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ABSTRACT

As a new type of fluorescent nanomaterials, carbon dots (CDs) have exhibited excellent photoluminescence properties with
tunable emission and high quantum yields, hence they have attracted an increasing interest in diverse research areas. The
photoluminescence performance of CDs is primarily influenced by their precursors, which directly or indirectly determine the
structures and specific functions of the resultant CDs. In this review, we aim to summarize the recent progress on synthesis of
CDs using small aliphatic molecules, anilines, polyphenol, polycyclic aromatic hydrocarbons, organic dyes, or biomass as
precursors. The associations of the physical and chemical properties of the CDs with their respective precursors are
comprehensively investigated, and the potential applications and future development of CDs are discussed in detail. It is hoped
that this review will open new horizons for CDs preparation by rational selection of the precursors from the vastly available
carbon sources and the critical comments presented, here could inspire and guide future research in the design of multifunctional

CDs.
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1 Introduction

Carbon dots (CDs) have emerged as a unique member of the
carbon family due to their excellent photoluminescence
characteristics [1], good biocompatibility, and the versatile
preparation methods with wide availability of precursors [2]. The
bright fluorescence from carbon nanoparticles was first observed
in 2004 by Xu et al. during their preparation of single-walled
carbon nanotubes by electric arc discharge [3]. After two years,
Sun et al. synthesized various sized quasi-zero-dimensional (0D)
carbon nanoparticles and named CDs for the first time [4]. Since
then, a great deal of breakthroughs has been made both in
theoretical understanding of the photoluminescence (PL)
mechanism and the exploration of various applications in the
fields, such as biomedicine, catalysis, optical devices, and anti-
counterfeiting [5-7]. Currently, CDs can be divided at least into
four categories, ie., graphene quantum dots (GQDs), carbon
quantum dots (CQDs), carbon nanodots (CNDs), and carbonized
polymer dots (CPDs) [8,9].

The so-called top-down or bottom-up methods are usually
applied for the synthesis of CDs [8]. In the top-down route, CDs
were successfully prepared from pyrolysis, laser ablation,
electrochemical, or chemical oxidation etching of carbon rich
materials, such as charcoal, carbon char, carbon black, carbon
nanotubes, and graphite [10]. These synthetic routes, however, are
often suffered from time-consuming, cumbersome procedures,
and low yield of CDs. In contrast, the bottom-up route exhibits
more advantages in the selection of precursors and carbonization

methods. Widely available carbon sources, such as small aliphatic
organic molecules, aromatic organic molecules, polymer, and
natural biomass, have been used as precursors to prepare CDs by
hydrothermal/solvothermal, microwave-assisted, and pyrolysis
methods. Such synthetic methods have high degree of
controllability [11]. The selection of carbon source has a great
influence on the performance of the resultant CDs, as CDs with
different sizes, morphologies, structures, and functional groups
may be obtained from different carbon sources. It is interesting to
note that the CDs prepared from small organic molecules usually
have short emission wavelengths, while CDs obtained from more
complexed organic compounds often have large conjugation
domains and long emission wavelengths [12]. Besides, CDs
prepared from carbon sources rich in amino or polyphenol
structures tend to exhibit good reducibility [13]. CDs with large
numbers of pyrrolic nitrogen show good oxidase activity [14], and
CDs dopped with metal ions such as gold, silver, copper, and
manganese also exhibit oxidase-like properties [15-17]. Thus, the
properties of CDs are closely related to their precursor materials,
and the selection of precursor strongly influences the performance
of CDs and determines their applications.

Over the past decade, a large number of review papers have
been published and different aspects of CDs, including the PL
mechanisms of CDs [18-21], surface engineering [22, 23], large-
scale synthesis [24], red/near-infrared (NIR) emission [25], the
effects of plant systems [26], energy conversion and storage [27],
antibacterial and antibiofilm mechanisms [28], environmental
applications [29], biomedicine and sensing applications [30, 31],

Address correspondence to Chan Wang, wangchan@jiangnan.edu.cn; Qijun Song, gsong@jiangnan.edu.cn

it % £ 2wt

Tsinghua University Press

@ Springer

Qo
o
t
<
=
2
>
()
x




11222

have been comprehensively reviewed. In present work, we are
trying to focus on the more recent advances in the precursor-
oriented preparation of CDs with emphasis on our own
experiences of CDs preparation based on scrutinizing selection of
functional chemical reagents as the carbon sources. It is hoped
that this review can supply some mechanistic perspectives on the
formation of CDs, provide some practical guidance for the use of
functionalized CDs, and promote more remarkable development
of fluorescent CDs in diverse application fields.

2 Various precursor-derived CDs

Here, we mainly summarized CDs synthesized by using small
aliphatic molecules, anilines, polyphenol, polycyclic aromatic
hydrocarbons, organic dyes, and biomass as precursors (Table 1)
and explored the specific functions of CDs inherited from
precursors.

2.1 CDs obtained from small aliphatic molecules

Citric acid (CA) is perhaps the most frequently utilized precursor
for the bottom-up synthesis of CDs. Its structure contains multiple
hydroxyl and carboxyl groups, which allows the introduction of
multiple functional groups on the surface of the resultant CDs. In
addition, CA can form rings with other precursors or with itself,
thereby increasing the effective conjugation length in the CDs,
which makes it a versatile and popular choice for the preparation
of CDs [32]. By combining CA with other small molecules
containing nitrogen, sulfur, or phosphorus, a variety of CDs has
been produced through methods such as calcination,
hydrothermal treatment, microwave irradiation, and ultrasonic
processing [8]. Yang et al. showed that the photoluminescence
quantum yields (QY) of CDs prepared with only CA are generally
less than 10%, and this figure increased to over 10% when CA was
co-carbonized with ethylenediamine (EDA). After carefully
optimizing the ratio of CA and ethylenediamine, blue-emissive
CDs with QYs up to 80% were obtained (Fig. 1(a)) [33]. Schneider
et al. successfully synthesized three different types of CDs by
employing CA and different nitrogen sources, ie, EDA,
hexamethylenetetramine, and triethanolamine (Fig. 1(b)). They
also observed that high nitrogen content typically correlates with
high PL QYs of CDs [34]. Similarly, a nitrogen-doped CDs
synthesized from CA and monoethanolamine was also reported
[35]. The formation process of nitrogen-doped CDs was
investigated with various characterization techniques, including
transmission electron microscopy (TEM), fluorescence spectra,
and thermogravimetric analysis, and the results revealed that the
formation of CDs undergone continuous polymerization,
aromatization, nucleation, and growth processes (Fig. 1(c)).

Apart from co-carbonization with EDA, nitrogen doping can
also be achieved by using urea, which is a readily available
nitrogen source for the preparation of multicolored fluorescent
CDs via solvothermal method. In this regard, Miao et al
synthesized a series of multi-color emitting CDs with CA and urea
as the raw materials, differently colored CDs were obtained by
modifying the reaction temperature and the ratio of CA/urea in
N,N-dimethylformamide (DMF) [36]. These authors proposed
that the higher temperature and CA/urea ratio tended to increase
the degree of graphitization and carboxyl content in the CDs,
leading to the shift in emission color from blue/green to red. Qu’s
group also synthesized a series of blue-emissive CDs via
microwave irradiation of CA and urea as the raw materials. The
obtained CDs were found to have excellent photoluminescence
properties [37]. Subsequently, they proposed a method to control
the bandgap emission of CDs by solvothermal treatment of CA
and urea in different solvents (water, glycerin, and DMF) to
achieve panchromatic emission of CDs (Fig. 1(d)). They
demonstrated that the degree of dehydration and carbonization of
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the precursors can be controlled by solvents, resulting in the
formation of CDs with different sizes of sp’ conjugate domains,
which are accountable for the different emission colors ranging
from blue to red [38]. In the formation of CDs, functional groups
such as hydroxyl, carboxyl, or amine offer potential fusion sites
during the dehydration process. For example, the classic
preparation of CDs by solvothermal treatment of CA and urea
undergoes the initial formation of short cylindrical structures with
diameters ranging from 20 to 40 nm and axial lengths ranging
from 7 to 20 nm, which were called as carbon nanorolls.
Interestingly, under 655 nm laser irradiation, the curvilinear
structure of the carbon nanorolls can unravel into carbon
nanobelts with widths ranging from 7 to 20 nm and lengths
reaching several hundred nanometers. Based on the special
photothermal-induced PL changes during the transformation
from carbon nanorolls to carbon nanobelts, multi-level anti-
counterfeit encryption has been achieved (Fig. 1(e)) [39].

Ascorbic acid (AA), commonly referred to as vitamin C,
possesses strong reducing properties and can act as an electron
donor and reduce other molecules in the body. This characteristic
of AA is significant for various reasons, including its ability to
neutralize harmful free radicals and protect cells and tissues from
oxidative damage. AA is frequently selected in the preparation of
reductive CDs [40-43]. These CDs generally exhibit excellent
reducibility and good stability. They can react with CIO-, MnO,,
and NOj;™ ions, hence were used for dynamic detection of these
reactants in real-time. The reduction of Fe* to Fe** could lead to a
significant fluorescence change in the CDs, which was developed
as fluorescent probe for Fe** sensing and monitoring the dynamic
equilibrium between Fe** and Fe* [44-47].

Apart from AA, other reductive precursors such as glucose,
fructose, and tannic acid (TA) are also utilized in the preparation
of CDs [48]. Hallaj et al. demonstrated that CIO™ could induce
direct oxidation of CDs derived from glucose pyrolysis, resulting
in the generation of chemiluminescence emission. The observed
chemiluminescence was proposed to stem from electron transfer
annihilation and resonance energy transfer mechanisms [49]. In
the presence of boric acid, urea, or sodium persulfate, CDs doped
with boron, nitrogen, or sulfur were synthesized using glucose as
the primary carbon source. The resulting CDs exhibited
remarkable antioxidant properties, and the nitrogen-doped CDs
displaying the highest free radical scavenging activity compared to
AA, which was proved by the 2,2'-azino-bis(3-ethylbenzthiazoline-
6-sulfonic acid) (ABTS) method [50]. The above results suggest
that the CDs obtained from reductive aliphatic molecules can not
only inherit the reducibility of the precursors but also exhibit good
optical properties.

Briefly, in the synthesis process of CDs, the precursors play a
crucial role, which not only affect the structure and composition
of CDs, but also determine their optical properties and
applications. The size, surface functional groups, and energy band
structure of CDs can be adjusted by choosing different precursors.

2.2 CDs obtained from anilines and polyphenol

Aniline-like compounds have emerged as a promising class of
precursors for the synthesis of CDs. They possess self-doped
nitrogen elements and can be facilely oxidized and polymerized
into large conjugated structures, thereby affording the CDs with
diverse structures and properties [51]. Other heteroatom doping,
including sulfur, phosphorus, or boron were also investigated to
enhance the performances of CDs [52-54]. The highly conjugated
structure of aniline derived CDs enables efficient electron transfer
and exhibits remarkable electrical conductivity. Thus aniline-like
compounds hold great potential for the preparation of CDs with
advanced physiochemical properties.

