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ABSTRACT

Developing highly efficient oxygen evolution reaction (OER) catalyst for the acidic corrosive operating conditions is a challenging
task. Herein, we report the synthesis of uniform RuO, clusters with ~ 2 nm in size via electrochemical leaching of Sr from SrRuO;
ceramic in acid. The RuO; clusters exhibit ultrahigh OER activity with overpotential of ~ 160 mV at 10 mA-cmge,? in 1.0 M HCIO,
solution for 30-h testing. The extended X-ray absorption fine structure measurement reveals enlarged Jahn-Teller distortion of Ru-
O octahedra in the RuO, clusters compared to its bulk counterpart. Density function theory calculations show that the enhanced

Jahn-Teller distortion can improve the intrinsic OER activity of RuO,.
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1 Introduction

Oxygen evolution reaction (OER) is a crucial process in energy
conversion and storage technologies such as (photo-
Jelectrochemical water-splitting and regenerative fuel cells [1-6].
In recent years, diverse types of OER catalysts, including noble-
metal/noble-metal oxide [7-8], nickle oxides/hydroxides [7, 9-10],
cobalt oxides [10,11], metal organic frameworks [12], C;N,
[13,14], and their hybrid materials [15-20] have been explored.
The structure of catalysts, such as porous framework,
heterostructure, and so on, were designed and fabricated for
enhancing the activity [21-26] and multiple functionization
[27-29]. Although most of these studied catalysts were found to
exhibit enhanced OER activity in alkaline electrolytes, they usually
showed higher overpotential and lacked of stability in acid
solution [30-34]. For a long time, ruthenium and iridium oxides
[35-39], which usually require overpotential of > 320 mV to reach
a current density of 10 mA-cmy,,” [37,40-42], were regarded as
the most applicable OER catalysts in acid. An IrO,/SrIrO; catalyst
formed by Sr leaching from surface layers of SrIrO; thin films
during OER testing, was reported to demonstrate excellent OER
catalytic activity in acid, with 270-290 mV overpotential at

10 mA-cm,” for 30 h in 0.5 M H,SO, solution [40]. Pyrochlore
yttrium ruthenate (Y,Ru,0,_5) was shown to exhibit high stability
in 0.1 M perchloric acid solution and a low onset overpotential of
190 mV for OER [43]. Nevertheless, it required > 300 mV
overpotential to reach a reasonable current density of
10 mA-cmy,” [43]. As acidic working condition, for instance, in
polymer electrolyte membrane (PEM) electrolysers, is favorable
for OER due to high proton conductivity and limited side
reactions, development of efficient and durable OER catalysts in
acid is urgently required.

In the past few years, outstanding OER activity of SrRuO;
(SRO) thin film or nanopowders has been noticed and attracted
considerable attentions [44]. Nevertheless, very fast performance
degradation of SrRuO; thin film and SrRuO; nanopowder at
relatively large current density (e.g., at 10 mA-cm,,) especially in
acid [44-46], prevented the application of SrRuO; thin film or
nanopowder as a stable OER electrode despite their high activity.

In this work, we report robust OER activity of RuO, clusters
synthesized via a top-down strategy starting with a bulk SrRuO,
ceramic pellet, with an overpotential of ~ 160 mV at 10 mA-cmy,,”
in 1.0 M HCIO, solution for 30-h testing. The uniform rutile RuO,
clusters with ~ 2 nm in size are formed via electro-chemical
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leaching of Sr from SrRuO; ceramic in acid. In contrast to the
SrRuO; electrode, the RuO, clusters exhibit great improvement in
both performance stability and chemical durability. Density
functional theory (DFT) calculations were performed to
understand the origin of the extremely high OER activity of RuO,
clusters.

2 Experimental details

Chemicals: Commercial SrRuO; powder was purchased from
Element Tech Material Co., Ltd. Poly(vinyl alcohol) (PVA) was
purchased from Alfa Aesar Co., Ltd. HCIO, was purchased from
Macklin Co., Ltd. All the chemicals were used without further
purification.

