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ABSTRACT

An emerging subclass of transition-metal dichalcogenides (TMDs), noble-transition-metal dichalcogenides (NMDs), has led to an
increase in nanoscientific research in two-dimensional (2D) materials. NMDs feature a unique structure and several useful
properties. 2D NMDs are promising candidates for a broad range of applications in areas such as photodetectors,
phototransistors, saturable absorbers, and meta optics. In this review, the state of the art of 2D NMDs research, their structures,
properties, synthesis, and potential applications are discussed, and a perspective of expected future developments is provided.
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1 Introduction

Two-dimensional (2D) materials, that is, independent flake
crystals with a plane size greater than 100 nm, while only a single
or a few atomic layers in thickness [1, 2], have inspired a new wave
of nanoscale research and exploration since the discovery of
graphene and its special properties. Atomically thin 2D
nanosheets, especially monolayers, exhibit unique condensed-
matter phenomena and unusual properties that are yet to be
revealed in their bulk state [3-7]. The rapid progress of graphene
fabrication methods and the explosive growth of graphene
applications inspired numerous investigations of other analog
graphene 2D materials such as transition-metal dichalcogenides
(TMDs) [8-10], group-VA semiconductors [11-13], 2D metal-
organic frameworks (MOFs) [14-17], transition metal carbides,
nitrides and carbonitrides (MXenes) [18-22]. Several approaches
to synthesize 2D materials exist. These include mechanical
exfoliation (ME) [23-25], liquid-phase exfoliation (LPE) [3, 26,
27],  chemical vapor  deposition (CVD) [28-33],
hydrothermal/solvothermal methods [34-38]. In addition, 2D
materials and their applications have a significant impact in a wide
range of fields including optoelectronics  [24,39,40],
nanophotonics [41-43], energy storage [18, 44] and catalysis [45].
TMDs, in particular, may be of high interest for 2D-material-
based applications [46,47]. For example, TMDs exhibit a layer-
dependent tunable bandgap that varies between 1 and 2 eV [3, 48].
This enables optical response in the near-infrared (NIR) and even
middle infrared spectrum [49], which compensates for the zero
band gap of graphene that is often undesirable. As an emerging
subclass of TMDs, noble-transition-metal dichalcogenides
(NMDs) with group 10 noble metals inspired nano-research of 2D
materials. NMDs share the same formula, MX,, where M denotes

noble metals (Pt, Pd) and X refers to chalcogenides (S, Se, Te).
Monolayer MX, NMDs generally contain two layers of X atoms
and one layer of M atoms in a typical sandwich structure. Unlike
most of the members of TMDs, the representative member of
NMDs, PtSe,, features a transition from metal to semimetal, when
the layer number is reduced to a monolayer [50, 51]. Furthermore,
a tunable bandgap in NMDs was confirmed by experimental and
theoretical studies [52,53]. Key properties of optoelectronic
devices, ie., high room temperature mobility, air-stable carrier
mobility, were reported [54,55]. In terms of nanophotonic
applications, a broadband spectral response (extending even to the
mid infrared [56]) was found, as well as a polarization-sensitive
response to light [55,57,58]. Moreover, their defect-induced
magnetism, with unique thickness-dependent properties, promises
possible applications in spintronic devices [59,60]. Considering
these exceptional properties, NMDs have potential applications in
a wide range of fields such as phototransistors [51,61-63], gas
sensors [64], saturable absorbers [65], photodetectors [58, 66, 67],
electrocatalysis [68], flat optics [69], and anisotropic devices [70]
(Fig. 1). However, to the best of our knowledge, a comprehensive
review of structures, properties, syntheses, and potential
applications of NMDs has not been published.

In this review, we summarize the latest progress of 2D NMDs
concerning their structure, properties, synthesis, and potential
applications. The review aims to provide insight into the
opportunities and challenges associated with 2D-NMDs-based
new physical phenomena and devices. We begin with a summary
of the characteristics of NMDs, including structural
configurations, electronic properties, optical properties, and
magnetic properties. After an overview of the NMDs, we
investigate several synthesis methods of NMDs that involve ME,
LPE, and CVD. In addition, we highlight their potential
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Figure1 The development of the applications of NMDs (applications of NMDs in phototransistor, reproduced with permission from Ref. [62], © WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim 2016; photodetector, reproduced with permission from Ref. [67], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2018; meta optics, reproduced with permission from Ref. [69], © American Chemical Society 2020; photocatalysis, reproduced with permission from Ref. [50], ©
American Chemical Society 2015; gas sensor, reproduced with permission from Ref. [64], © American Chemical Society 2016; magnetism, reproduced with permission
from Ref. [71], © Wiley-VCH GmbH 2020; pressure sensor, reproduced with permission from Ref. [72], © American Chemical Society 2018; ultrafast photonics,

reproduced with permission from Ref. [73], © American Chemical Society 2018).

applications in areas like ultrafast photonics, field-effect transistors,
photodetector, and meta optics. Finally, this review concludes with
a brief overview of the latest research and anticipated research
directions of 2D NMDs materials.

2 Fundamental properties of NMDs

2.1 Structure of NMDs

In recent years, TMDs have been investigated in depth. Most
TMD:s semiconductors possess a stable 2H phase [8, 62, 74]. In the
2H phase, the transition metals of the TMDs are located in the
center of a triangular prism. From top to bottom, the metal atoms
are surrounded by three chalcogen atoms [62]. The reported stable
phases of monolayer TMDs are the 2H and 1T phases.
Theoretically, 1T phase TMDs are the thermodynamic favorite,
when the material is thinned down to a monolayer [53]. Similarly,
the thermodynamically stable phase of NMDs is also a 1T phase.
Thermodynamically stable 1T phases of PdTe, [75], PtSe, [56, 76],
PtS, [61], PtTe, [77] were confirmed previously. These always
show a typical octahedral structure [56], as shown in Figs. 2(a) and
2(b). They crystallize with a CdI,-type structure, where each noble
metal atom (Pd/Pt) within an octahedral hole is coordinated by six
chalcogen atoms (S/Se/Te) to form an octahedron [8, 68]. A layer
of Pt/Pd atoms is sandwiched between two layers of chalcogen
atoms, and these layers are held together by van der Waal’s forces.
As the other two types of NMDs, PdSe, and PdS, exhibit the same
stable phase structure, which differs from other NMDs. Unlike the
previously mentioned NMDs with a symmetrical hexagonal
structure, their atomic configuration shows a pentagonal
arrangement in a plane (see Figs. 2(c) and 2(d)) [78]. Monolayer
PdSe, consists entirely of pentagonal rings, where each Pd atom is
combined with four Se/S atoms. This is different from the six

coordinated transition metal atoms in the typical 1T and 2H
structures of NMDs. Two adjacent Se/S atoms are connected by a
Se-Se/S-S covalent bond [79, 80]. Due to the pentagonal structure
of PdSe,, the 2D PdSe, film also shows an asymmetric crystal
structure, which is similar to black phosphorus (BP) and silicene
[57].

2.2 Electronic properties

NMDs have attracted tremendous research interest into
optoelectronic applications due to their unique electronic
properties. The binding energy of the valence electron d-orbitals of
group 10 transition-metals is very close to that of the valence
electron p-orbitals of chalcogen atoms [68]. This enables a more
extensive hybridization between group 10 metal d-orbitals and the
chalcogen p-orbitals, compared to other TMDs. As a result, strong
p and d,,, hybrid characteristics can be observed in NMDs, which
suggests their distinct electronic properties [68].

The electronic band structure of NMDs was investigated using
periodic density functional theory (DFT). Interestingly, when the
MX, (M = Pt, Pd; X = S, Se, Te) monolayers behave like indirect
bandgap semiconductors, the MSe, and MTe, analogues have
significantly smaller bandgaps and can even become semi-metallic
or metallic materials [53]. Hence it can be inferred that the electric
properties of NMDs depend on the chalcogen atoms in the
composition. For example, PtS, was found to be a semiconductor,
whereas PtTe, was considered a metal [68]. In addition, the
characteristics of the transition from semimetal to semiconductor
are also related to the thickness of the NMDs (Fig. 3(a)) [67]. Bulk
PtSe, is normally a semimetal with a zero bandgap. However,
when the thickness approaches a monolayer, a semimetal-to-
semiconductor transition occurs [64, 73].