By using o-phenylenediamine (o-PDA) as the sole carbon
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Table1 CDs obtained from different type of precursors
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Category Precursors Methods Emission color Applications References

CA, EDA Hydrothermal Blue Anticounterfeiting [33]
CA, monoethanolamine Reflux Blue Cell imaging [35]
CA, urea Solvothermal Blue/green/red LED [36]
CA, urea Microwave Green Anticounterfeiting/imaging [37]
CA, urea Solvothermal  Blue/green/yellow/orange/red LED [38]
Small aliphatic molecules CA, urea Solvothermal Green/red Encryptions [39]
AA, B-alanine Microwave Green Cell imaging [42]
AA, glucose, and fructose Hydrothermal Blue Drug loading [48]
Glucose Pyrolysis Blue Detection of CIO~ [49]
Glucose, l.>0ric acid, urea, and Hydrothermal Blue Antibacterial [50]

sodium persulfate
0-PDA, catechol, and H;PO,  Hydrothermal Red Cell imaging [52]
o-PDA Hydrothermal Yellow Detection (s)(f)lv‘\; ::Z in organic [55]
p-PDA Hydrothermal Green/yellow/red Cell imaging [56]
m-PDA Solvothermal Green Cell imaging [58]
O_PDA,’ H,I_PD,A P _PD,A’ and Solvothermal Blue/green/red Anticounterfeiting [62]

dithiosalicylic acid
Anilines and polyphenol 0-PDA, dopamine Hydrothermal Red Vivo imaging/LED [63]
0-PDA, AICL-6H,0 Solvent-free Red/NIR Cell imaging [64]

pyrolysis
O-PDA, glacial acetic acid Hydrothermal Ultraviolet LED [65]
1,2,4-Triaminobenzene Calcination Red Cell imaging [67]
Resorcinol and AA Hydrothermal Blue Cell imaging/antioxidant [73]
m-Aminophenol Hydrothermal Green Cell/vivo imaging [13]
Phloroglucinol Solvothermal Blue/green/yellow/red LED [162]
ANSA, EDA Solvothermal Green Fluorescent ink [76]
PAN Solvothermal Yellow Detection of Cr® (78]
:?(r;ion;i;?;zhgfl Solvothermal Orange LED [79]
1,3-Dihydroxynaphthalene, KIO,  Solvothermal Red LED [80]
1,10-Phenanthroline, CA Solvent-f.ree Blue Detection of Fe*'/Fe* [89]
Polycyclic aromatic 5-Amino-1,10-phenanthroline, PYr.OIYSIIS .
hydrocarbons Lo Calcination Orange Detection of Cd** [91]
salicylic acid

3,4,9,10-Tetranitroperylene Solvothermal Red LED [92]
PTCAD, urea Solvothermal NIR Vivo imaging [93]
TA Microwave Blue Detection of picric acid [94]
TA Calcination Blue Detection of Ni* [97]
TA Hydrothermal Blue Detection of Cu* [98]
Cyanine dye Solvothermal NIR PDT [106]
Polythiophene Solvothermal NIR PDT [107]
Polythiophene derivate Hydrothermal Yellow PDT [108]
Methylene blue Hydrothermal Red PDT [11]
Organic dyes Curcumin Solvothermal Blue PDT [109]
Riboflavin, EDA Solvothermal Green PDT [110]
MOTlo-hydroxylphe%nyl Hydrothermal Green PDT [111]

triphenylporphyrin
Mn(II) phthalocyanine Solvothermal NIR PDT [102]
Apple juice Hydrothermal Blue Cell imaging [114]
Durian Hydrothermal Blue Fluorescent ink [117]
Cucumber Hydrothermal Blue Detection of Pb* [119]
Starch Hydrothermal Blue Cell imaging [120]
Highland barley Hydrothermal Blue Detection of Hg* [121]
Biomass Ginkgo leaves Hydrothermal Blue Cell imaging [124]
Purslane leaves Hydrothermal Green Detection of formaldehyde [125]
Scallions Microwave Blue Detection of Cd* [128]
Spinach Solvothermal Blue/c‘i’iﬁ? tse(;ilégrayish Anticounterfeiting [214]
Taxus leaves Solvothermal Red Vivo imaging [215]
Mulberry leaves Hydrothermal Blue Detection of dopamine [216]
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Figure1 (a) The synthetic route of CDs using CA and EDA. Reproduced with permission from Ref. [33], © Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2013. (b) Synthesis conditions of CA-based CDs using three different nitrogen-containing precursors. Reproduced with permission from Ref. [34], © American
Chemical Society 2016. (c) The CDs prepared from CA and monoethanolamine. Reproduced with permission from Ref. [35], © The Royal Society of Chemistry 2015.
(d) The growth process of CDs in different solvents. Reproduced with permission from Ref. [38], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2017. ()
The structural evolution of CDs to CNRs and CNRs to CNBs via the solvothermal fusion and the photothermally induced unfolding steps, respectively. Reproduced

with permission from Ref. [39], © American Chemical Society 2020.

source, Chao et al. have successfully synthesized CDs with
multicolor emission in different solvents (Fig. 2(a)) [55]. Similarly,
multi-color emitting CDs were obtained by hydrothermal
treatment of p-phenylenediamine (p-PDA) at different pH
conditions. The resultant CDs showed pH sensitive emission of
red, yellow, and green color under alkaline, neutral, and acidic
condition, respectively [56]. Subsequently, m-phenylenediamine
(m-PDA) also was used as a precursor for the synthesis of blue,
green, and red emissive CDs (Fig. 2(b)) [57-59]. However, the
mechanisms behind the varied fluorescence emissions of CDs
have not been fully explored. In order to gain a comprehensive
understanding of the effects of different precursors on the formed
CDs, researchers have conducted a systematic investigation using
all three precursor materials (0-PDA, m-PDA, and p-PDA). Jiang
et al. synthesized multicolored fluorescent CDs via solvothermal
treatment of the three isomers, ie., 0-PDA, m-PDA, p-PDA, and
the obtained CDs emitted bright blue, green, and red light,
respectively (Fig.2(c)) [60]. When the precursor is p-PDA, the
resultant CDs demonstrated significantly red-shifted fluorescence
and higher quantum yield compared to those obtained from the
other two isomers, despite the three CDs have identical elemental
compositions. A method for producing color-adjustable CDs has
been proposed by hydrothermal treatment of p-
aminobenzenesulfonic acid with o-, m-, or p-PDA and the
resulting CDs also emit blue, green, and orange fluorescence,
respectively. The different emission colors of the CDs can be
attributed to differences in the particle size, degree of oxidation,
and the N-related states on CDs surfaces [61]. These results
indicate the optical properties of CDs were heavily dependent on
the precursor selection, which gives an important guide for the
design and preparation of required CDs. Solvothermal treatment

Tsinghua University Press

of 0-PDA, m-PDA, and p-PDA, along with dithiosalicylic acid in
acetic acid solvent resulted in red (620 nm), green (520 nm), and
blue (478 nm) emissive CDs, respectively [62]. X-ray
photoelectron  spectroscopy (XPS) spectra and transmission
electron microscopy (TEM) images revealed that the red-shift in
luminescence was accompanied by a gradual increase in particle
size and C=0O content of the CDs. These findings provide valuable
insights into the correlation between the optical properties and
structural characteristics of CDs and suggest a promising strategy
for the tunable synthesis of CDs with desirable optical properties.
In the past few years, the preparation of CDs with simple
organic molecules and PDA as the representative precursor have
been extensively investigated. For example, the influence of
hydrothermal temperature on CDs formation was systematically
investigated by Yang et al. using o-PDA and dopamine as
precursors (Fig.2(d)) [63]. It was found that the dehydration
reaction of the two precursors at relatively low temperatures
resulted in intertwined polymer chains with benzene rings and
heterocycles in the backbone. In contrast, large molecules or
crosslinked polymer chains were the dominant structures in the
CDs synthesized at 150 °C. When the temperature was increased
to 200 °C, a carbogenic core with a large sp> domain was formed,
with many polymer chains still linked to the carbon cores. And
nearly all of the molecules and polymer chains were carbonized at
250 °C, with freshly formed C=C bonds ordered and assisting in
the growth of CDs. The carbogenic cores were the dominant
structure in CDs synthesized at 250 °C, hence the blue emission
mostly or exclusively arose from the carbogenic cores [63]. In the
following year, Yang et al. reported a nitrogen-doped CDs by
using 0-PDA as a carbon source with the assistance of HNO; [54].
It was observed that the conjugated aromatic system and
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Figure2 (a) The CDs obtained from o-PDA. Reproduced with permission from Ref. [55], © The Royal Society of Chemistry 2018. (b) Blue CDs, green CDs, and red
CDs prepared from m-PDA and urea. Reproduced with permission from Ref. [57], © American Chemical Society 2021. (c) Three kinds of CDs obtained from
solvothermal treatment o-PDA, m-PDA, and p-PDA, respectively. Reproduced with permission from Ref. [60], © Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2015. (d) The CDs prepared from o-PDA and dopamine. Reproduced with permission from Ref. [63], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2017.
() The illustration of the synthesis and purification process of the UVB-CDs. Reproduced with permission from Ref. [65], © Wiley-VCH GmbH 2022. (f) Six types of
CDs prepared with different method. Reproduced with permission from Ref. [51], © Wang, B. Y. et al. 2022.

hydrogen bonding were enhanced with the increase of HNO,
dosage, resulting in the enlargement of the CDs and the
achievement of red emission. Interestingly, Liu et al. reported a
new red/near-infrared emissive CDs, which was formed in the
presence of AICl;-6H,O [64]. Their study also suggests that the
formation of the sp’-conjugated aromatic systems is a favorable
pathway for achieving red/NIR emission in the CDs. On the
contrary, in order to obtain fluorescence CDs with short
wavelength emission, it is necessary to disrupt the conjugated
structure of CDs, reducing the efficiency of the sp? mt-system. In
this respect, Xu et al. present the preparation of CDs that emit in
the ultraviolet (UV) range, where o-PDA was utilized as the
precursor, and acetic acid was employed as a promoter to induce
sp® bonding in the CDs (Fig. 2(e)) [65]. This approach effectively
reduced the size of sp’ conjugated domains within the CDs,
leading to a blue-shifted photoluminescence emission in the UV B
(UVB) region, with a maximum emission wavelength of 308 nm.
However, how to regulate the structure of CDs between sp* and
sp’ bonding is still challenging. It is also not clear if the
fluorescence emission of CDs depends solely on the size of the
sp*/sp* hybridized domains. To address this challenge, Wang and
colleagues have tried to validate the hypothesis by preparing CDs
with CA (sp® hybridized structures) and o-PDA (sp* hybridized
structures) as the precursors [66]. Multicolor CDs were obtained
by manipulating the reaction conditions to alter the ratio of
hybridized domains and meticulous tuning the temperature and
pH during the hydrothermal reaction. Seven unique colors of
fluorescent CDs were successfully synthesized, and their
maximum emission wavelengths are located at 413, 445, 472, 505,
567, 592, and 635 nm, which span the entire visible spectrum.
Theoretical and experimental investigations revealed that the blue
emission increases with the increase of the sp® hybridization in

CDs, whereas a decrease in the proportion of sp® hybridization
leads to a prevalence of sp® hybridization, resulting in a gradual red
shift in the fluorescence emission peak of CDs. Therefore, it is
possible to design CDs that emit multiple colors by modifying the
proportion of sp* and sp® hybridized domains. Recently, Lu et al.
found that most red fluorescent CDs prepared from o-PDA as
precursor exhibit similar optical characteristics [51]. As shown in
Fig. 2(f), six kinds of fluorescent CDs were prepared by reacting o-
PDA with dopamine, ionic liquid (1-butyl-3-methylimidazolium
hexafluorophosphate), dicyandiamide, phosphoric acid, sulfuric
acid, or nitric acid, respectively [51]. These CDs exhibit the same
PL emission and absorbance spectra, furthermore, the sizes and X-
ray diffraction peaks of these six CDs obtained are identical, but
the number and orientation of lattice fringes vary. They believe
that different preparation methods had almost no effect on the
carbon nuclei structure of the CDs, only affect the degree of
carbon core stacking and different surface polymers. Thus, they
have concluded that the carbon core regulates the emission center
of CDs, while the polymer shell regulates the intensity of PL
emission.

