 K). CO:H,O ratio is fixed at 1. (c) and (d) TOF contributions from pathway I (violet curve) and pathway III (pink curve) at the temperature of

610 K and the pressure of 1 bar, respectively.
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Figure6 The AC-HAADF-STEM images of ((a) and (b)) Pt,/FeO, catalysts and ((c) and (d)) Ir,/FeO, catalysts at different magnifications. The uniformly distributed

bright dots represent metal Pt and Ir single atoms.

Table1 The intrinsic activity of Pt;/FeO, and Ir,/FeO, catalysts

Sample Metal loading (wt.%)* Con. (%) Reaction temperature (°C) Specific rate (mol/(gewrh)) TOF (s)
Pt,/FeO, 0.016 11.79 300 11.53 0.62
Ir,/FeO, 0.033 8.23 300 6.77 0.36
Pt,/FeO, 0.016 18.70 350 60.95 3.30
Ir,/FeO, 0.033 13.91 350 22.88 1.22

* The metal loadings were detected by ICP-OES.

reaction. Compared to the DMAS mechanism, the occurrence of
carboxyl mechanism is almost localized at the Pt-O3 single metal
active site, and the O,,. is not transferred between Pt, single atom
and the adjacent Fe. The nature of high catalytic activity is the
coordination ability and the local coordination environment of Pt
of Pt,/FeO, of SACs in the process of WGS reaction. Our work
unearthed a new application of the first practical SAC Pt;/FeO,
showing high catalytic activity and provides insights for
understanding the catalytic nature for WGS reaction, thus
facilitating rational design of new single-atom catalysts.
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