Furthermore, the band structure of a material plays a critical
role in optoelectronic and photonic applications. A customizable
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Figure2 Crystal structure of NMDs. (a) and (b) A typical octahedral structure for PdTe,, PtSe,, PtS,, and PtTe,. Reproduced with permission from Ref. [56], © Yao,
W. et al. 2017. (c) and (d) The puckered pentagonal crystal structure for PdS, and PdSe,. Reproduced with permission from Ref. [78], © American Chemical Society

2020.
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Figure3 (a) Comparison of theoretical and experimental bandgap changes of PdSe, with different thicknesses. Reproduced with permission from Ref. [67], ©
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2018. (b) The layer-dependent mobility of PtSe,, BP, and group-6 TMDCs at room temperature on back-gated
SiO, substrate. Reproduced with permission from Ref. [62], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2016. (c) Comparison of photodetectors operated
at different wavelengths, based on two-dimensional materials. Reproduced with permission from Ref. [56], © Yu, X. C. et al. 2018. (d) Intensity maps of SHG emission
from a PdSe, flake with 0° and 90° crystal orientations relative to the laser polarization. It is excited by an 800 nm laser and integrated between 380 and 450 nm. The
scale bars are 1 pm. Reproduced with permission from Ref. [86], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2020.

band structure is always a desirable and helpful feature of a
candidate material for optoelectronics applications [67]. NMDs
were found to feature a strong interlayer interaction and a widely
tunable bandgap, which corresponded to a spectral range ranging
from the visible to the infrared (Fig.3(c)) [56,61,62]. For
instance, PdSe, exhibits a widely tunable indirect bandgap (from 0
to 1.3 eV), when transitioning from bulk to monolayer, due to its
strong interlayer-coupling [81]. This is different from other widely
studied TMDs, which show an indirect-to-direct band structure
transition for the transition from bilayer to monolayer [82]. A
similar change, when transitioning from semiconductor

(monolayer) to semimetal (bulk) of PdSe,, was observed by other
groups [67]. Moreover, PdS, and PdTe, also show a transition
from semi-metallic in bulk structure to semiconductor properties
in the monolayer [75, 80]. Pt dichalcogenides, which involve PtS,,
PtSe,, and PtTe,, show similar properties as Pd dichalcogenides.
When the thickness approaches a single layer, PtSe, behaves like a
semimetal to semiconductor transition. The indirect bandgaps of
monolayer PtSe, and bilayer PtSe, are 1.2 and 0.2 eV, respectively
[73]. In another report, the bandgap of bulk PtSe, was determined
to be 0 eV, with semi-metallic properties and monolayer PtSe,
being a semiconductor [50,66,72]. PtS, has a layer-dependent
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indirect bandgap, ranging from 1.6 eV (monolayer) to 0.25 eV
(bulk), which is even wider than that of BP [83]. Otherwise, for
bulk PtX, (X = S, Se, Te) structures, PtS, is the only
semiconductor among the three bulk structures [83].
Furthermore, PtTe, has the smallest monolayer bandgap (0.40
eV), which is also associated with semi-metallic properties, after
transitioning from bilayer to bulk [84]. Interestingly, the polarity
of NMDs also shows significant dependence on the number of
layers. The electric transport measurements of a few-layered PtSe,
indicate a unipolar p-type behavior. However, when the thickness
is accurately measured to two layers, the polarity is changed to
ambipolar [63].

Moreover, NMDs are predicted to have high carrier mobilities
(more than 1,000 cm>V™s™) at room temperature [62,85]. For
example, Zhao et al. fabricated a few-layer PtSe, field-effect
transistor, which showed high room-temperature mobility (= 210
cm*V™s™) in a back-gated configuration on SiO,/Si. The mobility
can be comparable to black phosphorus (Fig. 3(b)) [62]. Gu et al.
showed that PdSe, had high carrier mobility and ambipolar
properties. The group fabricated a field-effect transistor (FET)
based on a few layers of PdSe,. The FET revealed tunable bipolar
charge carrier conduction with electron mobilities reaching 294
cm*V™s™ [86]. In addition, the high carrier mobility [87] and
strong interlayer-coupling [81] of NMDs are also valuable
properties.

2.3 Optical properties

Studying the optical properties of 2D materials is essential to
determine whether a 2D material is suitable for optoelectronic
devices. Due to the unique electronic properties and anisotropic
atom structure of NMDs, they show many useful optical
properties such as infrared (or even MIR) optical response and
linear dichroism transitions [57,78]. The optical properties of
NMDs were investigated in previous theoretical and experimental
studies, including linear and nonlinear optical properties.

NMDs also show strong absorption across a wide spectral
range. The linear absorption of PtSe, was measured using an
ultraviolet-visible-infrared (UV-vis-IR) absorption spectrometer.
The results show that PtSe, exhibits strong absorption from 250 to
2,200 nm. In other words, it fully covers the visible to near-
infrared wavelengths [73]. In addition, PdSe, has a narrow
bandgap, which changes during the transition from a single layer
(1.3 eV) to bulk (0 eV). Such a narrow bandgap could enable an
optical response band ranging from deep ultraviolet (DUV) to
mid-infrared (MIR) [57]. Additionally, NMDs are also promising
anisotropic materials due to their low crystal symmetry. As a
member of the NMD family, PdSe, with puckered pentagonal
structure, exhibits potentially useful anisotropic optical response
properties. PdSe, is proven to be polarization-sensitive according
to polarization-dependent Raman spectroscopy and optical
absorbance measurements with polarized light along a different
axis [57]. Gu et al. used polarized Raman spectroscopy and second
harmonic generation diagrams to reveal the in-plane optical
anisotropy of PdSe, sheets (Fig. 3(d)) [86]. Another valuable
property of NMDs is their capability to emit light. Recently, the
photoluminescence (PL) of NMDs quantum dots (QDs) was
determined. The optical properties of PdS, and PdSe, QDs exhibit
excitation wavelength-dependent behavior. The reason for this
may be related to the size of the QDs, i.e., the quantum size effect
[88].

Because NMDs have strong optical absorption with a wide
spectral range (DUV to MIR), they are ideal candidates for
infrared photonics and optical communications. Their strong in-
plane anisotropy makes them the best candidates for polarization-
sensitive photodetectors. Furthermore, the PL properties of NMDs
can be used for bioimaging and optical biosensing.

Nano Res. 2022, 15(4): 3675-3694

24 Magnetic properties

Magnetism plays an important role in both fundamental physics
and many potential device applications. 2D magnetic materials are
drawing worldwide attention due to their unique properties,
including layer-dependent magnetism [89] and electric field
modulation [90]. NMDs, type-II Dirac semimetals [91,92], are
interesting because of their layer-controllable metal-to-
semiconductor transition [51, 93]. Several studies focused on the
magnetic properties of NMDs in the last years.

The magneto-transport properties of ultrathin PtSe, crystals
have also been investigated [60]. The electric measurements show
that the number of layers in the sample determines the order of
the ferromagnetic or antiferromagnetic ground states [60, 94]. The
authors used first-principles calculations to show that surface
magnetism, which was induced by the presence of Pt vacancies,
and the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange
coupling across ultrathin films of PtSe, were responsible for the
observed layer-dependent magnetism. In addition, the defect-
induced magnetism can be combined with the special thickness-
dependent properties to realize spintronic devices with atomically
thin materials [60]. Ge et al. reported a nearly thickness-dependent
localized magnetic moment that was induced by Pt vacancies in
air-stable type-II Dirac semimetal PtSe, flakes [71]. Their study
offers a simple way to induce magnetism in non-magnetic
materials. In addition, It is theoretically predicted that PtSe, has a
superconducting transition at a very low temperature of 2 mK
[95]. On the experimental side, the filamentous superconducting
transition of wrinkled PtSe, at 2.3 K caused by rapid thermal
treatment was observed [96]. The inhomogeneous strain induced
by the thermal treatment caused the local superconducting islands
to be formed in the wrinkled PtSe, with enhanced temperature.

Recently, the magnetoresistance (MR) in semiconducting trivial
layered PdSe, flakes was investigated [97]. Due to the unique
pentagonal crystal structure of PdSe,, its anisotropic in-plane MR
is unique. Specifically, when the magnetic field is perpendicular to
the sample plane, the MR along the a-axis is significantly different
from the MR along the b-axis.

In summary, so far there are relatively few reports on the
application of NMDs in magnetism. Methods such as changing
the number of layers of NMDs, defect induction, metal vacancies,
and heat treatment can promote the magnetic applications of
NMDs.