In addition to utilizing the sp* conjugation properties of simple
organic molecules, the protonation, deprotonation, and
reducibility of aromatic molecules containing specific functional
groups could also be inherited in the resultant CDs. For example,
we have prepared a kind of pH-sensitive fluorescent CDs through
direct calcination of 1,2,4-triaminobenzene, which is known as a
pH sensitive precursor [67]. Upon increasing the pH from 4.0 to
8.0, the fluorescence emission of the CDs is shifted from 650 to
585 nm. The pH dependence of CDs is ascribed to the reversible
transformation between azo and quinone structures, which is
induced by protonation and deprotonation (Figs. 3(a) and 3(b)).
Zhang et al. used p-PDA as the carbon source and successfully
synthesized red-fluorescent CDs via a hydrothermal method with

www.theNanoResearch.com | www.Springer.com/journal/12274 | Nano Research
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Figure 3 (a) Ultraviolet-visible (UV-vis) absorption spectra and fluorescent spectra of a series of CDs at different pH values with an excitation of 444 nm. (b) The
structures of CDs at different pH values by DFT calculations. Reproduced with permission from Ref. [67], © The Royal Society of Chemistry 2020. (c) Protonation of
surface 2,3-diaminophenazine fluorophore strongly affects the molecular state of CDs. Reproduced with permission from Ref. [68], © Zhang, Q. et al. 2021. (d) The pH-
responsive CDs obtained from o-PDA, p-PDA, and dopamine. Reproduced with permission from Ref. [69], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2019. (e) and (f) The CDs based o-PDA. Reproduced with permission from Ref. [70], © Elsevier Ltd. 2021. Reproduced with permission from Ref. [71], © American

Chemical Society 2021.

the assistance of sodium sulfate, which is also pH-sensitive (Fig.
3(c)) [68]. Systematic analysis revealed that the molecular state of
CD:s is affected by the protonation and deprotonation of 2,3-
diaminophenazine, which is an oxidation product of the reactant
0-PDA. The protonation and deprotonation occur, respectively, in
acidic and alkaline environments, leading to changes in the
photon transition band gap and triggering red fluorescence
emission with a significantly altered emissive peak width.
Coincidentally, o-PDA, p-PDA, and dopamine were used to
fabricate red emissive two-photon fluorescent CDs via a
hydrothermal method (Fig. 3(d)). The resultant CDs exhibit a pH-
dependent response in the pH range of 1.0 to 9.0, and a linear
response was observed within the pH range of 3.5 to 6.5. These
properties are particularly useful for monitoring the changes of
intracellular pH [69]. Under strongly acidic conditions, the -NH,
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groups of the CDs undergo protonation, which helps to prevent
aggregation by creating electrostatic repulsion. On the other hand,
the CDs exhibit partial deprotonation in alkaline conditions,
leading to a near-complete quenching of fluorescence. The CDs
derived from aniline-like compounds have demonstrated a great
potential for pH sensing applications due to the protonation and
deprotonation induced transformation. Based on such
mechanism, pH-responsive orange and red emissive CDs
obtained from o-PDA were also used for anti-counterfeiting and
endoplasmic reticulum (ER) imaging, respectively (Figs. 3(e) and
3(f) [70,71]. Hence with simple precursors and synthetic
methods, the obtained CDs can retain the unique optical
properties, making them an attractive candidate for pH
sensing applications.

The precursors containing aromatic amino or phenolic
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hydroxyl groups are easily oxidizable, thus they have used for
preparation of CDs with redox applications. The CDs rich in -OH
usually exhibit free radical scavenging activity, which highlights
their potential in biomedical applications. Lu et al. have developed
a one-step hydrothermal method for the synthesis of
biocompatible CDs with rich hydroxyl groups by using
phloroglucinol and phenol as precursors [72]. The prepared CDs
have demonstrated excellent antioxidant property, thus have been
used for scavenging free radicals and protecting cells from harmful
effects. Using catechol and AA as precursors, Wang et al. reported
a blue fluorescent CDs that can efficiently eliminate reactive
oxygen species (ROS) (Fig.4(a)) [73]. The excellent antioxidant
properties of CDs can be attributed to their polyphenol-like
structures with inherent antioxidant capabilities. The addition of
AA not only enhances the fluorescent efficiency of CDs, making
them suitable for various sensing applications, but also prevents
the oxidation of resorcinol during the polymerization and
carbonization process. It has been demonstrated that the phenolic
H-atoms in the CDs can effectively scavenge free radicals and
form intermediate phenoxyl radicals, which further undergo p-n
orbital overlap to achieve resonance stabilization (Fig.4(b)) [74,
75]. Therefore, the CDs with phenol-like groups can act as
efficient H-atom donors to capture ROS and mitigate chronic
inflammation. It is worth noting that aromatic molecules with
both phenolic hydroxyl and amino groups, ie., m-aminophenol
have been employed as carbon sources to prepare CDs for
dynamics monitoring oxidative stress in vivo [13]. Comprehensive
characterizations and theoretical calculations revealed that the
luminescent centers of CDs consist of a six-membered aromatic

(2)
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ring with abundant phenolic hydroxyl and amino groups, which
act as active sites for the removal of ROS, accompanying with the
fluorescence changing from yellow-green to blue (Fig.4(c)).
However, above mentioned CDs usually lack selectivity, as they
can react non-specifically with various ROS. To address this issue,
our group proposed a new strategy by using phosphate to partially
protect the active sites, intending to differentiate between different
ROS (Fig.4(d)) [52]. To achieve this purpose, we initially
synthesized a yellow fluorescent CDs by using o-PDA and
catechol as the precursors. The resultant CDs show the similar
characteristics to above mentioned CDs, ie., they have sensitive
fluorescence response to ROS but lack of selectivity. After further
treatment of the yellow emissive CDs with phosphoric acid, it is
interesting to note that a kind of narrow bandwidth red
fluorescent CDs was obtained, which displayed sensitive
colorimetric and fluorescent responses to hydroxyl radicals (-OH),
superoxide anion radicals (-O,), and singlet oxygen (‘O,), but
have no response to H,0, (Fig. 4(e)). We think this is a significant
finding, because H,0, is ubiquitously existing in various biological
samples, hence could be a primary interference for ROS detection.
The structures of the CDs were comprehensively investigated
experimentally and theoretically and the results revealed that the
as-prepared CDs consist of two five-membered aromatic rings
joined together by pyrophosphate groups. The phosphate group
protects the amino terminals of the aromatic ring, which is the
underlying reason for the inactivity of the CDs to H,O, [52]. All
these results tend to conclude that the CDs obtained from
polyphenol and aniline-like precursors as the carbon source can
perfectly inherit their unique antioxidant properties. Although the
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CDs synthesized so far are still not able to distinguish all kinds of
ROS, the novel strategy introduced in this work should have a
great potential in the designing species selective CDs sensors.

In conclusion, the CDs obtained from anilines and polyphenol
precursors can inherit and retain the following properties: (1) the
conjugated structures of precursors, which facilitate long-
wavelength emission of CDs; (2) the abundant amino functional
groups, making the resulting CDs highly sensitive to pH based on
protonation and deprotonation mechanisms; and (3) the
reducibility of the precursors, as CDs inherit a large number of
easily oxidizable aromatic phenolic hydroxyl and amino groups,
which can be used to remove ROS.

2.3 CDs obtained from polycyclic aromatic compounds

In many applications, it is often desirable for CDs to have a long-
wavelength emission. In this regard, the polycyclic aromatic
hydrocarbons (PAHs) have emerged as a promising class of
precursors for the synthesis of CDs. PAHs possess large
conjugated structures, facilitating the formation of long-
wavelength CDs with the large sp> domain. Accordingly, they have
garnered significant attention as a platform for the development of
novel CDs with tunable optical properties.

Naphthalene and its derivatives belong to PAHs with two
benzene rings, whose conjugated bonds can be formed between
the sp” hybridized carbon atoms on the naphthalene ring, resulting
in a larger conjugated structure. Green-emitting CDs (G-CDs)
were  successfully  synthesized with  microwave-assisted
solvothermal method by using 1-amino-2-naphthol-4-sulfonic
acid (ANSA) and EDA as precursors, and ethanol as the solvent
(Fig.5(a)) [76]. The carbon core of as-prepared G-CDs is
surrounded by functional groups such as hydroxyl, sulfonyl, and
amino groups. At high temperatures and pressure, ANSA and
EDA undergo dehydration and deamination reactions, producing
molecular copolymers. These copolymers further polymerize,
resulting in the formation of large conjugated structures. As single
emission behavior was observed, Long et al. speculate the G-CDs
might have a unique PL center, which is independent of the size.
The surface defects of G-CDs, primarily caused by the edge S-O
and -NH, groups, were considered to be closely related to the PL
center of the G-CDs. Another naphthalene derivatives, 1-(2-
pyridylazo)-2-naphthol (PAN) was also employed by Feng et al.
for CDs preparation. As a chelating agent, PAN is able to trap
Mn* in solution. With the proceeding of the carbonization
process, Mn** cations can act as connectors between the chelating
agents, forming the metal-coordinated functional groups in the
carbon framework, which ultimately promote the formation of
yellow CDs [77]. Following their previous work, Feng and
colleagues utilized PNA as a precursor and coordinated it with
transition metal Co™ to synthesize yellow fluorescent CDs (Y-
CDs) via a solvent-thermal reaction. The resulting CDs show high
sensitivity in detecting Cr* ions (Fig. 5(b)) [78]. Although the
naphthalene-based carbon sources form a conjugated structure
during the preparation of CDs, their long side chains and
excessive functional groups limit the further expansion of the
conjugated domain of the CDs. Therefore, some researchers
attempted to use simple naphthalene-based precursors as carbon
sources, which make it easier to synthesize CDs with larger
conjugated  systems. For example, 1l-amino-2-naphthol
hydrochloride and CA were used as raw materials to prepare
orange emissive CDs (Fig. 5(c)) [79]. Yang et al. have successfully
fabricated red emissive CDs with an emission center at 628 nm,
and they concluded that the precursor of 13-
dihydroxynaphthalene is crucial in determining the distinctive
structure of red emissive CDs (Fig.5(d)) [80]. 1,3-
dihydroxynaphthalene can be considered as the smallest sp’
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domain containing -OH groups. Under strong oxidation
conditions using KIO,, 1,3-dihydroxynaphthalene acts as a
building block to form large conjugated sp* clusters with -OH
groups at the edge sites, via a series of dehydrative condensation
and dehydrogenative planarization processes. Meanwhile, a
polarity-sensitive red emissive CDs (emission center at 640 nm)
were synthesized from 2,7-dihydroxynaphthalene, CA, and L-
methionine, using solvothermal method. The red emission of the
CDs is mainly due to the inheritance of the conjugated structure
of 2,7-dihydroxynaphthalene, while the nitrogen and sulfur
doping is resulted from L-methionine. Thus, the retention of
amino, hydroxyl, carboxyl, and methylthio groups on the surface
of CDs was achieved to enhance the fluorescence stability,
emission wavelength, and quantum yield [81]. It was found that
the electron cloud density of sp* hybridization in the carbon cores
increases with the increase of solvent polarity, which reduces the
energy gap between highest occupied molecular orbital (HOMO)
and d lowest unoccupied molecular orbital (LUMO) orbitals. As a
result, the transition of n-m* electrons from the first excited S,
state to the ground S, state is promoted, resulting in a red shift of
the emission wavelength of CDs.