Preparation of SrRuO;-ceramic electrode: SrRuO; (1.0 g) was
mixed with PVA solution (5%, 50 pL) by grounding them
together. The as-prepared SrRuO; powder (50 mg) was pressed
into a pellet with 5 mm in diameter with a mould under 20 MPa
for 10 s. The SrRuOj; pellet was sintered at 1,200 °C for 10 h
(Fig. S1(a) in the Electronic Supplementary Material (ESM)). The
RuO, ceramic plate was prepared by following a similar method
except sintered at 800 °C for 10 h. As illustrated in Fig. S1(b) in the
ESM, SrRuQj ceramic (or RuO, ceramic) was pasted on a disk
electrode by using Nafion solution (5%) mixed with conductive
carbon to ensure both the mechanical and electrical contact. After
being dried at room temperature, the SrRuO; ceramic electrode
was further fixed on its side planes by epoxy resin. The as-
prepared SrRuQO; ceramic electrode was placed at room
temperature for more than 24 h before measurement.

Preparation of RuO,-cluster electrode: After 30-h
chronopotentiometry (CP) measurement of SrRuO; ceramic
electrode, the powders on the surface of ceramic electrode were
collected and checked by X-ray diffraction (XRD) to confirm
phase purity. For preparing RuO,-cluster electrode with 0.5
mg-cm ™ loading which was subjected to linear sweep voltammetry
(LSV) and CP test, 10 mg as-obtained RuO, clusters were
dispersed in 1 mL solvent containing 900 uL isopropyl alcohol and
100 pL 5 wt.% nafion solution, and sonicated for more than
1 h to form a homogeneous ink. Then 10 pL of the diluted ink was
dropped onto the Pt-disk electrode (0.196 cm’ in area) and dried
at room temperature for 24 h. To prepare a RuO,-cluster electrode
with 4.0 mg-cm™ loading on sticky-carbon, the ink was dropped
onto an electrode prepared via filling the mixture of carbon black
and eicosane into an empty well (0.196 cmy’). Specifically, the
empty hole of an rotating disk electrode was first filled with the
mixture of conductive carbon black and eicosane (conductive
carbon black:eicosane = 5:1 in weight) which had been heated to
50 °C for 10 min to make the wax melt and stirred to mix evenly
in the melted state, under irradiation of an infrared lamp. RuO,
clusters (10 mg) were dispersed in 100 pL solvent containing 90
uL isopropyl alcohol and 10 uL 5 wt.% Nafion solution, and
sonicated for more than 1 h to form a homogeneous ink. Then 8
UL of as-prepared catalyst ink was loaded onto the flat
carbon-wax region of the rotating disc electrode (RDE) center,
and then dried up at room temperature for 24 h before
electrocatalysis characterization.

Electro-chemical characterization: Electro-chemical
characterization was carried out by using an electrochemical
workstation CHI760E. An Ag/AgCl electrode in saturated KCl
solution and a commercial Pt electrode (Wuhan GaossUnion,
China) were used as a reference and a counter electrode
respectively. HCIO, solution (1.0 M) was used as electrolyte in the
characterization. The according potential of reversible hydrogen
electrode (RHE) was calculated following the equation
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Erye = E+0.059pH +-0.197 V

Structural characterization: The XRD patterns of samples
were obtained with a Bruker D8 X-ray diffractometer with Cu K«
radiation (A = 15418 A). The surface morphology was
characterized on a ZEISS SUPRA® 55 scanning electron
microscope (SEM). High resolution transmission electron
microscopy (HRTEM) study was carried out on a Tecnai G2 F30
equipped with an energy-dispersive X-ray spectroscopy (EDX)
detector (Oxford X-Max 20). High-angle annular dark-field
scanning transmission electron (HAADF-STEM) images were
collected by using a Titan Cubed Themis G2 300 operating at 300
kV. X-ray photoelectron spectroscopy (XPS) was performed on a
PHI-5000 Versaprobe I (Ulvac-Phi, Japan). The specific surface
area of as-prepared RuQO, clusters was measured with a
Brunauer-Emmett-Teller (BET) analyzer (BELSORP-Max). Sr
and Ru concentrations in the electrotyle electrode during OER test
were measured by an inductively coupled plasma-atomic emission
spectrometer (JY2000-2, HORIBA JOBINYVON). The X-ray
absorption fine structure spectra (Ru K-edge) were collected at
BL14W1 station in Shanghai Synchrotron Radiation Facility
(SSREF, the storage ring was operated at 3.5 GeV with a maximum
current of 250 mA).

3 Results and discussion

The RuO, clusters were derived as a result of the electrochemical
leaching of bulk SrRuOj; ceramic electrode under OER conditions
in acid. SrRuO; ceramic was employed because SrRuOj; thin film
or nanopowder cannot endure OER at a relatively large current
density or over a long-time scale [45, 47]. In addition, the intrinsic
conductivity of SrRuO; permits the application of its ceramic
monolithic wafer directly as an OER electrode.