3 Preparation methods of NMDs

Recently, NMDs have attracted global attention across a wide
range of fields. As discussed above, NMDs have many useful
intrinsic properties, which can be used in electronics, optics and
magnetic devices. To study their special properties in more detail
and explore high-performance devices, it is necessary to synthesize
high-quality bulk and 2D NMDs. In this section, we summarize
the methods for the synthesis of NMDs, especially typical
synthetic methods of 2D crystals. The chemical vapor transport
(CVT) method as well as the self-flux method is the most
common way to fabricate high-quality single-crystal NMDs. For
the synthesis of 2D NMDs, the present approaches can be
categorized as top-down strategy (ME, LPE, etc.) and bottom-up
strategy (one-step CVD, two-step CVD, and MBE).

3.1 Preparation of bulk single crystal

There have been several reports on the preparation of bulk single
crystal NMDs. The methods to synthesize single-crystal NMDs are
mainly CVT and self-flux method. In addition, NMDs single
crystals also exhibit metallic luster [61]. Yu et al. synthesized a
PtSe, single crystal using the CVT method and compared it with
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the CVD method. A schematic diagram of PtSe, single crystal
growth is shown in Fig. 4(a). The size of PtSe, single crystals can
reach 2-3 mm (Fig. 4(b)). Their surfaces are flat and without
wrinkles, which indicates that the single-crystal samples, grown
using this method, are of high quality [56].

A similar high-quality PtSe, crystal synthesis route was
confirmed by another group, as shown in Fig. 4(c). In addition,
the unique metallic properties and high electric conductivity were
confirmed by constructing PtSe,-based devices such as FETs [62].
This facile and convenient CVT method is very versatile for the
synthesis of bulk NMDs. Li et al. used phosphorus as transport gas
to synthesize PtS, single crystals via CVT. After the growth cycle, a
plate-like crystal with a metallic luster and size of 6 mm x 6 mm x
0.2 mm was obtained [61]. The frequently used parameters in the
NMDs synthesis based on CVT are summarized in Table 1.
Recently, it has been reported that another method can be used to
prepare NMDs single crystals, ie., the self-flux method [54, 58,
98]. For example, Chow et al. reported PdSe, single crystals which
were grown using a self-flux method [55]. The elements Pd and
Se, using an atomic ratio of Pd:Se = 1:6, were mixed together and
sealed in an evacuated quartz ampule. Then it was slowly heated
to 850 °C and annealed for 50 h, Next, it was slowly cooled to 450
°C at a rate of 3 °Ch™ down to room temperature. As a result,
shiny single-crystal flakes can be obtained (Fig. 4(d)). Long et al.
also synthesized PdSe, single crystals using the self-flux method.
They used Pd powder mixed with Se powder (with an atomic ratio
of 1:2) to prepare PdSe, polycrystalline powder in a tube furnace.
Then, the prepared PdSe, polycrystalline powder and Se powder
were mixed again with a mass ratio of 1:4 and placed in a tube
furnace for heating. Finally, high-quality narrow-bandgap air-
stable PdSe, single crystals were obtained (Fig. 4(e)) [58]. Single
crystals of PtTe, can also be fabricated using the self-flux method.
The authors directly mixed Pt foil and Te ingots, using a ratio of
1:17. To improve the quality of the crystals and remove the excess
Te flux, the crystal was sealed again in a vacuum quartz tube and
stored for four days at a constant temperature of 723 K. As a
result, a crystal with a size of 8 mm x 8 mm x 1 mm was obtained
[99]. Using a similar technique, Xu et al. also synthesized PtTe,
crystals [98]. The transmission electron microscopy (TEM) image

(a) (b)
Chemical vapor transport
(cvT)
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showed a lattice spacing of two groups of crystal plans. The lattice
spacings were 0.211 and 0.117 nm which corresponded to the
(110) and (100) planes of a hexagonal structure, respectively (Fig.
4(D).

3.2 Preparation of 2D NMDs materials

As mentioned above, 2D NMDs always have unique and useful
properties compared to the bulk material. Several ways to fabricate
2D NMDs were used (ME, LPE and CVD). The methods can be
categorized into top-down methods and bottom-up methods.

3.2.1 Top-down methods

(a) ME

As shown in Figs. 5(a) and 5(b), the most common top-down
methods are ME and LPE. ME is a common method to obtain 2D
materials from bulk materials. In the case of NMDs, the
researchers exfoliated few-layer (and monolayer) NMDs
nanosheets from the synthesized high quality and single-
crystalline bulk material. Li et al. used scotch tape-based ME
method to mechanically peel off several layers of PtS, flakes from
the corresponding bulk crystals. They transferred them to a Si
substrate with 300 nm SiO, [61]. The thickness of the stripped
PtS, atomic layer could reach about 2 nm. The exfoliated 2D PtS,
retained the high-quality hexagonal single crystallinity of the CVT
synthesized bulk PtS,. Similarly, the octahedral structure PtSe, in
the 1T phase (single crystal) can be peeled from bulk PtSe,. The
lateral dimension of monolayer PtSe, could reach several microns
[62]. The high crystallinity of PtSe, enabled exceptional device
performance and high room-temperature mobility (= 210
cm®V~'s™), Ciarrocchi et al. used ME method to obtain ultrathin
PtSe, crystals. They also showed that PtSe, showed a bigger tuning
range, with a complete transition from metal to a semiconductor,
as the thickness was reduced [100].

The results of other groups confirmed the feasibility of the ME
method to fabricate 2D NMDs [58, 83, 98]. ME method can yield
the highest-quality monolayer or few-layer samples, which are
ideal for the preparation of high-performance devices [8, 24]. But
the ME method is not scalable and suitable for industrial
production due to its high labor intensity, time-consuming, low

Figure4 (a) Schematic of the experimental setup to grow NMDs single crystals using CVT method. (b) Optical microscope image and scanning electron microscope
(SEM) image of the synthesized PtSe, flakes. Reproduced with permission from Ref. [56], © Yu, X. C. et al. 2018. (c) Experimental morphology STEM images of PtSe,.
Reproduced with permission from Ref. [62], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2016. (d) Photographs of the as-grown PdSe, single crystals.
Reproduced with permission from Ref. [55], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2017. (e) Experimental morphology high resolution TEM
(HRTEM) image of PdSe,. Reproduced with permission from Ref. [58], © American Chemical Society 2019. (f) Experimental morphology TEM image of PtTe,.
Reproduced with permission from Ref. [98], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2019.
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Table1 The different synthesis methods to prepare NMDs

Source

Synthesis Material Precursor Carrier gas or vacuum temperature Growth zonf Substrate/solvent Ref.
method degree (Torr) ©0) temperature (°C)
PtS, PtS, crystal / / / Si0,/Si [83]
PtS, PtS, crystal / / / ALO,/Si [112]
PtS, PtS, crystal / / / Si0,/Si [61]
ME PtTe, PtTe, crystal / / / Si0,/Si [98]
PtSe, PtSe, crystal / / / Si0,/Si [62]
PtSe, PtSe, crystal / / / Si0,/Si [51]
PdSe, PdSe, crystal / / / Si0,/Si [58]
PdSe, PdSe, crystal / / / Si0,/Si [113]
PdSe, PdSe, crystal / / / Si0,/Si [114]
PtS, PtS, powder / / / N'Methillfl;/fg)mhdone [115]
g P PtS, powder / / / NMP [104]
PtTe, PtTe, powder / / / Isopropyl alcohol (IPA)  [77]
PdS, PdS, powder / / / IPA [80]
pis, ToSP p‘fgiﬁ;‘ggﬁfﬂ?‘fzr ratio of 10° 800 740 / [61]
P, Ptand S powder \In;h a molar ratio of 10 900 750 / [112]
CVT Pise, Pt, S, P, Se pOWdi:r;i.t; a molar ratio of 10 900 200 / (62]
o, TS ISpme e ntost gy P s
PtSe, PtCl, and Se powder / / / Si0,/Si [56]
PtSe, H,PtCly and Se Low pressure / 900 Sapphire [52]
PdSe, Pd powder and Se powder Ar / Si0,/Si [116]
Ogevslt)ep PdSe, Pd powder and Se powder Ar / 800 Si0,/Si [86]
PdSe, PdCl, and Se granules Ar/H, (10:1) / / sapphire [81]
Pdse, PACL, and Se powder Ar (Sflsscs(ggg‘d H, / / Au foil [117]
PdSe, Pd powder and Se powder 600 SCCM Ar 450 815 Si0,/Si [108]
PtS, S powder and Pt film 60 SCCM Ar 130 600 Si0,/Si [118]
PtS, S powder and Pt film 10 SCCM Ar 280 800 Si0,/Si [119]
PtSe, Se powder and Pt film 60 SCCM Ar 130 450 Si0,/Si [118]
PtSe, Se powder and Pt film Ar 245 450 Si0,/Si [73]
PtSe, Se powder and Pt film N, 221 650 Quartz/sapphire [63]
PtSe, Se powder and Pt film Ar/H, (9:1) 220 400 Si0,/Si [120]
PtSe, Se powder and Pt film Ar /H, (9:1) 220 400 Si0,/Si [121]
PtSe, Se powder and Pt film H,/Ar (1:9) 250 450 fused quartz [122]
T‘gfl;ep PtSe, Se powder and Pt film 50 SCCM Ar 220 450 Si0,/Si [123]
PtSe, Se powder and Pt film 50 SCCM Ar 220 450 Si0,/Si [124]
PtSe, Se powder and Pt film 50 SCCM Ar 220 380 Si0,/Si [125]
PtSe, Se powder and Pt film 50 SCCM Ar 220 380 Si [126]
PtSe, Se powder and Pt film H,/Ar (1:9) 220 400 Si0,/Si [64]
PtSe, Se powder and Pt film Ar 220 420 Si0,/Si [66]
PtSe, Se powder and Pt film Ar 220 420 Si0,/Si [127]
PdSe, Se powder and Pd film Ar 220 480 Si0,/Si [67]
PdSe, Se powder and Pd film Arand H, 357 Si0,/Si [128]
controllability of the number of layers and large area uniformity (b) LPE
[101]. Moreover, considering the strong interlayer force of the LPE is also commonly used to prepare 2D NMDs with high