Quinoline, also called as nitrogen-containing naphthalene, is a
heterocyclic aromatic organic compound composed of a benzene
ring fused to a pyridine ring. To construct nucleic acid-targeting
CDs, quinoline derivatives were selected as the ideal structure-
inherent carbon sources. This is because quinoline moieties are
present in most nucleic acid probes, and are highly effective at
binding to the grooves of nucleic acids through electrostatic and
m-m interactions [82-84]. Using quinoline derivatives, 4-
methylquinoline as carbon source, Peng et al. prepared RNA-
targeting red-emitting CDs by solvothermal method [85]. After
dehydration and carbonization process, quinoline molecules
construct stable conjugated carbon cores of CDs, which inherit the
groove structure of quinoline. The combination of the single-
stranded nucleic acids RNA with the grooves of CDs induces the
aggregation of CDs, leading to the fluorescence quenching of CDs
(Fig. 5(e)). Lu et al. prepared a new type of CDs by using 4,7-
dibromo-2,1,3-benzothiadiazole, and 2-aminoquinoline as the
precursors, and the obtained CDs have been proved to have a
flexible molecule (N4, N7-di(quinolin-2-yl) benzo[c] [1,2,5]
thiadiazole-4,7-diamine), consisting of a planar conjugated
benzothiadiazole (BTD) unit as the chromophore and two
aminoquinoline (4AQ) terminal units [86]. At thermodynamic
equilibrium, the large quinoline groups force the entire molecule
into a planar conformation. Conversely, the molecule can
maintain a non-coplanar conformation, with an increased
dihedral angle between the terminal quinolines and the BTD core
(Fig. 5(f)). They inferred that the non-coplanar conformation and
associated spatial constraints trigger dynamic self-assembly.
During the preparation of CDs, functional groups or carbon
skeletons of the precursor molecules may be retained on the
surface or within the interior of the CDs. Additionally, carbon
bonds typically form five- or six-membered aromatic rings that
extend into the sp* carbon network of the CDs. As a result, non-
covalent m- interactions can exist between individual layers,
which are the primary driving force behind molecular self-
assembly [86].

Phenanthrene is another frequently utilized PAHs that consists
of three fused benzene rings. Similarly, phenanthroline and its
derivatives are simple PAHs formed by the fusion of one benzene
ring and two pyridinium heterocyclic rings, which not only have
large conjugated structures, but also have good coordination
ability with metal ions. Among them, 1,10-phenanthroline is the
classic analytical reagent for colorimetric determination of Fe*.
Thus 1,10-phenanthroline has been frequently employed as the
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carbon source to synthesize CDs that have fluorescence response
to iron ions [87, 88]. For example, through a one-step solid-state
synthesis method, Igbal et al. prepared blue-emitting CDs (B-
CDs) by using CA and 1,10-phenanthroline as the precursors (Fig.
6(a)) [89]. The B-CDs inherited the strong metal chelation ability
of 1,10-phenanthroline, which can form non-fluorescent products
with Fe** and Fe”, quenches the fluorescence of B-CDs. These
quenching-type CDs respond to both Fe** and Fe*, however, they
cannot distinguish between Fe* and Fe*. Recently, our group
prepared a new type of CDs with hydrothermal treatment of 5-
amino-1,10-phenanthroline and salicylic acid, the resultant blue
colored CDs exhibit colorimetric and fluorometric dual-mode
responses to Fe* and Fe™ (Fig 6(b)) [90]. Through the
optimization of parameters such as reaction time, temperature,
and precursor ratio, the obtained CDs effectively retain the
structure of phenanthroline moieties. It was found that Fe* can
specifically bind to the pyridinic N on the surface of the CDs,
which induced the aggregation of CDs and form a large
conjugated  configuration ~ with  substantially  enhanced
fluorescence. Meanwhile, Fe** can oxidize the CDs, leading to the
decrease of fluorescence intensity (Fig. 6(c)). Interestingly, when
this solution was allowed to stand for ca. 20 min, the fluorescence
could be recovered due to the increased formation of Fe**. When
the same precursors 5-amino-1,10-phenanthroline and salicylic
acid with slightly different ratio were subjected to direct
calcination, an orange-red fluorescent CDs (OR-CDs) were
obtained [91]. The as-prepared OR-CDs not only retained the
chelating functional groups, but also have specific-sized cavity that
is capable of selectively embedding Cd*. Our experimental
characterizations and density functional theory (DFT) calculations
revealed that the OR-CDs are composed of nine aromatic ring
basic units with their spacing perfectly match the radius of Cd*.
Thus, the OR-CDs exhibited aggregation-induced emission
enhancement (AIEE) in the presence of Cd* (Fig. 6(d)).

Perylene is another commonly encountered PAHs that has a

large conjugated structure. When perylene and HNO; were
refluxed together, 3,4,9,10-tetranitroperylene was obtained, where
-NO, group underwent nucleophilic substitution and more C=0O
functional groups were generated under the solvothermal
conditions [92]. Consequently, red emissive CDs with an emission
center at 610 nm are obtained through a sequence of dehydration,
carbonization, and polymerization reactions (Fig. 6(e)). Recently,
Qu et al. also reported a new type of CDs by solvothermal
treatment of perylene tetracarboxylic dianhydride (PTCDA) and
urea (Fig.6(f)) [93]. Under DMF solvothermal conditions,
PTCAD and urea undergo fusion to form large m-conjugated
structure, and as-prepared CDs solution exhibit unprecedented
near-infrared absorption band at 720 nm and emission band at
745 nm [93]. DFT study revealed that the trimeric product of
PTCDA and urea is the luminescent unit of the CDs. Therefore,
the fusion of large conjugated benzenoid derivatives has enabled
the expansion of conjugation and achieved narrow bandgap near-
infrared emission of CDs. The surface of CDs could be further
modified with polyethyleneimine (PEI) after solvothermal
treatment, which prevents the interaction of water molecules with
their conjugated carbon cores, leading to enhanced near-infrared
emission in aqueous solution.

It is worth noting that not all organic compounds containing
multiple benzene rings can be used to produce CDs with long-
wavelength emission. TA is a polyphenolic compound composed
of ten pyrogallol (1,2,3-trihydroxybenzene) units and one glucose
molecule. After microwave assisted hydrolyzing TA in ammonia
solution, Anappara et al. obtained a kind of UV-emitting CDs.
They suggested that TA is a complex ester of pyrogallol and
glucose, which undergoes hydrolysis to yield glucose and gallic
acid derivatives in alkaline condition. When the hydrolysis
products were subjected to microwave-assisted treatment, the
clusters of sp>-bonded graphite were formed [94]. By using TA as
the sole carbon source, Huang et al. produced a kind of blue
emissive CDs via a hydrothermal method. The CDs exhibit a
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2022.

maximum PL emission center at 455 nm when excited by 350 nm
incident light (Fig. 6(g)) [95]. Similarly, Elsayed Hafez et al. also
synthesized a blue-emitting CDs by one-pot Schiff base reaction
using TA and EDA precursors (Fig. 6(h)) [96]. They believe that
the precursor molecules are cross-linked via imine bonds to form
the CDs. By controlling the pH of the solution, the imine bonds
could be further manipulated to break or re-bond, achieving
photo-switchable cycling based on the reversible aggregation
reaction. Liu et al. reported a kind of stable blue fluorescent CDs
via solvent-free calcination method using the TA as the precursor
[97]. They found that the synthesis temperature had a significant
impact on the QY and surface properties of the CDs. At a reaction
temperature of 300 °C, the CDs underwent a high degree of
graphitization, resulting in a high C=C/C-C ratio and the highest
QY of 35.4% in comparison with the CDs obtained from other
temperatures. The surface of the CDs was rich in oxygen-
containing functional groups, which facilitated selective
coordination with Ni*. Therefore, CDs synthesized at this
temperature were found to be suitable for use as a fluorescent Ni**
sensor [97]. Although different synthesis methods were used, the

resulting CDs could only exhibit short-wavelength light emission,
which suggests that CDs prepared from TA have a relatively small
conjugated structure [98]. This could be due to the fact that TA
itself has a small conjugated configuration, and during the
formation of CDs, the TA structure with glucose as the central
unit is disrupted, rather than being polymerized to form a larger
conjugated structure. Since TA has the polyphenolic structure, the
CDs prepared from it still inherit good reducibility. Kawasaki et al.
obtained a type of blue emitting nitrogen doped CDs (N-CDs) by
using TA and polyethyleneimine. It was found that the N-CDs
have unique ability to directly reduce chloroauric acid and form
gold nanoparticles without requiring any additional reducing
agents or stabilizers [99]. The retention of abundant phenolic
hydroxyl groups in CDs is believed to be responsible for their
reducibility.

Although PAHs precursors contain large numbers of aromatic
rings, not all of them are suitable for the synthesis of CDs with
long-wavelength emission. Precursors with multiple aromatic
rings that are not in the same plane tend to form CDs that emit
blue or green light. When PAHs with larger conjugated systems
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are used as the carbon sources, the resultant CDs usually exhibit
higher stability and red or near-infrared emission.

24 CDs obtained from organic dyes

Photodynamic therapy (PDT) has emerged as a highly selective
and non-invasive cancer treatment, offering several advantages
over traditional therapies [100]. PDT relies on the use of
photosensitizers, which generate singlet oxygen ('O,) or other
ROS upon light irradiation at the tumor site. These ROS
selectively destroy cancer cells by disrupting biomolecules. One of
the major benefits of PDT is its minimal invasiveness and low
drug toxicity, which make it a highly attractive option for treating
various types of cancers. Additionally, PDT offers high selectivity,
broad application range, and minimal side effects [101, 102]. It is
widely acknowledged that the success of PDT largely depends on
the choice of photosensitizer [103]. In this regard, a variety of
organic dyes as photosensitizers have been investigated and
developed for PDT applications. Among them, phthalocyanine
compounds, porphyrin compounds, phenothiazine compounds,
chlorin e6, and methylene blue are commonly used and have
shown promising results in preclinical and clinical studies. The
inherent characteristics of CDs make them suitable candidate for
PDT, which have garnered significant interest in cancer therapy
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and other biomedical applications. The versatile physicochemical
properties of CDs, including their size, shape, surface chemistry,
and fluorescence, can be modulated to optimize their
photodynamic efficacy and selectivity.

In 2012, Huang et al. first demonstrated the photodynamic
cytotoxicity of CDs as a PDT agent against cancer cells [104].
However, their strategy involved the modification of the
photosensitizer chlorin e6 on the surface of CDs, whereby the
therapeutic effect is predominantly attributed to the chlorin e6
molecule, and the CDs only serve as a delivery vehicle. Although
this approach has been demonstrated to improve the efficacy of
PDT, it still fails to address the inherent issue of photo-bleaching
[105]. Further research is needed to overcome this challenge, to
fully harness the potential of CDs as an effective platform for
photodynamic therapy. Thus, the preparation of CDs directly
from organic dyes was investigated, aiming to produce CDs that
possess favorable optical properties, biocompatibility, resistance to
photobleaching, and high yield of singlet oxygen. A hydrophobic
cyanine dye was used as photosensitive molecules to make PDT
active CDs (Fig.7(a)) [106]. After modification with poly
(ethylene glycol) (PEG 800), a hydration layer was formed on the
surface of CDs. Thus, the water solubility of CDs was increased,
making them more readily available in aqueous systems. The
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obtained CDs show a strong absorption and NIR emission within
the range from 600 to 900 nm. Under light irradiation with an
808 nm NIR laser at a power of 2.0 W/c’, the CDs can effectively
inhibit tumor growth [106]. In 2014, Ge et al. have successfully
synthesized red emissive CDs via hydrothermal method, using
polythiophene as the precursor [107]. It is noteworthy that the 'O,
generation capability of the prepared CDs surpasses that of other
PDT reagents by up to 1.3 times. Owing to their outstanding 'O,
generation properties, this kind of CDs have demonstrated
promising efficacy for PDT in vitro and in vivo. Under irradiation
with white light (400-800 nm, 80 mW-cm™), the dimension of
mice tumor in CDs treatment group exhibited a remarkable
decrease (Fig.7(b)). Lan and colleagues have developed a facile
hydrothermal method for preparing N,S-doped CDs (N,S-CDs)
derived from polythiophene derivate (Fig.7(c)) [108]. The
resultant ~ N,S-CDs  exhibit = pH-sensitive  fluorescence
characteristics, enabling them to distinguish between tumor cells
and normal cells. Upon exposure to light, the N,S-CDs generate
'O, to induce cell death to cancer cells. Moreover, the N,S-CDs
can accumulate in lysosomes and mitochondria, generating
intracellular 'O,. These subcellular-targeted CDs can effectively
enhance the efficacy of PDT. Our group also developed red
fluorescent CDs with PDT activity by using methylene blue as the
sole carbon source and phosphate as an assisting agent (Fig. 7(d))
[11]. The active therapeutic molecule methylene blue can be
integrated into the sp’ carbon framework of the red fluorescent
CDs while maintaining high 'O, yield of the precursor molecule.
Furthermore, the incorporation of phosphate groups into the CDs
prevents them from binding to DNA phosphate groups and
thereby overcomes the issue of methylene blue mediated DNA
damage. These features enable the obtained CDs to function as an
effective agent for PDT without causing harmful side effects.
Gomes et al. have developed cancer cell-targeting CDs using
curcumin and folic acid as precursors (Fig. 7(e)) [109]. The CDs
were found to interact with cancer cells through folate receptor-
mediated pathways, and demonstrated clear nuclear localization.
The generation of intracellular 'O, was enhanced with the increase
of irradiation time, ultimately improved the PDT efficacy.
Similarly, green-emitting CDs were synthesized using organic dyes
riboflavin, a naturally occurring vitamin, and the CDs also
exhibited a higher capacity to produce 'O, than riboflavin itself
(Fig. 7(f)) [110]. CDs based on porphyrin were synthesized using
mono-hydroxylphenyl triphenylporphyrin (TPP) and chitosan
(Fig. 7(g)). These TPP CDs possess the unique ability to generate
cytotoxic 'O, and exhibit good water solubility [111]. In the study,
mice with tumors were exposed to 625 nm spotlight at a power
intensity of 60 mW-cm’ for 1 h. After 13 days, it was observed that
the TPP CDs treatment group exhibited smaller tumor volumes
compared to the control group. These findings validate the
therapeutic efficacy of TPP CDs in vivo, demonstrating their
ability to efficiently suppress the growth of solid tumors. Although
PDT using CDs has shown promise as a potential treatment for
cancer, the hypoxic conditions within tumor microenvironments
and rapid oxygen consumption during PDT can significantly
hinder the effectiveness of this approach, which relies on the
presence of oxygen. Addressing these challenges is crucial for
improving the therapeutic potential of CDs in PDT for cancer
treatment. Using Mn(II) phthalocyanine as the carbon source, Jia
et al. have developed a novel Mn doped CDs (Mn-CDs), which
enables the generation O, in situ for PDT (Fig. 7(h)) [102]. The
Mn(II) in Mn-CDs can catalyze the production of O, from H,O,
in cancer cells, allowing Mn-CDs to generate O, even in low-
oxygen environments. When exposed to light, Mn-CDs
continuously react with self-supplied O, to generate 'O,, thereby
enhancing the effectiveness of PDT. As a result, photosensitive
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molecules can be used directly as carbon sources and fused into
the sp* framework of CDs during the process of dehydration
carbonization, forming CDs with photosensitive activity. This
approach can not only preserve the ability of photosensitive
molecules to produce 'O,, but also improve their photostability.
Therefore, it is reasonable to select photosensitizers as
precursors for the preparation of photoactive CDs. Embedding the
active unit of the photosensitizer into the conjugated structure of
CDs can not only improve the photostability and biocompatibility
of the photosensitizer but also enhances the effectiveness of PDT.

2.5 CDs obtained from biomass

Compared to other precursors, biomass carbon sources are an
environmentally friendly natural product, which has the
advantages of low cost, easily accessible, green, nontoxic, and
renewable in the preparation of CDs [112]. In addition, biomass
contains rich heteroatoms of nitrogen, oxygen, phosphorus, or
sulfur owing to the existence of carbohydrate, protein, lipid, and
glutathione. Converting biomass into value-added CDs can not
only achieves the rational waste usage, but also conforms to the
sustainable development strategy of green energy [113]. In the
recent years, a wide range of biomass materials have been
employed as carbon sources for the synthesis of CDs. The biomass
used includes apple [114], banana [115], durian [116, 117], rice
husk [118], cucumber [119], starch [120], highland barley [121],
egg [122], ginkgo leaves [123,124], purslane leaves [125], lichi
leaves [126], rose [127], scallions [128], fish scales [129], honey
[130], and milk [131]. The CDs derived from biomass have found
various applications such as biological imaging, drug delivery,
sensors, and catalysis [132, 133].

Sachdev et al. prepared CDs with uniform sizes by
hydrothermal treatment of coriander leaves as carbon source at
240 °C for 4 h (Fig.8(a)) [134]. The resulting CDs show a
maximum emission wavelength at 400 nm with a quantum yield
of 6.48% when the excitation wavelength was 350 nm. With the
increase of excitation wavelength, there was an observable red shift
in the emission wavelength of CDs, and the emission intensity
gradually decreased. The fluorescence of the CDs can be effectively
quenched by Fe*, due to the exceptional coordination between
Fe* and hydroxyl groups on the surface of the CDs [134].
Eggshells, egg whites, and egg yolks have been used as carbon
sources to synthesize CDs [135-137]. Wu et al. successfully
obtained nitrogen-doped CDs with an average size of 2.1 nm by
hydrothermal treatment of egg white at 220 °C for 48 h (Fig. 8(b))
[138]. They found that egg white is hydrolyzed into small
molecular weight peptides and amino acids in the initial stage of
the hydrothermal treatment. Subsequently, the amino acids
partially polymerize and carbonize into a carbon core, which
could be enveloped by large numbers of oligomers. When the
carbon core surrounded by oligomers grows larger, the outer layer
of oligomers decreases or disappears. Finally, nitrogen-doped CDs
with abundant hydroxyl and carboxyl groups are obtained [138].
By varying the excitation wavelength in the range of 290 to
450 nm, there is also a noticeable red shift in the emission peak
from 415 to 540 nm, accompanied by a rapid decrease in intensity.
When magnolia flower was hydrothermally treated at 200 °C for
8 h, blue emissive CDs were produced (Fig.8(c)), and their
fluorescence can be quenched by Fe [139]. Further study revealed
that the strong interaction between Fe** and the ~-OH, -NH,, and
—COOH on the CDs surface induced the aggregation of CDs.
Shuang et al. fabricated a bright blue fluorescent N-CDs using
astragalus as precursor (Fig.8(d)) [140]. The fluorescence of N-
CDs also can be quenched by Fe*. As the average lifetime of N-
CDs is the same as that of N-CDs-Fe™, they attributed the selective
response to the static quenching, resulting from the formation of a
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a) One-step synthesis of CDs from coriander leaves. Reproduced with permission from Ref. [134], © The Royal Society of Chemistry 2015. (b) The

formation process of the CDs based on egg white. Reproduced with permission from Ref. [138], © American Chemical Society 2015. (c) The synthesis of biomass CDs
from magnolia flower by hydrothermal treatment and the mechanism of Fe* detection. Reproduced with permission from Ref. [139], © Elsevier Ltd. 2019. (d) The
CDs obtained from astragalus. Reproduced with permission from Ref. [140], © The Royal Society of Chemistry 2020. (e) The hydrothermal synthesis of N-CDs from
wolfberry. Reproduced with permission from Ref. [141], © Elsevier Ltd. 2021. (f) The preparation process of the CDs from soybeans by ultrasonic method. Reproduced

with permission from Ref. [142], © Zhao, W. B. et al. 2019.

non-fluorescent complex between N-CDs and Fe*. Wolfberry
contains polysaccharides, sugars, betaine, various amino acids, and
carotenoids, thus N-CDs was also obtained from hydrothermal
treatment of wolfberry (Fig. 8(e)) [141]. Gu et al. found that this N-
CDs can reduce Fe* to Fe*, as evidenced by the appearance of red
color in the presence of o-phenanthroline. The surface defects on
N-CDs were formed during the reduction of Fe*, which causes
the failure of the electron transition from the excited state to the
ground state, thus the fluorescence quenching occurs for the N-
CDs. Zhao et al. reported a kind of blue fluorescent CDs, which
was prepared from soybeans using ultrasonic method (Fig. 8(f))
[142]. The resultant CDs also show sensitive fluorescence response
to Fe* in a quenching mode. They reasoned that the redox
potential of Fe*/Fe* couple (E° = 0.77) is located between the
LUMO and HOMO energy levels of the CDs, which induces
photo-induced electron transfer from the LUMO energy level to
the complex states of Fe*. Table 2 summarizes the CDs produced
from various biomasses that exhibit the capability for Fe*
detection. It is worth noting that these CDs mainly show blue
fluorescence and have an excitation-dependent behavior. The
excitation-dependent emissions of CDs are commonly attributed
to the inhomogeneity of CDs, including in size distributions and
the surface states. Natural biomasses usually consist of many
carbohydrate and amino acid moieties, hence the synthesized CDs
could have different functional groups on their surface, such as
-OH, -NH,, and -COOH groups. The fluorescence responses of
the CDs to Fe’* can be primarily classified into two mechanisms:
static quenching and electron transfer [10]. Static quenching
mechanism refers the formation of non-fluorescent complex
between CDs and Fe*, resulting in a decrease in the fluorescence
intensity of CDs. Meanwhile, the outer electron structure of Fe**
has a half-filled 3d® orbitals, which are prone to be filled by the
excited state electrons from the CDs via the coordination

interaction, resulting in nonradiative electron/hole recombination.
Above mentioned studies have thoroughly revealed the responsive
mechanisms of biomass CDs to Fe*, however, it is still not clear
why these CDs exhibit special selectivity for Fe*, which obviously
deserves further investigations in the future.