material and the in-plane anisotropy, it is still a challenge to obtain yield and suitable for mass production [26]. Wang et al. used
a single layer using ME method [102]. NMP as a solvent and prepared a PtS, microflake solution using
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probe sonication [104]. After sonication and concentration, the
expected PtS, flakes with lateral dimensions of several microns
and 0.35 pm thickness were fabricated with high yield. In another
study, the PtTe, nanosheets were synthesized using the same cost-
effective and facile method. Moreover, thanks to the suitable
surface energy, IPA was chosen as an exfoliation solvent to
prevent aggregation of flakes [77]. Therefore, the selection of
appropriate solvent is very important for the LPE of 2D materials.
According to the thermodynamics laws, choosing a solvent with a
small difference in surface energy from the 2D material is
conducive to LPE [105].

LPE method features some advantages, including facile
preparation process and high yield production [26]. Compared to
ME method, LPE method may be more suitable for applications
that require a large amount of materials, such as electrochemical
energy storage, catalysis, sensing, or composite fillers [8].
However, the LPE method also has some inevitable disadvantages,
such as low single-layer yield, uncontrollable number of layers,
and relatively small lateral dimensions [34].

3.2.2 Bottom-up methods

(a) One-step CVD

ME, LPE and vapor-phase growth are usually used to prepare
2D materials. ME can be used to prepare several 2D materials
[106]. Although this method can produce high-quality 2D
materials, it is not suitable for the large-scale production of 2D
materials. The LPE method is suitable for the low-cost and mass
production of 2D materials. Unfortunately, the unpredictable sizes
and thicknesses and unexpected defects limit the wider application
of 2D materials [107].

CVD is a scalable and controllable method to produce high-
quality and large-area 2D materials [28]. The CVD synthesis
approaches of NMDs can be categorized into one-step CVD
method and two-step CVD method, as shown in Figs. 5(c) and
5(d). One-step preparation of NMDs comprises a direct reaction
of a Pt/Pd source and chalcogenide enriched gas to form NMDs
crystals on the substrates. Ma et al. synthesized PdSe, nanosheets
by evaporating PtCl, and Se granules, followed by reaction and
deposition on a sapphire substrate [81]. Gu et al. synthesized a few-
layer (= 2 layers) PdSe, crystal on different substrates using CVD
and revealed the effect of temperature on the shape of PdSe, [86].
They used DFT calculations and kinetic Wulff construction

(KWC) modeling to explain the growth process and describe the
morphology evolution of PdSe, crystals on SiO,/Si substrates. The
results show that growth temperature is a key factor of the PdSe,
growth kinetics. The higher the substrate temperature, the faster
the growth rate, and the larger and thicker the crystal. As shown in
Fig. 6(a), by controlling the growth temperature, few-layer PdSe,
crystals, with different morphologies (including “heart-like” and
“square-like” shapes), were grown on a SiO,/Si substrate.
Interestingly, the growth shape of PdSe, depends on the different
substrates. The “square-like” shapes can also be found on sapphire
and mica substrates. However, the shape of PdSe,, grown on Au
foil, is irregular [86]. Xu et al. also synthesized PdSe, nanosheets
using CVD [108]. They were able to tune the thickness, size,
nucleation density and morphology of PdSe, nanosheets via the
systematic regulation of temperature during the growth process.
To compare the similarities and differences of NMDs for the one-
step CVD growth process more intuitively, we summarize
important growth data, as shown in Table 1.

The CVD method can provide a scalable and controllable way
to produce high quality, high-performance and large-area nano-
structured materials with a reasonable cost [28, 109]. Moreover,
the number of layers, size, morphology and orientation of films
grown by CVD can be controlled by changing the growth
parameters such as temperature, pressure, flow rate of carrier gas,
source-substrate distance, and relative amounts of source
materials [28]. Therefore, the CVD method is very important for
fundamental research and exploring the applications of 2D
materials.

(b) Two-step CVD

The two-step CVD method is also called thermally assisted
conversion (TAC). Metal or metal oxide is deposited on the
substrate in advance, which then reacts with vapor phase
chalcogen precursors in a quartz tube furnace and converted to
the corresponding metal chalcogenide compound [103]. The main
techniques used for precursor deposition are electron-beam
evaporation, magnetron sputtering, and standard spin-coating
methods. The size and thickness of the metal chalcogenide
compound film mainly depend on the pre-deposited precursor
film [110]. The TAC method was successfully used to synthesize
ultrathin NMDs film on a large scale.

Zhan et al. synthesized single-layer and few-layer MoS, on SiO,
substrates using TAC technology. Their results showed that the
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Figure6 (a) Measured morphology (optical microscopy, high-angle annular dark-field scanning TEM (HAADF-STEM), and atomic force microscopy (AFM))
images of PdSe,. Reproduced with permission from Ref. [86], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2020. (b) Experimental morphology (TEM,
HRTEM) images of PtSe,. Reproduced with permission from Ref. [63], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2019. (c) Experimental morphology
(SAED, HRTEM) images of PtSe,. Reproduced with permission from Ref. [66], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2018. (d) Experimental
morphology (AFM image, the inset shows the height profile) images of PdSe, film. Reproduced with permission from Ref. [128], © WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim 2019. (e) Experimental morphology (LEED pattern and STM) images of PtSe, film. Reproduced with permission from Ref. [50], © American

Chemical Society 2015.

size and thickness of the MoS, layer can be altered by changing the
size of the substrate and the thickness of the pre-deposited Mo
[111]. Recently, pre-deposited Pt and Pd metal layers, following
selenization or sulfidation, were widely used to prepare 2D NMDs.
We have summarized important date for the preparation of
NMDs using TAC method (Table 1).

Jiang et al. proposed a transfer-free growth method for the
preparation of PtSe, films. This method can be simply described as
a metal mask to deposit the patterned Pt film. This metal mask
can directly synthesize the patterned PtSe, structure without the
need for transfer and etching. Using this method, the authors
synthesized PtSe, thin films with different thicknesses
(centimeters, and large areas) on different substrates such as
silicon, quartz, and sapphire (Fig.6(b)) [63]. Based on the
crystallographic plane analysis, as-synthesized PtSe, has an
octahedral 1T phase structure.

Zeng et al. also synthesized PtSe, using the TAC method (Fig.
6(c)). The group first used magnetron sputtering to deposit a 12
nm Pt film on SiO,/Si substrate [66]. The polycrystalline film of
PtSe,, with a vertically aligned layered structure, can be observed
using high-resolution TEM. Later, the wafer-scale PdSe, film was
synthesized by the same team. The Pd metal layers were first
deposited on SiO,/Si, using magnetron sputtering. By controlling
the thickness of the precursor Pd, 2D PdSe, with a thickness
ranging from 1.2 nm to 20 nm, can be synthesized. In addition, an
unexpected effect was observed. As the thickness increased, the
Raman spectrum showed a significant red shift [67]. Luo et al.
performed a synthesis using the TAC method. The 8 nm Pd film
was deposited on a SiO,/Si substrate using an electron beam
evaporator (Fig. 6(d)) [128]. In addition, Zhang et al. found that
the amount of Te flux would affect the final compound and
obtained a PtTe phase [129]. TAC method can not only better

control the uniformity and thickness of the film but also provide a
facile strategy to directly prepare large-area controllable patterned
2D layered films on several substrates [67]. The good uniformity
of the growth sample is mainly attributed to the excellent
controllability of the deposition of the precursor film.