The preservation of some distinct functionalities from
biomasses precursors have also extended to the synthesis of CDs
with antimicrobial and antioxidant properties. The CDs
synthesized from natural antimicrobial plants may have excellent
biocompatibility while retaining the antimicrobial ability of the
parent plants. For example, Sun et al. used natural antibacterial
plant garlic as raw materials and synthesized nitrogen-sulfur co-
doped antibacterial CDs using a simple one-step hydrothermal
method (Fig. 9(a)) [143]. The obtained CDs possess a graphite
lattice structure with positive charge, hence these CDs are capable
of adsorbing onto the surface of negatively charged bacteria. This
electrostatic interaction can disturb the normal function of the
bacterial cell membrane, resulting in membrane damage and the
excessive accumulation of ROS. Furthermore, once the small-sized
CDs particles enter the bacterial cell, they suppress the activity of
bacterial antioxidant enzymes, exacerbating oxidative stress and
ultimately leading to bacterial death. Tea polyphenols are the most
significant components of tea, which include catechins,
epicatechins, flavonoids, and theaflavins. Several types of
polyphenols such as anthocyanins, resveratrol, and flavonoids are
the effective components found in grapes that possess strong
antioxidant properties. Similarly, flavonoids and organic acids in
date and clementine peel exhibit potent antioxidant and anti-
inflammatory activities. In this regard, the effective components of
these four plants have antioxidant properties and can scavenge
free radicals and protect cells from oxidative damage. It is
interesting to note that the CDs derived from these biomasses
inherit the antioxidant property [144]. Murru et al. and Safranko

www.theNanoResearch.com | www.Springer.com/journal/12274 | Nano Research



11234

Table2 CDs prepared from different biomass carbon sources and their application in Fe* detection

Nano Res. 2023, 16(8): 11221-11249

Carbon source Method Range LOD Mechanism References
Coriander leaves Hydrothermal 0-6 uM 0.4 uM Static quenching [134]
Egg white Hydrothermal 50-250 uM — — [138]
Magnolia flower Hydrothermal 0.2-1 uM 0.088 uM Static quenching [139]
Astragalus Hydrothermal 50-250 uM 42 nM Static quenching [140]
Wolfberry Hydrothermal 0-100 uM 3.0 uM Electron transfer [141]
Soybean Ultrasonic 0-30 uM 2.9 uM Electron transfer [142]
Citrus clementina Hydrothermal 7-50 uM 4.57 uM — [146]
Cherry blossom Hydrothermal 0-0.6 mM — Static quenching [217]
Hemps Hydrothermal 0-60 uM 0.47 uM Static quenching [218]
Chicken cartilage Hydrothermal 2-500 uM 0.47 uM Static quenching [219]
Chrysanthemum Hydrothermal 0-100 uM 5.4 uM Static quenching [220]
Honey Hydrothermal 0.005-100 pM 1.7 nM Static quenching [221]
Momordica charantia Hydrothermal 0-150 uM 0.175 uM Static quenching [222]
Lychee Hydrothermal 0-22 uM 23.6 nM Static quenching [223]
Spirulina algae Hydrothermal 0.05-1 uM 14.8 nM Static quenching [224]
Green bean Hydrothermal 10-70 uM 3.6 nM Static quenching [225]
Cranberry beans Hydrothermal 30-600 pM 9.55 uM Static quenching [226]
Miscanthus Hydrothermal 0.02-2000 pM 20 nM Static quenching [227]
Green pepper Hydrothermal 1-500 uM 0.1 uM Static quenching [228]
Mopan persimmons Hydrothermal 0-100 uM 0.324 uyM Static quenching [229]
Water hyacinth Hydrothermal 0-330 uM 0.77 uM Static quenching [230]
Pine needles Hydrothermal 0.1-540 uM 0.02 uM Static quenching [231]
Banana peel Hydrothermal 5-25 uM 0.66 uM Static quenching [232]
Pomelo peel Hydrothermal 0.1-160 uM 0.086 uM Static quenching [233]
Pork rib bones Hydrothermal 0.15-5 uM 0.064 uM Static quenching [234]
Tar Hydrothermal 0.06-1400 pM 60 nM Static quenching [235]
Tar Calcination 0-100 uM 0.22 uM Static quenching [236]
Cellulose and lignin Pyrolysis 0-400 uM 19.1 nM Static quenching [237]
Poa pratensis Hydrothermal 5.0-25 uM 1.4 uM Electron transfer [238]
Red pitaya Hydrothermal 2-40 nM 1.2nM Electron transfer [239]
Coffee beans Hydrothermal 0-0.10 mM 15.4 nM Electron transfer [240]
Coffee grounds Hydrothermal 0-50 uM 9nM Electron transfer [241]
Prunus leaves Hydrothermal 0-250 uM 1.60 uM Electron transfer [242]
Cassava stem Hydrothermal 15.6-62.5 uM 0.91 uM Electron transfer [243]
Corn cob Hydrothermal 0.78-3.9 uM 0.8550 pM Electron transfer [244]
Lignin Hydrothermal 0-300 uM 0.77 uM Electron transfer [245]
Milk Hydrothermal 0.1-20 uyM 0.6 uM Electron transfer [246]
Crop Hydrothermal 0-500 uM 5.23 uM Electron transfer [247]
Wintersweet flowers Hydrothermal 0.05-100 uM 0.15 uM Electron transfer [248]
Siberian elm seeds Hydrothermal 0-500 uM 3.18 uM Electron transfer [249]
Borassus flabellifer Calcination 0-30 nM 10 nM Electron transfer [250]

et al. fabricated CDs from tea, grapes, and clementine peel with a
hydrothermal method [145, 146]. Using date as carbon source,
Dhara et al. prepared CDs by microwave irradiation method
[147]. The antioxidant activities of CDs have been explored by 2,2-
diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocelteau assays in
aqueous media. Compared with standard antioxidant compounds
such as AA and vitamin E, the CDs obtained from tea, grapes,
clementine peel, or date showed substantially improved

Tsinghua University Press

antioxidant properties [145, 147]. Artemisia argyi is herbaceous
perennial plant commonly found in China, which has been
traditionally used as a herb-medicine to prevent conditions such
as plague, inflammatory diseases, and cancer. The active
ingredients of A. argyi leaves are mainly volatile oil and bitter
glycosides. The volatile oil contains a variety of compounds such
as citronellol, camphor, and pinene, which have strong
antimicrobial, insecticidal, analgesic, and anti-inflammatory
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effects. The bitter glycosides are the main source of bitterness in A.
argyi leaves and have various physiological effects, such as anti-
inflammatory, antibacterial, analgesic, hypotensive, and immune
regulatory activities. Kang et al. synthesized CDs with A. argyi
leaves through a smoking simulation method (Fig. 9(b)) [148].
The resultant CDs have demonstrated superior antibacterial
activity on the Gram-negative bacteria. They concluded that the
CDs inhibit approximately 50% of the enzyme activity that is
related to bacterial wall synthesis, resulting in bacterial death.
Salvia miltiorrhiza is a plant of the Salvia genus. It is commonly
used in traditional Chinese medicine [149]. Many studies have
shown that salvianic acid and its analogues are the main active
ingredients of S. miltiorrhiza, which have strong antioxidant
properties [149-151]. Lei et al. synthesized blue emissive CDs by
using S. miltiorrhiza as the precursor (Fig. 9(c)). After
hydrothermal treatment of S. miltiorrhiza, many miltiorrhiza-like
polymers are formed on the surface of CDs, endowing the CDs
with high antioxidant capacity. Analysis revealed that these CDs
possessed multiple enzyme activities, which can effectively
scavenge DPPH., -O,, and -OH, exhibiting stronger antioxidant
activity than that of the pure S. miltiorrhiza extract [152].
Moreover, spraying CDs on the leaves of Italian lettuce seedlings
can effectively alleviate oxidative damage caused by salt stress.

In general, small molecule carbon sources can be readily
carbonized into zero-dimensional CDs, but it is difficult to prepare
morphology-controllable carbon nanomaterials using these
carbon sources [153]. In contrast, natural protein molecules,
possess inherent biocompatibility and can self-assemble into
unique structures via hydrogen bonding, electrostatic interactions,
or hydrophobic interactions. Despite this potential, the studies by
utilizing proteins as the precursors and employing peptide
assembly to direct nanoparticle synthesis are still relatively rare
[154]. Bovine serum albumin (BSA) is a single-chain globular
protein widely present in bovine serum, consisting of 583 amino
acid residues with a molecular weight of approximately 66.5 kDa.
BSA has high solubility and stability, and is extensively used in
biological and biochemical research. BSA has a structure

composed of a-helices and random coil structures, which play
important roles in the function of proteins [155-157]. By utilizing
the self-assembly characteristics of BSA, hollow luminescent CDs
(HCDs) were prepared by Wang et al. using a simple solvothermal
method (Fig. 9(d)) [213]. The as-prepared HCDs possess a
diameter of approximately 6.8 nm with a pore size of ca. 2 nm.
They inferred that BSA monomers tended to form uniform
aggregates with a size of approximately 453 nm when initially
dispersed in ethanol. After solvothermal treatment for 4 h, BSA
was denatured and formed non-uniform aggregates with sizes
ranging from approximately 10 to 80 nm. The size of the
aggregates gradually decreased with the increase of reaction time,
and these aggregates separated into carbon nanoparticles under
extreme solvothermal conditions. At this time, carbonization was
found only on the surface of small aggregates, and was not yet
complete, potentially preventing the shell from sinking or
breaking. After incubation for 12 h, the incompletely carbonized
interior was carbonized, and the HCDs were produced. More
recently, we used gluten from wheat as a carbon source to prepare
three different types of carbon nanomaterials by using a template-
free method (Fig.9(e)) [158]. Specifically, we found that
concentration-dependent  self-assembly of gluten played an
important role in the formation of carbon nanostructures. Three
unique shaped carbon nanomaterials, namely, CDs, carbon
nanorings (CNRs), and porous carbon nanospheres (CNBs) were
obtained with this self-assembly approach. These three types of
carbon nanomaterials were successfully used for cell imaging. In
addition, due to the large surface area and low toxicity, CNRs can
serve as an excellent drug carrier for chemotherapy. The
formation of polymorphic carbon nanoparticles is mainly
attributed to the unique structure of gluten, which can be divided
into three parts, namely N-terminus, C-terminus, and a
hydrophobic region in the middle. The N-terminus and C-
terminus are composed of 81-104 and 42 amino acids,
respectively, exhibiting strong hydrophilicity, while the central
hydrophobic region of gliadin is composed of 440-680
hydrophobic amino acids. Therefore, gluten can self-assemble into
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micelles in aqueous solution, with the hydrophobic segments
forming the core and the hydrophilic parts forming the expanded
corona.

Most biomass-derived CDs have the characteristic of emitting
short-wavelength light with low QY. In recent years, researchers
have made continuous efforts to regulate the emission wavelength
of biomass-derived CDs and tried to improve corresponding QYs.
Using spinach as the raw material, Wang et al. prepared four
kinds of CDs in different solvents (water, ethanol, acetone or the
mixture of ethanol, and acetone). The resultant CDs have blue,
dark, gray-white, and red emission with QYs of 8.9%, 12.3%,
10.8%, and 14.4%, respectively [120]. It was found that the
multicolor luminescence is mainly attributed to the changes in
boiling point and polarity of the solvents, which alter the
carbonization process of polysaccharides and chlorophyll in
spinach, thereby modifying the particle size, surface functional
groups, and luminescent properties of the spinach-derived CDs.
Yang et al. prepared a type of deep red emissive CDs from taxus
leaves by solvothermal method [121]. After column
chromatographic purification, the CDs with a narrow full width at
half maximum (FWHM) of 20 nm and a high QY of 59% were
obtained (Fig. 10(a)). By using mulberry leaves as the precursor
and solvothermal method, Xiong et al. fabricated CDs with strong
near-infrared fluorescence, the absolute QY of the CDs reached up
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to 73%, and the maximum FWHM was 20 nm (Fig. 10(b)) [122].
Interestingly, when feeding silkworms with these CDs, the
silkworms with bright red fluorescence still grew healthily, and
spun cocoons normally. Qin et al. prepared CDs by ethanol-
thermal treatment of camphor leaves, hellebore leaves, oleander
leaves, clover leaves, and bamboo leaves, respectively (Fig. 10(c))
[197]. The obtained CDs showed identical red fluorescence
emission, which is ascribed to the same fluorophore of
chlorophyll.