(c) MBE

MBE is a relatively new method for epitaxial film formation
that uses special vacuum coating process.

As a member of NMDs, monolayer PtSe, was synthesized using
a single step of direct selenization of a Pt(111) substrate via MBE.
The growth of the single-layer PtSe, thin-film involved a simple
precursor-free method, ie., directly selenizing the Pt(111)
substrate in a single step. As shown in Fig. 5(e), selenium atoms
were deposited on a Pt(111) substrate, and then the sample was
annealed at ~ 200 °C to obtain epitaxial PtSe, films (Fig. 6(e)) [50].
Yan et al. also successfully achieved epitaxial growth of high-
quality PtSe, films using MBE [130]. The group showed that the
thickness of PtSe, films can be controlled, and they found that
PtSe, had a distinct tunable bandgap, using angle-resolved
photoemission spectroscopy (ARPES). Recently, Xiong et al
reported electronic devices made from MBE-grown PtSe, and first
reported metal oxide-silicon field effect transistors (MOSFETS)
that were fabricated on PtSe, grown via MBE [131]. The
MOSFETs, which were based on PtSe,, showed interesting
characteristics such as n-type conduction and ON/OFF ratios as
high as 1,600. As for PdTe,, Li et al. used MBE to synthesize PtTe,
films, and they measured the band structure of 6-layer PtTe, films
using ARPES [132]. Moreover, the air exposure experiments
indicated that the PtTe, films had excellent chemical stability. Liu
et al. also used a bottom-up method via MBE to grow PdTe, films
on SrTiO5(001) and investigated the electronic and
superconducting properties of PdTe, [75]. Furthermore, Li et al.
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reported the growth of bilayer PdSe, on a graphene-SiC(0001)
substrate via MBE, and they found that the thickness of graphene
affected the bandgap of PdSe, [133]. A bandgap shift of 0.2 eV can
be observed in PdSe, layers grown on monolayer graphene,
compared to those grown on bilayer graphene.

In addition to the above preparation methods, recently, a
research team reported a novel method of synthesizing PtTe, from
2D Te deposited from Pt by laser irradiation [134]. The size and
shape of the PtTe, synthesis area can be designed during the laser
irradiation process. The authors studied the evolution of PtTe,
synthesized under different 2D Te thicknesses, laser powers and
exposure time. According to the experimental results, the best
condition for laser-induced PtTe, is at a laser power of ~ 10 mW
for 5 s. This novel growth method can be applied to PtTe,
patterning directly on flexible substrates, which will help other
applications of metallic noble TMDs in the future.

Compared with the CVD method, MBE allows for precise
control of the growth rate of the film due to decoupling of the
substrate temperature from the evaporation temperature of the
growth precursor. MBE can offer significant advantages for better
growth of highly uniform wafer-scale 2D TMDs films. It also
enables high accuracy to control the growth temperature and
precursor flux, while using a pollution-free environment [135].

Moreover, the jonic-intercalation method has the advantages of
solution processability, mass production, and high vyield of
monolayers, which has been demonstrated for TMDCs such as
MoS,, WS,, MoSe, and SnS, [136,137]. Considering the mass
production of 2D NMDs, the ionic specie intercalation method
can be considered.

4 Applications of NMDs

4.1 Ultrafast photonics

A mode-locking technique, which is based on saturable absorbers
(SAs), has turned out to be one of the most efficient techniques for
ultrafast pulse generation. These laser systems can be used in areas
such as laser surgery, ultrafine laser micromachining, high-
accuracy measurements, and ultrafast pump sources [127]. In
recent years, graphene [65], MXenes [138], TMDs (such as MoS,
and WS,) [139, 140], black phosphorus [141] and other 2D
materials were included as members of a new SAs family. The
bandgaps of TMDs are relatively large. For example, monolayer
MoS, and monolayer WS, have bandgaps of 1.78 and 1.84 €V,
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respectively. With changing thickness, the tunable bandgap
enables a strong resonance response of TMDs in the visible band
[142]. Similarly, the layer-controlled band gap characteristics of
NMDs make its broadband optical response potentially useful in
optical applications, especially in the field of ultrafast optics.
Therefore, some research groups already studied the nonlinear
optical (NLO) properties of NMDs.

Wang et al. systematically revealed the excellent NLO
performance and ultrafast dynamics of layered PtSe, (Fig.7(a))
[122]. The group discussed the changes of nonlinear absorption
and ultrafast carrier dynamics with increasing layer thickness. In
addition, they proposed an optical nonlinear method to better
understand the transition between semiconductor and semimetal.
The results indicate that PtSe, is a promising candidate for
nanophotonic devices such as saturable absorbers (SAs).
Furthermore, NMDs have a narrow bandgap, ranging from 0.25
to 1.6 eV [62], which allows all photons in the fiber laser (photon
energy 0.5-1 eV) to transition directly from the valence band to
the conduction band. This results in a robustly saturated
absorption and inherently stable mode-locked operation [73].
Considering the excellent saturable absorption, NMDs are ideal
candidates for saturable absorbers for the generation of ultrashort
pulses. Yuan et al. studied the nonlinear optical absorption
characteristics of PtSe, at 1,064 nm, and their results showed that
it exhibited typically saturated absorption [73]. They also showed
that PtSe, film can be used as an efficient nonlinear absorption
media to generate mode-locking pulses in a Yb-doped fiber laser
(Fig. 7(b)). The mode-locked pulse centered at 1,064.47 nm has a
pulse duration of 470 ps, a 3 dB spectral bandwidth of 2.0 nm, a
repetition rate of 4.08 MHz, and a signal to noise ratio (SNR) of 53
dB (Fig. 7(b)). To investigate the long-term stability of the fiber
lasers, the output spectra of the mode-locked dissipative soliton
pulse were continuously monitored for 12 h. At about the same
time, Long et al. used PtS, nanosheets to generate mode-locked
ultrafast pulses [115]. The prepared PtS, SA was used in two
different fiber laser systems (Er-doped fiber laser and Yb-doped
fiber laser). The two laser systems produced mode-locking laser
pulses at ~ 1.5 um or ~ 1 um, respectively. As members of NMDs,
PdSe,, PdS,, and PtTe, were also found to be suitable for passive Q-
switched laser applications. Furthermore, the PdSe, nanosheets
were used as a SA in passively Q-switch laser devices. The Q-
switched Nd:GdLaNbO,/PdSe, laser yielded a 405 mW average
output power for 8.8 W (absorbed pump power) at 879 nm [81].
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Figure 7 (a) Open-aperture Z-scan results of PtSe, with different thicknesses, at 515 and 1,030 nm. Reproduced with permission from Ref. [122], © WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim 2019. (b) Experimental setup of the YDF laser ring cavity and laser mode-locking characteristics, using the PtSe, layer SA.

Reproduced with permission from Ref. [73], © American Chemical Society 2018.
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PdS, was first used to demonstrate stable Q-switched and mode-
locked erbium-doped fiber lasers (EDEFLs). Self-starting Q-
switching operation at 1,567 nm was achieved with a threshold
pump power of 50.6 mW. The achieved pulse duration of the
mode-locked EDFL in this work was 803 fs, which indicates that
PdS, SA is a promising candidate for 2D materials in NLO
applications [80]. Cheng et al. successfully fabricated a SA using
PtTe,. The group also demonstrated passively Q-switched laser
operation within a Yb-doped fiber laser cavity at 1,066 nm [77].
Recently, Liu et al. reported the giant nonlinear optical activity in
2D PdSe, [143]. They demonstrated that the PdSe, exhibited a
unique thickness-dependent second harmonic generation (SHG)
feature. That is, when the number of layers is odd, the second
harmonic signal is weak; when the number of layers is even, the
second harmonic signal is stronger. This phenomenon is just the
opposite of that of other transition metal chalcogenides. Moreover,
the PdSe, also has large two-photon absorption (TPA) coefficients
and high modulation depths. Very recently, Han et al. [144] used a
Fabry-Perot cavity with a 500 nm thick SiO, layer on a Si substrate
to demonstrate the three-photon luminescence of the PtSe, atomic
layers. Based on the three-photon emission of the PtSe, atomic
layer, the authors demonstrated nonlinear optical encoding and
encryption for secure information applications. This study is
beneficial for exploring the mechanism of PtSe, nonlinear
luminescence and provides a simple way for promoting PtSe,
luminescence efficiency. In addition, this research will pave the
way for integrated nonlinear optical devices.