3 Luminescence mechanism

Many different mechanisms have been proposed to elucidate the
luminescence of CDs, such as quantum confinement effect,
surface state, molecule state, conjugation effect, AIEE, and cross-
linked enhanced emission (CEE) effect, etc. [8,20,159]. Up to
now, the quantum confinement effect, surface state, and molecule
state are widely accepted mechanisms. Herein, we primarily
summarize the recent advances in these three mechanisms for the
luminescence of CDs.

3.1 Quantum confinement effect

The quantum confinement effect (size effect) refers to the
phenomenon observed in nanoscale materials, where the behavior
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of electrons and other charge carriers is influenced by their spatial
confinement within a small volume [160]. The quantum
confinement effect in CDs leads to changes in the band structure
and energy levels. As the size of CDs decreases, their bandgap
increases, resulting in a shift towards higher energy wavelengths in
the emission spectra [18]. In 2014, Alam Sk et al. utilized
theoretical calculation to simulate the influence of CDs sizes on
the emission wavelength [161]. The results showed that as the
sizes of CDs increased from 0.46 to 2.31 nm, the corresponding
emission wavelength shifted from the blue region to the near-
infrared region, which is attributed to the increased degree of n
electron delocalization with size enlargement (Fig. 11(a)). Using
CA and urea as precursors, three types of CDs with average
diameters of 1.7, 2.8, and 4.5 nm were prepared by altering the
reaction solvent during the preparation process [38]. It was
observed that with the increase of the CDs sizes, the fluorescence
shifted from blue to red color. In 2018, Fan et al. synthesized
triangular CDs (T-CDs) by refluxing phloroglucinol in ethanol or
sulfuric acid, the obtained CDs have nearly defect-free graphene
crystal structure with uniform size distribution, high color purity,
and narrow FWHM of only 29-30 nm [162]. They observed that
as the size increased from 1.9 to 2.4, 3.0, and 3.9 nm, the emission
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peak of T-CDs gradually shifted from the blue emissive region to
the green, yellow, and red emissive regions (Fig. 11(b)). Recently,
Wang et al. also observed that CDs measuring approximately
1.2 nm emit UV light at around 350 nm, and the CDs ranging
from 1.5 to 3 nm emit visible light within the range of 400 to
700 nm [163]. The bandgap energies of CDs gradually decrease
from 2.76 to 1.88 eV with the increase of the sizes, which further
confirms the relationship between quantum confinement effect
and the fluorescence emission wavelength.

3.2 Surface state

The surface states, including the functional groups, defects, and
traps on the surface of CDs, have a great influence on the optical
properties of CDs [164]. These surface states usually could lead to
increased non-radiative recombination, resulting in a decrease in
the photoluminescence intensity. Also, the changes in surface
states could alter the energy levels or the band structure of CDs,
leading to shifts in the emission wavelength. Therefore,
photoluminescence property of CDs can often be tuned by
controlling and modifying the surface states of CDs. A
comprehensive quantum chemical DFT study conducted by
Kundelev et al. revealed that amino groups on the surface of CDs
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can not only cause the redshift of emission wavelength, but also
enhance the inherent high fluorescence intensity of CDs [32].
Using p-PDA and EDTA, polyethyleneimine or L-proline as raw
materials, controllable emission of CDs was achieved with varied
N-doping [165]. The TEM images show that these CDs are well-
dispersed and possess similar nanoscale particle sizes. The
presence of multiple emission states in CDs is associated with the
nitrogen speciation on their surface, including pyridinic N,
pyrrolic N, graphitic N, and amino N. The red emission is
attributed to the formation of fluorophore resulting from the
deformation of p-phenylenediamine, while the green emission
state is governed by pyridinic N, and the blue emission is
enhanced by pyrrolic N (Fig. 11(c)). Qu et al. found that the
S=0/C=0 groups present in dimethyl sulfoxide (DMSO)/DMF
interact with the CDs, resulting in increased surface oxidation
potential of the CDs, contributing to the enhancement of near-
infrared absorption band and near-infrared fluorescence. Li et al.
also demonstrated that the luminescence wavelength of the CDs
redshifted as the ratio of oxygen- and nitrogen-related
components increased [164]. These results tend to suggest that
nitrogen substitution (pyridinic nitrogen/pyrrolic nitrogen)
dominates the blue emission, while the introduction of oxygen
functional groups lowers the LUMO energy level, resulting in the
redshift of emission wavelength (Fig. 11(d)). In conclusion, the
surface condition of CDs is not dictated by individual side chains
or functional groups alone, instead, it is also influenced by the
hybridization of the carbon skeleton with interconnected chemical
groups. More complete carbonization could reduce the surface
functional groups and side chains, thus the fluorescence emission
becomes primarily governed by the size effect. Hence, the
fluorescence of CDs can be finely tuned by manipulating both the
inner core and surface functional groups.

3.3 Molecule state

In recent years, researchers discovered the presence of organic
fluorescent chromophores in CDs, which dominate their
fluorescence emission. Yang et al. synthesized blue-emitting CDs
through a hydrothermal method using CA and EDA as precursors
[166]. The presence of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]
pyridine-7-carboxylic acid (IPCA) structure was identified in the
mass spectrum. The optimal conformation was determined
through Gauss simulation and the HOMO and LUMO energy
levels were calculated to be 1.494 and 5.350 eV, respectively. The
predicted absorbance and PL spectra closely match the
experimental ~measurements, indicating that molecular
fluorophore IPCA is the origin of the fluorescence emission in
CDs. Subsequently, Chen et al. prepared a kind of N, S co-doped
CDs using CA and cysteine as raw materials, and two organic
fluorophores, i.e., 5-0xo0-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-
3,7-dicarboxylic acid (TPDCA) and 5-oxo-3,5-dihydro-2H-
thiazolo [3,2-a] pyridine-7-carboxylic acid (TPCA), were identified
as the main fluorescence origins of the CDs [167]. Similarly, a kind
of green emissive CDs was prepared by Kasprzyk et al. by
microwave treatment of CA and urea, where it was found that the
green emission of the CDs is derived from the molecular
fluorophore 4-hydroxy-1H-pyrrolo[3,4-c] pyridine-1,3,6(2H,5H)-
trione (HPPT) [168]. 2,3-Diaminophenazine (DAP) and 2-Amino-
3-hydroxyphenazine (AHP) were found to be the dominant
species in the yellow emissive CDs that were obtained from o-
PDA precursor [169]. Through systematic purification and
characterization, Soni et al. found that the red emissive CDs
obtained from o-PDA contain the molecular structured quinoline
[2,3-b] phenazine-2, 3-diamine (QXPDA), which was confirmed
by nuclear magnetic resonance (NMR) and MS [170]. The
fluorophore was further verified by the fact that QXPDA has the
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identical emission characteristics with that of CDs. Also, the
excitation-independent behavior of QXPDA is very similar to that
of the red emissive CDs (Fig. 11(e)). More recently, Sun et al.
fabricated another kind of red emissive CDs from o-PDA and
catechol [5]. The luminescence was attributed to the presence of
molecular state fluorophores, i.e., 5,14-dihydroquinoxalino(2,3-b]
phenazine (DHQP), which is either incorporated into graphene or
connected with graphene edge by sp® hybridization (Fig. 11(f)). In
conclusion, molecular fluorophores are generally formed through
the dehydration and condensation reactions among small
molecules in the polymerization process. As a result, CDs with
molecule-state fluorescence often exhibit a polymer-like structure
or a weakly crystallized structure. In comparison to the emission
originating from the surface state or the size effect, the
fluorescence governed by the molecule state is highly sensitive to
the surrounding environment [21].

4 Applications

CDs inheriting the characteristics of their precursors have shown
excellent optical performance and versatile surface functionalities,
which endows the resultant CDs with wide applicability in diverse
areas [171,172]. In this section, we briefly summarize the
applications of CDs derived from different precursors in the fields
of sensing, bioimaging, light emitting devices (LED), and anti-
counterfeiting.

4.1 Sensing

Compared to the small molecular fluorescent probes, CDs usually
exhibit improved photostability and their fluorescence can be
more sensitive to the surrounding environment due to the
presence of abundant functional groups on the surface of CDs.
Thus, CDs obtained from various precursors have been exploited
for fluorescence sensing applications, including cationic ion
detections (Ca”, Fe*, Fe", Cu”, Ag’, Pb*, Hg”, Cd* etc) [91,
173-178], anion detections (F-, ClO-, NO,, HPO,~, MnO,, I
etc.) [174,179-181] and biological molecules analysis (ascorbic
acid, glutathione, cysteine, uric acid, glucose etc.) [47, 182-185].
Furthermore, there has been a growing development of CDs that
are specifically designed for temperature sensing. In this respect,
the CDs with “turn off” fluorescence responses have been initially
reported as an effective temperature sensor (Fig. 12(a)) [186, 187].
The increase in thermal energy can lead to increased nonradiative
decay, ie., the energy absorbed by the CDs is dissipated as heat
rather than light emission. Consequently, the fluorescence
intensity decreases with the increase of temperature [188].
However, the heating-induced fluorescence “turn oft” of CDs is
susceptible to environmental interferences, which could lead to
false temperature signals. Also, the decrease in fluorescence tends
to have poor resolution in temperature sensing and imaging. To
address these issues, our group has developed a series of “turn on”
type temperature-sensitive CDs. Using CA and urea as precursors,
a kind of Y-CDs was successfully prepared with a facile
solvothermal method (Fig. 12(b)) [189]. It was found that the
obtained Y-CDs exhibit a significant fluorescence enhancement
with the increase of temperature, and show a good linearity in the
range of 15-85 °C with a thermal sensitivity of 5.3%/°C and
temperature  resolution of 0.09 °C.  Comprehensive
characterizations revealed that the fluorescence intensity is reliant
on intramolecular hydrogen bonds in the Y-CDs. Theoretical
simulations also confirm that the partially breaking of the
hydrogen bonds amplifies the electron cloud density within the
conjugated system and stabilizes the coplanar arrangement of
molecular chromophores in the Y-CDs (Fig. 12(c)) [189]. As a
result, a distinct “turn-on” fluorescent response is observed in
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Figure 12 (a) “Turn off” type temperature-sensitive CDs. Reproduced with permission from Ref. [187], © The Royal Society of Chemistry 2017. (b) “Turn on” type
temperature-sensitive Y-CDs, and (c) The effects of intermolecular hydrogen bond on the structure of Y-CDs. Reproduced with permission from Ref. [189], © The
Royal Society of Chemistry 2022. (d) The CDs obtained from 0-PDA and three isomers of dihydroxybenzene. Reproduced with permission from Ref. [190], © Elsevier

Inc. 2022.

response to temperature increment. Based on the influence of
intramolecular hydrogen bonding on the thermosensitivity of
CDs, we subsequently prepared more “turn-on” type CDs with
varied thermosensitivities by utilizing o-PDA and three isomers of
dihydroxybenzene as carbon sources (Fig. 12(d)) [190]. Through
comprehensive experimental characterizations and theoretical
calculations, it was revealed that even slight variations in the
positions of substituents on the phenyl ring of the precursors can
have a significant impact on the formation of intramolecular
hydrogen bonds. In general, the CDs with strong intramolecular
hydrogen bonds tended to have low thermosensitivities.