To summarize, the band gap characteristics of NMDs enable all
photons in fiber lasers to jump directly from the valence band to
the conduction band [62,73], which can produce powerful
saturable absorption and stable mode-locking operation. In
addition, in the application of ultrafast photonics, in order to
obtain ultrashort pulses, array preparation or construction of
heterojunctions can be considered to improve its saturation
absorption characteristics.

4.2 Electronic devices

Thanks to their high carrier mobility, 2D layered materials may be
used in the field of nanoelectronics, such as field-effect transistors
(FETs). The performance of electronic devices is largely
determined by carrier density and mobility. Since the discovery of
graphene, TMDs, BP and other 2D materials have triggered
extensive research due to their excellent properties [145,146].
Being the most studied TMDs, MoS, is used to manufacture FETs.
However, the mobility of FETs based on MoS, in practical
applications is often an order of magnitude lower than the
theoretically predicted value [147,148]. Moreover, the FETs,
which are based on TMDs, are only sensitive to visible light.
Therefore, they are not useful for applications in the infrared
[149]. The instability of BP in the air limits its application in
optoelectronics [150]. However, it is still useful to search for
emerging 2D materials with high ambient stability and good
performance. NMDs provide both strong interlayer-coupling and
a tunable bandgap [53, 83]. In addition, the theory predicts that
NMDs have a high carrier mobility at room temperature, which
exceeds 1000 cm>V~'s' [85]. As an excellent candidate for
optoelectronic application, NMDs have drawn the attention of
researchers worldwide.

Zhao et al. prepared a few-layer PtSe, FET and back-gated FET
with bulk PtSe, (Fig.8(a)) [62]. They found that, when the few-
layer PtSe, FET exhibited semiconducting behavior with high
room-temperature electron mobility (210 cm*V™'s”), the bulk
PtSe, device demonstrated metallic properties with high
conductivity (6.20 x 10° Sm™). Moreover, the 8-nm-thick PtSe,
device showed that both the “on” state conductance and mobility
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showed temperature dependence. The “on” state conductance of
the 8 nm PtSe, was 4.58 x 10~ s at 300 K. However, when the
temperature dropped to 50 K, the “on” state conductivity
decreased to 1.1 x 10° s. The mobility of the 8 nm PtSe, reached
140 cm* Vs, and when the temperature dropped to 125 and 25
K, the corresponding mobilities were 233 and 149 cm>V"s™. The
change in mobility at higher temperatures is attributed to
suppressed electron-phonon scattering, while the change at a
lower temperature is mainly due to Coulomb scattering. In
addition, the PtSe, devices show excellent ambient stability, which
is better than other 2D materials such as BP. The intrinsic electric
properties were investigated using typical output characteristics
(source-drain current (Iy) vs. drain bias (V) at different
temperatures by another group [63]. When the temperature
decreased from 300 to 77 K, the I also decreased. This indicates
that PtSe, has semiconductor properties. The FET, which is based
on PtSe,, shows p-type unipolar operation, with a high field-effect
hole mobility of 6.2 cm*V"s™ and an on-off ratio of 5 x 10°.

As for PtS,, Li et al. designed a FET, which was based on
exfoliated PtS, flakes to study the electronic transport properties
and potential applications of a few-layered PtS, [61]. Previous
reports confirmed that h-BN can improve the mobility of
graphene [151], MoS, [152] and black phosphorus [153]. To
confirm whether h-BN was also effective for PtS,, the authors
prepared PtS, FETs on SiO, (denoted as PS) and on SiO,-
supported h-BN (denoted as PB). The results show that the field-
effect mobility of the PB device was about 13 cm>V™s”, much
higher than the PS device (< 1 ecm>V™s™). Hence, it can be
concluded that h-BN can also improve the performance of PtS,
[61]. Moreover, the transfer curves (I~ Vo) of PS and PB devices
also show improved performance for h-BN. Zhao et al. fabricated
a FET, which was based on large-scale PtS, [119]. The transfer
curves of PtS, FETs exhibited typical a p-type transport behavior.
When the channel width increased from 10 to 30 pm, the FET’s
driving capability improved for a higher on-state current.

As an important member of NMDs, PdSe, also shows excellent
photoelectric properties, and it has been extensively studied over
the last years. Long et al. fabricated a FET, which was based on
multilayer PdSe, flakes, using the conventional electron-beam
lithography process (Fig. 8(b)) [58]. The performance of the PdSe,
FET before and after annealing was compared. The results
indicate that the annealing process can indeed improve the
mobility. Before annealing, the maximum electron and hole
mobilities were ~ 59.8 and 16.1 cm*V™s, respectively, and the
on/off ratio was ~ 10°. After annealing, the electron and hole
mobilities increased to ~ 138.9 and 57.0 cm*V™s”, respectively,
and the on/off ratio was increased to 10°. Moreover, the PdSe, FET
device exhibited weak p-type conductivity and its optical response
rate was as high as 42.1 AW~

Gu et al. fabricated FET devices with eight electrodes using a
back-gate configuration (Fig. 8(c)) [86]. The FET, which was
based on few-layer PdSe,, showed tunable bipolar charge carrier
conduction with electron mobility reaching 294 cm>V™"s™ and the
on-off ration reached 10°. The electric properties of 2D PdSe,
depended on the thickness. When the thickness increased from
3.8 to 9 nm, the on/off ratio for electrons decreased from 10* to
10> Moreover, the anisotropic electric properties of PdSe, were
studied using angle-resolved transport measurements. The results
indicate that few-layer PdSe, has strong in-plane anisotropic
optical properties. FETs, based on ultrathin PdSe,, show intrinsic
ambipolar characteristics, and the polarity of the FET could be
tuned. Chow et al. characterized FETs, which used a back-gated
configuration. They also introduced a simple vacuum annealing
process to realize high-performance unipolar n-type PdSe, FET
with mobilities reaching = 216 cm*V™"s™ and on/off ratio of 10°
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Figure8 (a) Transfer-and output-curves of a PtSe, FET with different thicknesses. Reproduced with permission from Ref. [62], © WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim 2016. (b) Transfer and output curves of a PdSe, FET before and after annealing. Reproduced with permission from Ref. [58], © American Chemical
Society 2019. (c) Measurement results of an eight-electrode FET device. Reproduced with permission from Ref. [86], © WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim 2020. (d) Schematic representation and transfer curves of a PdSe, FET. Reproduced with permission from Ref. [55], © WILEY-VCH Verlag GmbH & Co.

KGaA, Weinheim 2017.

[55]. From the transfer curves, it can be seen that the threshold
voltage gradually moved towards negative bias, which indicates
that the Fermi level moves toward the conduction band of PdSe,.
This indicates that the annealing process can remove surface
adsorbates, and a high-performance unipolar n-type PdSe, FET
can be realized (Fig. 8(d)).

NMDs have unique layer-related characteristics, high carrier
mobility, and good stability, which make them attractive in the
field of FET. In order to improve the performance of FET based
on NMDs, there are several ways to try to increase their carrier
mobility: 1. to explore different substrates and find the most
suitable substrate to improve contact and reduce scattering of
impurities [61]; 2. to change the number of layers of NMDs and
find the best number of layers. 3. to construct a heterojunction
based on NMDs.

4.3 Photoelectronic devices

A long-wavelength infrared photodetector has wide applications
in many areas such as remote sensing, thermal imaging,
biomedical optics, optical communication, industrial automation,
and medical imaging [58, 154]. Mid-infrared detection, however,
using 2D materials has always been a challenging task [155].
Recently, NMDs with a tunable bandgap, high carrier-mobility,
and excellent environmental stability showed a promising
potential for optoelectronic applications. For example, PtSe, shows
the highest mobility in NMDs, which is comparable to black
phosphorus, and the bandgap ranges from 0 to 1.2 eV [63].
Therefore, the optical response band would cover even the mid-
infrared region. Yu et al. studied bilayer PtSe,. They found that
when combined with defect modulation, PtSe, showed strong
light absorption in the mid-infrared region. And they built a
broadband mid-infrared photodetector that was operating at
room temperature. Both the responsivity and response speed far
exceeded those of the recently discovered black AsP in the 3-5 pm

range (Fig.3(c)) [56,156]. Zeng et al, reported a high-
performance,  air-stable,  self-powered, and  broadband
photodetector based on a vertically aligned PtSe,-GaAs
heterojunction [66]. The photodetector showed a broadband
sensitivity, ranging from DUV to near-infrared, and the peak light
sensitivity ranged from 650 to 810 nm at zero bias voltage.
Interestingly, the prepared heterojunction showed a typical
rectification behavior even in the absence of light. The
optoelectronic analysis showed that the I /I ¢ ratio, responsivity,
specific detectivity, and the response speed of the photodetector
were 3 x 10% 262 mA-W", 2.52 x 10" Jones, and 5.5/6.5 ys,
respectively. These numbers are comparable to or better than
those of other TMDs photodetectors. In addition, the PtSe,/GaAs
heterojunction can be used as a self-driven photodetector under
different light intensities. Furthermore, PtSe,/GaAs devices can be
switched between on and off states with good reproducibility (Fig.
9(a)). The stability test results indicate that this heterojunction
photodetector has high stability in air (Fig. 9(b)) [66].

As mentioned above, both the monolayer and bulk PtS, are
indirect bandgap semiconductors. Thus, PtS, is naturally a
promising candidate for broadband photodetectors. Wang et al.
published a broadband photodetector based on 2D PtS, [112]. The
photodetector had a photoresponse ranging from visible to mid-
infrared. At the near-infrared (830 nm), the photodetector
exhibited fast photoresponse time (175 ys).

For PdSe,, the bandgap can be reduced from 1.3 eV for a
monolayer to 0 eV for the bulk material. Hence, the device based
on PdSe, can extend the detection range from the visible to the
near-infrared and mid-infrared regions.

Liang et al. reported a high-performance broadband PdSe,-
based photodetector [79]. Based on the PdSe,-gated
photodetector, the group found the  gate-tunable
photoresponsivity. This gate photodetector not only had an
excellent photoelectric performance in the visible and near-
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infrared regions but it also featured high photoresponsivity in the
mid-infrared region (up to 4.05 um). In addition, the gate-tunable
photoresponsivity offers more opportunities to control the
performance of the phototransistor. Moreover, because PdSe, is
anisotropic, the group also found that the photoresponse of the
PdSe,-based photodetector can be changed using the polarization
angle of incident light [79]. These results confirm that PdSe, is a
promising candidate material for infrared optoelectronics and
perhaps other novel devices. Luo et al. developed a sensitive
infrared photodetector (IRPD) that consisted of a germanium
nanocone (GeNCs) array and a PdSe, multilayer [128]. The IRPD
exhibits a clear photovoltaic behavior up to 1,550 nm, which
renders the IRPD a self-driven device that needs no external
power supply. The specific detectivity at 1,550 nm is 1.45 x 10"
Jones. The PdSe,/GeNC array device has good sensitivity at 1,350,
1,550, 1,650, and even 2,200 nm, with good reproducibility.
Moreover, they showed that the PdSe,/GeNC can reliably record
simple infrared images. Zeng et al. used TAC technology to
synthesize a 2D PdSe, thin film at the wafer level and combined it
with Si to prepare a photodetector (Fig. 9(c)) [67]. The PdSe,/Si
heterojunction photodetector has a high on/off ratio (= 10°) (Fig.
9(d)), a high responsivity (300.2 mA-W™), and excellent specific
detectivity (= 10 Jones). To further optimize the photoresponse
of the heterojunction, black phosphorous quantum dots (BPQDs)
were used to modify the PdSe,/Si heterojunction photodiode.
Compared with the result of the I-V curve, it can be seen that the
photocurrent of BPQDs@PdSe,/Si has increased after
modification of the BPQDs. This can be attributed to enhanced
optical absorption (Fig.9(e)). Moreover, the BPQDs@PdSe,/Si
heterojunction not only shows high sensitivity to different
wavelengths, but also exhibits a fairly fast response speed. The
response speed is comparable to those of photodetectors based on
other TMDs [67,158,159]. Wu et al. demonstrated a
photodetector that was based on a graphene/PdSe,/germanium
(Gr/PdSe,/Ge) heterojunction [57]. The photodetector, which is
based on the heterojunction, performs very well, with a high
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photoresponsivity, a high specific detectivity, a fast response speed,
and broadband photosensitivity that ranges from DUV to MIR.
The peak optical response of the Gr/PdSe,/Ge heterojunction
device is between 600 and 1,850 nm, which is consistent with the
UV-Vis-IR absorption spectrum of the PdSe,/Ge hybrid system.
Moreover, the group also demonstrated high-resolution
polarization imaging based on the heterojunction device. Their
results show that the Gr/PdSe,/Ge heterojunction has potential in
polarization-sensitive broadband photodetection and imaging.

Recently, Zeng et al. reported van-der-Waals (vdW) epitaxial
growth of a wafer-scale 2D platinum ditelluride (PtTe,) layer. This
was done by directly growing 2D PtTe, on n-Si to fabricate a high-
quality PtTe,/Si vertical Schottky junction photodetector (Fig. 9(f))
[157]. This photodetector shows a superior device performance. It
features fast speed, a large bandwidth, and an excellent infrared
imaging capability. Figure 9(g) shows the temporal photovoltaic
response of the device to 3.04, 4.55, and 10.6 pum illumination. It
can be clearly seen that the photodetector could be reversibly
switched with good stability and reproductivity, yielding a high
on/off ratio of = 10>-10°. The responsivity and specific detectivity
of PtTe,/Si photodetector are higher than those of other MIR
photodetectors (Fig. 9(h)). Moreover, the device also shows a
remarkable good photovoltaic response in the near-infrared
spectral bands (Fig. 9(i)).

In summary, the layer-dependent band gap characteristics of
NMDs make them excellent channel materials for broadband
detection from DUV to MIR, and it plays an important role in
optical interconnection, such as light-wave communication and
high-resolution imaging [160]. Overall, 2D NMDs have
application prospects in the field of high-performance high-
polarization-sensitive, broadband and air-stabilized
photodetectors.

44 Meta optics
Over the past few decades, the development of flat optics has
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brought interesting applications such as meta-surfaces, color
prints, and meta-lenses. Although graphene and other 2D
materials with excellent optical properties have been used in flat
optics, the conventional phase-modulation mechanism still has
some defects. Therefore, the field of meta optics still needs further
exploration. 2D NMDs are believed to possess an unusual
potential with respect to flat optics application, mainly because of
their environmental stability and high refractive index.

Recently, Wang et al. demonstrated atomically thin high-
performance meta-optics including a hologram and a meta-lens.
In this new study, 4.3 nm thick PtSe, was synthesized via the TAC
approach on a SiO,/Si substrate. Direct laser writing (DLW)
technology was explored to construct a predesigned phase-
distribution on the PtSe,/SiO,/Si structure. The schematic diagram
of the DLW is depicted in Fig. 10(a). The losses of atomically thin
PtSe, nanosheets and the resonator structure were thoughtfully
designed to achieve singular phase properties with a remarkable -
phase jump. Figure 10(b) shows a schematic diagram for binary
meta-optics units. Thanks to the nontrivial singular phase
properties, an angle-robust and high unit thickness diffraction
efficiency of 0.96%-nm™ for the visible frequencies were found.
This showed significant superiority over the control group, for
which a conventional phase regulation mechanism was used (Fig.
10(c)). Furthermore, the authors also revealed binary meta-optics-
enabled Fresnel zone plate (FZP) lenses at visible frequencies.
Diffraction limited focusing was achieved for visible frequencies
(Fig. 10(d)). This timely approach expands the research of NMDs
to an active and cutting-edge flat optics field [69].