4.2 Imaging

With the rapid development of synthetic methods and precursor
selections, many CDs with outstanding photoluminescence
property have been prepared, and they also exhibit other unique
advantages, including adjustable emission wavelength, controllable
sizes, low cytotoxicity, and good photostability, which make them
an ideal candidate for fluorescence imaging applications. For
example, a kind of photoluminescent CDs with a quantum yield
of 30.2% was obtained by microwave-assisted pyrolysis of CA
[191]. These CDs exhibit an excitation-dependent characteristics.
When they were incubated with the 1929 cells, blue, green, and
red fluorescence were observed, respectively, under the excitation
at wavelengths of 405, 488, and 543 nm (Fig. 13(a)). However, the
CDs are evenly distributed throughout the cell, which limited their
ability to distinguish the different organelles. Recently, researchers
have designed the CDs that can target specific organelles. For
example, lipophilic cationic probes can be employed for targeting
mitochondria within living cells, because mitochondria usually
possess high negative transmembrane potential (up to
180-200 mV) [192]. As a naturally occurring lipophilic cationic
dye, rhodamine exhibits a strong attraction towards mitochondria.
Inspired by this, Wang et al. utilized a reverse design strategy,

synthesized a mitochondria-targeting CDs that have rhodamine
fluorescent center by microwave-assisted treatment of CA and m-
aminophenol (Fig. 13(b)) [193]. Wei and colleagues prepared a
kind of orange emissive CDs (O-CDs) using L-cysteine and
neutral red as precursors, which can target the Golgi apparatus
(Fig. 13(c)) [194]. Golgi apparatus contains L-cysteine receptors,
which could form disulfide bonds with the L-cysteine residues on
the O-CDs. Furthermore, a kind of dual-emissive CDs was
synthesized by Chen et al. using hydrophobic lysine and
electrophilic 0-PDA. Lysine, as the hydrophobic component,
contributed to the hydrophobicity of the CDs, while o-PDA
imparts electrophilicity to the CDs. This design enabled the CDs
responsive to changes in the polarity of the ER (Fig. 13(d)) [195].
Leblanc et al. fabricated a kind of cationic CDs using 1,2,4,5-
benzenetetramine as raw material, which can interact
electrostatically with negatively charged DNA within cell nucleus,
achieving targeted imaging of the cell nucleus (Fig. 13(e)) [196].
Using CA and N,N-dimethylaniline as the precursors, the CDs
targeting to intracellular lysosomes have also been reported [197].
Compared to the commercial lysosomal probe (LysoTracker Deep
Red), the resulting CDs have stronger photobleaching resistance
and can stably label HeLa cells for more than 48 h (Fig. 13(f)). All
these results have demonstrated that the CDs with specific
functions could be facilely prepared by selecting the appropriate
precursors, achieving imaging of targeted organelles for cellular
labeling.

43 LEDs

As a new type of photoluminescene materials, solid-state
luminescent CDs can be used as phosphor layer in optoelectronic
devices. By coating CDs on LED chips with different emission
wavelengths, colorful LED devices could be fabricated. To avoid
the aggregation-induced emission quenching of CDs, Qu et al.
immobilized the CDs in a silicon dioxide network, which can
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effectively prevent the aggregation of CDs. The resulting CDs
composite exhibited a high fluorescence quantum yield of
30%-40%. By appropriately mixing red, green, and blue emissive
CDs powder, white luminescent phosphors with Commission
Internationale de L’Eclairage (CIE) coordinates of (0.34, 0.31)
were obtained, which is very close to the CIE coordinates (0.33,
0.33) of natural white light standards (Fig.14(a)) [38]. The
fluorescence quenching of CDs could also be prevented by mixing
CDs with starch. Hu et al. reported that LED obtained from
orange emissive CDs/starch has promising warm white light
characteristics, including a CIE of (0.41, 0.37) (Fig. 14(b)), a low
correlated color temperature (CCT) of 3265 K, and an improved
color rendering index (CRI) of 90. These values satisfy the
standard requirements for indoor illumination, where a CCT
below 4000 K and a CRI greater than 80 are desired [198].
Similarly, Shen et al. fabricated green, yellow, and orange LEDs by
incorporating CDs into a polyethylene pyrrolidone (PVP) matrix
(Fig. 14(c)) [199]. Three types of matrices, namely polymethyl
methacrylate (PMMA), melamine-formaldehyde resin (MF), and
epoxy resin A and B (ERG), are also used as solid dispersants for
fabricating LED. Peng et al. constructed three warm white light
WLED systems with high color rendering index by dispersing
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yellow, green, and red light-emitting CDs in these three matrices
(Fig. 14(d)) [200]. To avoid the n-m stacking induced quenching
to the powder emission, Wang et al. introduced organic
semiconductors, polymer semiconductors PVK, and poly(9,9-
dioctylfluorene-co-N-(4-(3-methylpropyl)) diphenylamine) (TEB),
as host materials to prevent direct contact among the CDs (Fig.
14(e)) [201]. These CDs-LEDs exhibited excellent performance,
with maximum luminance reaching 1414-4917 cd'm? and
external quantum efficiencies ranging from 0.08% to 0.87%.

44 Anti-counterfeiting

In the so-called information age, information forgery and product
counterfeiting become a great concern in product manufactory
and public safety. Therefore, it is urgently needed to develop
effective coding strategies and anti-counterfeiting technologies to
make genuine items difficult to replicate and replace. Owing to the
versatile optical property, low cost, and low toxicity, CDs have
become increasingly popular as materials for a new generation of
secure anti-counterfeiting inks [202]. The fluorescent or
phosphorescent properties exhibited by CDs are unique and
difficult to replicate, hence labelling products with CDs could
provide a reliable means for the verification of product
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Figure 14 (a) The CDs dispersed in silicon dioxide for LEDs. Reproduced with permission from Ref. [38], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2017. (b) CDs mixed in starch for LEDs. Reproduced with permission from Ref. [198], © Elsevier B.V. 2021. (c) CDs@PVP for LEDs. Reproduced with permission
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authenticity. For example, Shen et al. reported such a label with
CDs ink printed patterns, which can achieve information
encryption under sunlight and information decryption under
ultraviolet light [203]. As shown in Fig. 15(a), the printed patterns
exhibit bright yellow-green fluorescence under ultraviolet light and
completely disappear once the excitation is turned off. Our group
has also developed a thermalsensitive label by mixing temperature-
sensitive CDs with rhodamine B (RhB) to form a cartridge ink.
Under UV light, the printed patterns exhibited significantly
different fluorescence at different temperatures (Fig. 15(b)) [204].
Meanwhile, multiple information encryption can be achieved by
using CDs with phosphorescent properties. Yang et al. prepared
the CDs with blue and green phosphorescence, with which
colorful patterns were observable under 365 nm UV irradiation
(Fig. 15(c)) [205]. Once the excitation is turned off, only the
encrypted patterns with CDs can be seen, and the afterglow can
last for several seconds. In this aspect, we have prepared a kind of
CDs with long phosphorescent lifetime and excitation-dependent
phosphorescence using the molten salt method [206]. The CDs,
C;N,, or their mixture were used for the preparation of the ink.
Under 365 nm excitation, the emblem pattern, and letters “A, B,
C, and D” can be seen, exhibiting different fluorescence colors.
Once the light was turned off, the emblem circular pattern
encoded with C;N, powder and letters “A” and “C” became
invisible, while the encoded emblem pattern with CDs and C;N,
mixture displayed a green color, along with letters “B” and “D”.
After removing the 395 nm excitation light source, the color of the
emblem pattern and letters “B” and “D” turned yellow (Fig.

15(d)). All these results demonstrated that the unusual color
changes generated by the excitation dependent phosphorescence
can provide multiple security for anti-counterfeiting and
information protection systems.

4.5 Other fields

In addition to above applications, multifunctional CDs have also
been applied in other relevant fields. For example, CDs have been
integrated into energy storage devices like supercapacitors and
batteries to enhance the charge storage capacity, cycling stability,
and rate capability of these devices [9]. Some CDs exhibit high
catalytic efficiency, hence they were used as catalysts in many
redox reactions and photocatalysis [207]. The CDs with large
surface area and hierarchical structures have been explored as
carriers for drug delivery systems [208]. Their small size,
biocompatibility, and ability to penetrate cellular membranes
make them suitable for targeted drug delivery and controlled
release. Some CDs can remove contaminants like heavy metals
and organic pollutants from water sources, hence they were
successfully applied in water purification and environmental
remediation processes [209]. By incorporation of CDs into
polymers, textiles, and coatings, they can act as flame retardant
additives by releasing non-flammable gases upon exposure to heat
or flame [210]. Furthermore, CDs can be applied as foliar sprays
or incorporated into the soil to improve nutrient uptake,
photosynthesis, and overall plant growth [211]. CDs are also
utilized for crop protection against pests and diseases [212]. They
can be formulated into nanopesticides or used as part of
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biocontrol strategies to inhibit the growth of pathogens and pests,
reducing the need for traditional chemical pesticides. In brief, the
application fields of CDs have expanded rapidly in the last few
years. It is foreseeable that with the fast development of high-
quality CDs, such an expansion will be continued in the future.

5 Summary and challenge

In summary, this paper reviews the recent advances in preparing
fluorescent CDs using different types of precursors, focusing on
the formation process and applications.

The properties exhibited by multifunctional CDs are not
arbitrary, their optical characteristics are intimately related to the
precursor molecules. The small molecule precursors undergo
dehydration and condensation to form the emissive center of
fluorescent CDs, while aromatic precursors are more likely to
form large conjugated structures during carbonization, resulting in
CDs with long emission wavelengths. The CDs obtained from
precursors such as aniline or phenol exhibit excellent antioxidant
properties due to the good reducibility of these carbon source, and
can be used for scavenging ROS. CDs with pH-sensitive response
are derived from the inheritance of amino or carboxyl groups of
their precursors. This inheritance leads to changes in the
fluorescence wavelength and intensity of CDs during the
protonation or deprotonation processes. The CDs prepared by
PAHs not only has good optical properties, but also inherits the
metal chelating ability of their precursor, realizing the specific
detection of metal ions. The CDs prepared by using organic dyes
as carbon sources not only retain their photosensitizing properties
but also improve their optical stability, enhancing the effectiveness
of PDT. The CDs obtained from natural biomass as a carbon
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source have been successfully used for the detection of Fe™.
Additionally, CDs obtained from biomass with pharmacological
properties can retain their drug activity and exhibited a great
potential in anti-inflammatory and antibacterial applications. By
using the biomass with self-assembly capabilities as a carbon
source, the morphologies of the resultant carbon nanomaterials
can be controlled with a great certainty.

The influence of precursors on the properties and functions of
CDs are thoroughly discussed in this paper, which intend to
provide some useful guidance for the synthesis of CDs with
specific functionalities. The study of CDs is still an area of rapid
development. Despite the huge advances have been made in the
last decade, we are soberly aware of the enormous challenges in
the field of CDs, which have limited the wide applications of CDs
in many practical scenarios. These limitations may include but not
restricted to following issues:

(1) Purification of CDs: The commonly used purification
methods are dialysis, centrifugation, and column chromatography
separation. These approaches are time consuming and ineffective
in obtaining pure products, therefore, more effective, and clean
purification method are urgently needed.

(2) The yield of CDs: Currently the yield and purity of CDs are
still relatively low, and large-scale production of CDs is difficult in
many circumstances, thus restricted many researches and practical
applications.

(3) The luminescent origin of CDs: There are many attributions
to the origin of the luminescence of CDs, and there is still
controversy and no unified conclusion at present, which requires
further investigation.
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