45 Other applications

The thickness-related ~semimetal-to-semiconductor transition
properties of NMDs make them potential candidates for
optoelectronic device applications. We summarize applications of
NMDs in ultrafast photonics, FET, photodetectors, and flat optics,
but the application areas of NMDs are not limited to these fields.
NMDs have also shown their potential in other application
areas such as gas sensors, electromechanical piezoresistive sensors,
photocatalysis, all-optical modulator, and superconductors. The
related applications of NMDs are summarized in Table 2. A PtSe,
thin film, grown using TAC technology, was shown to have many
potential applications in the field of high-performance gas sensing,
with extremely short response and recovery time. The gas sensor
with a PtSe, channel showed ultrahigh sensitivity to NO, at room
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temperature (Fig. 11(a)) [64]. An integrated
nanoelectromechanical system (NEMS) piezoresistive pressure-
sensor, which is based on freestanding PMMA/PtSe, membrane,
exhibits very high sensitivity. It performs at least 82 times better
than piezoresistive pressure-sensors based on other materials (Fig.
11(b)) [72]. Wang et al. used a methylene-blue photodegradation
experiment to evaluate the photocatalytic activity of monolayer
PtSe, film, and the results showed that PtSe, was a promising
photocatalyst (Fig. 11(c)) [50]. Wei et al. proposed an all-optical
modulator with a 2D PtSe,-on-silicon structure [179]. Their
results showed that the PtSe,-based device was a potential choice
for all-optical signal processing. Moreover, Chen et al. also
demonstrated that PtSe, can be used as the catalyst for
photoelectrochemical hydrogen production [180]. Kireev et al.
reported an interesting work that PtSe, and PtTe, can be used for
electronic tattoos [181]. The electronic tattoos based on PtSe, and
PtTe, can be used for monitoring human physiological vital signs,
such as the electrical activity of the heart and the brain, muscle
contractions, eye movements, and temperature. Among them,
PtTe, is considered to be the most suitable material due to its
metallic structural characteristics. The PtTe, electronic tattoo
performs better than gold and graphene electronic tattoos and it is
comparable to medical-grade Ag/AgCl gel electrodes. Recently,
Jiao et al. [182] designed a simple method to activate the 2D PtSe,
basal plane through gentle Ar plasma treatment, while introducing
Se, Pt atomic vacancies and Pt clusters, and achieved a high-
efficiency hydrogen evolution reaction (HER). This study proves
the great potential of activated 2D PtSe, as a HER ultra-thin
catalyst and provides new insights for the rational design of 2D
electrocatalysts.

5 Conclusion and prospects

In recent decades, NMDs has become highly popular research
topics due to their unique structure, excellent optical and electrical
properties, and environmental stability. This review systematically
summarizes the fundamental properties (structural, electronic,
optical, magnetic) of NMDs and preparation methods (CVT, ME,
LPE, one-step CVD, two-step CVD, and MBE) of NMDs.
Through our summary of the preparation methods, we find that
TAC technology is already widely used in the preparation of
NMDs. This is because, compared to other methods, TAC
technology has the following advantages: (1) potential scalability,
compatibility with standard process flows; (2) TAC can better

(b) i

- Sim
rof "

=
s
>
%
[
2
Soa
©
[
N
‘®
€
o
Z

| ‘TPE‘NHM‘739 1nom
|
1 4

{

N
=

3 -2 -1 0 2 3
X (um)

Figure 10 (a) Illustration of a laser-scribed binary meta-hologram. (b) Configuration of nanometric PtSe, layers placed on a uniform substrate, exhibiting an abrupt
Heaviside phase shift nearby the critical coupling point. (c) Comparison of measured diffraction efficiencies for samples with and without the 290 nm thick silica layer.
(d) Cross section of the simulated and experimental intensity distribution of the focal spot at the wavelength of 590 nm. (a)-(d) Reproduced with permission from Ref.

[69], © American Chemical Society 2020.
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Table2 The applications of NMDs

Application Material Highlight Refs.
pts, Wavelength 1,572 nm, pulse duration 2.064 ps, repetition rate 15.04 MHz, and output 1.1 mW; wavelength (115, 104]
1,568.8 nm, pulse duration 4.2 ys, repetition rate 24.6 kHz, and output 1.1 mW
PtTe, Wavelength 1,066 nm, pulse duration 5.2 ps, repetition rate 33.5 kHz, and output 2.48 mW [77]

Wavelength range from visible light to near-infrared, pulse duration from tens of nanosecond (ns) to
hundreds of picosecond (ps), repetition rate from tens of kHz to several GHz, output power range from a

Ultrafast ~ PtSe,

[73,161, 162,127,
163, 164, 165]

Photonics few milliwatts (mW) to more than one thousand milliwatts (mW)
Pds, Wavelength 1565.8 nm, pulse duration 803 fs, repetition rate 12.1 MHz, and output 0.55 mW [80]
Wavelength in the near infrared region, pulse duration in the hundreds of nanoseconds to hundreds of
PdSe, femtoseconds, repetition rate from more than one hundred kHz to ten MHz, and output power from a few  [166, 81, 167, 168]
tenths of a milliwatt to a few hundred milliwatts
Excellent electronic mobility (62.5 cm*V™"-s™), and bulk devices show metallic-like behavior, and ultrahigh
PtS, ) (83,112, 119]
on/off ratio (over 10°)
Few-layer PtSe, FET exhibits semiconducting behavior and while bulk PtSe, device exhibits metallic-like [62, 63, 52, 169, 51,
FET  PtSe, o e i e 2 eV 131, 100, 170, 120,
121, 121]
PdSe Tunable ambipolar charge carrier conduction, high mobility (294 cm*V~"s™"), and high current on/off ratio [86, 55, 171, 172, 54,
2 (over 10°) 108, 173]
pes, Broadband photodetection from visible to mld—.lnfraljed, .and a fast photoresponse time of 175 s at 800 nm (112, 118, 61, 174]
illumination
PtTe, THz photodetector, high photoresponsivity (1.6 A-W~' without bias voltage) [98]
, 56,123, 169, 124,
Photodetector PtSe Broadband sensitivity from deep ultraviolet to the mid-infrared range, good photoresponsivity (262 [6162 55 617 5 31 1 86 91 26
2 mA-W™), and high specific detectivity (3.8 x 10" Jones) ’ 176) 177i ’
PdSe Highly sensitive, air-stable, high photoresponsivity (1.24 x 10° A-W™'), broadband ranging from DUV to [58, 57, 6)7, 154, 79,
2 MIR, and fast response speed (< 11 ms) 114, 108]
Meta optics ~ PtSe, Singular phase behavior, remarkable n phase jump [69]
Gas sensor  PtSe, This gas sensor shows ultrahigh sensitivity to NO, gas with fast response time [64]
P::rslzgie PtSe, High negative gauge factors (up to —84.8), and high sensitivity (1.64 x 10~ mbar™) [72]
PtSe, The photocatalytic activity demonstrates that PtSe, is a promising photocatalyst [50]
Catalytic PdSe, can be used as an efcient electrocatalyst for hydrogen evolution reaction in an alkaline electrolyte, and
PdSe, At - . [178]
both Pd and Se atoms exhibit high activity for hydrogen evolution
Magnetism  PtSe, Thickness-dependent localized magnetic moments induced by Pt-vacancy defects [71]

control the uniformity and thickness of the film. Furthermore,
TAC also provides a simple stage to directly prepare large-area
controllable patterns using 2D-layered film on several substrates.
We also summarize the recent applications of NMDs in ultrafast
optics, FETS, photodetectors, meta optics, and other applications.
Although progress has been made in certain areas in the past few

years, there are still some areas where more in-depth knowledge
would be desirable.

The two-step CVD method, which is widely used in preparing
NMDs, has some advantages over other methods. But there are
still some challenges, including the inability to develop large-scale
and high-quality film samples to meet the needs of
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industrialization. Therefore, further improvement of the synthesis
method is necessary to obtain high-quality samples.

Many studies were done to explore the properties and
applications of NMDs. Nevertheless, most of the reports focused
on the popular members of NMDs such as PtSe, or PdSe,. The
promising potential of other members are not be explored much.
For example, for the ultrafast photonics of NMDs, only PtSe, was
widely reported, and there are few reports of other members of the
NMDs class. Moreover, the research of ultrafast photonics with
NMDs was not exhaustive enough, and most studies were limited
to the study of nonlinear absorption properties. In other words, it
would be very desirable if the ultrafast optical properties of other
NMDs members were studied systematically and in more depth.

In general, NMDs have excellent photoelectric and magnetic
properties. In terms of applications, those unique and excellent
electronic properties would endow NMDs-based electronic
devices with high performance. For example, there have been
many studies focused on optoelectronic devices such as FET and
photodetectors. However, there are few studies on magnetic
applications and other aspects. Therefore, the exploration of
NMDs in other application areas could be implemented in the
future. For example, NMDs have environmental stability and high
refractive index, so they have application prospects on meta-
surfaces [69]. In addition, we believe that there are potential
applications in the field of laser processing [69] and wearable
bioelectronic applications [181].

Overall, considering the current stage of 2D NMDs, the
challenges and opportunities in the near future are as follows:
exploration of new technologies with the aim for mass production
of high-quality 2D NMDs; study of a wider range of NMDs;
discovery of novel applications and perhaps new emerging
phenomenon.
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