SrRuO; ceramic pellet was prepared by a conventional ceramic
processing method. The XRD pattern (Fig. S2 in the ESM) shows
that the as-prepared SrRuO; ceramic consisted of a pure
orthorhombic phase (JCPDS #43-0472). The SEM image (inset of
Fig.S2 in the ESM) indicates good mechanical integrity of the
sample with micron-sized grains. For the OER testing, the as-
prepared SrRuOj; ceramic was pasted onto a Pt disk electrode and
glued with epoxy resin on its side surface, as shown in
Fig. S1(b) in the ESM. The resistance between the exposed surface
of the mounted SrRuO; and the Pt disk electrode was measured
prior to the electrochemical testing. As indicated by the
current-voltage (I-V) characteristic (Fig. S3 in the ESM), a good
ohmic contact at the SrRuQO; disk-electrode interface has been
formed.

Figure 1(a) presents the polarization curve of SrRuO; ceramic
electrode during OER in 1.0 M HCIO, solution. It is shown that
the OER onset potential of the SrRuO; ceramic electrode is
1.35 Vpye (voltage vs. reversible hydrogen electrode) with
according Tafel slope of 48.0 mV-dec" (inset of Fig.1(a)). In
comparison, the onset potential of the RuO, ceramic electrode is
1.51 Vi with a Tafel slope of 82.1 mV-dec™ (inset of Fig. 1(a)),
which is in agreement with the previous reports on the catalytic
behavior of RuO, for OER in acid [41, 48]. Figure 1(b) shows the
potential required to reach 10 mA-cm,,,” during a 30-h testing on
the SrRuO; ceramic electrode. The overpotential # of the SrRuO;
ceramic at 10 mA-cm,,* constantly keeps ~ 160 mV over 30 h.
The observed ultrahigh long-term activity of the SrRuO; ceramic
electrode for OER in acid has never been reported in SrRuOj; thin
films or nanoparticle samples [45]. The OER testing on a ~ 50 nm
thick SrRuO; film epitaxially grown on the (100) SrTiO; substrate
(Fig. $4 in the ESM) in 1.0 M HCIO, solution shows immediate
severe degradation of activity during the chronopotentiometry
measurement at 10 mA-cm,,, * (Fig. S5 in the ESM).
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Figure1 OER performance of StRuO; ceramic electrode in acid and its leaching behavior. (a) Polarization curve of SrRuO; ceramic wafer. The inset is the according
Tafel plot. (b) Potential required to reach 10 mA-cmy,,” for SrRuO; ceramic over 30-h OER testing. The dashed red line highlights the potential level corresponding to
160 mV overpotential as a guide to the eye. The inset shows the leached Sr and Ru at different time during 30-h OER testing according to the ICP analysis of the
corresponding elements in the electrolyte (250 mL). (c) XPS of the surface of SrRuO; ceramic wafer after OER test at 10 mA-cmy,,”. (d) XRD patterns of the SrRuO;
ceramic wafer before OER test and of powders collected from the surface layer of SrRuO; wafer after 30-h OER test.

Considering the well-documented corrosion behaviour of
SrRuO; thin film and nanoparticles under OER electrochemical
conditions [46, 49], we tracked the loss of material of the SrRuO;
ceramic electrode during the 30-h CP measurement by
monitoring the amount of Sr and Ru elements in the electrolyte
with the inductively coupled plasma (ICP) spectroscopy. As
shown in the inset of Fig. 1(b), leaching of both Sr and Ru occurs
and decreases gradually as the OER proceeds. The leaching rate of
Sr is much faster than that of Ru, especially at the initial stage (Fig.
S6 in the ESM). This corrosion rate indicates that the 30 nm
SrRuO; film will be completely destroyed within hundreds of
seconds in 1.0 M HCIO, at a current density of 10 mA-cm,,>,
which is exactly what has been experimentally observed (Fig. S5 in
the ESM). The molar ratio between the leached Sr and Ru is also
presented as a function of testing time (Fig. 1(b)), decreasing
quickly from 6.3 to less than 3.5. The obvious deviation of the
ratio between leached Sr and Ru from 1 indicates that the
remaining Sr and Ru in the surface layer of the SrRuQO; ceramic
electrode cannot keep the same ratio as that in SrRuO; and thus
surface reconfiguration should have occurred.

To further elucidate the surface evolution of SrRuO; ceramic
electrode during OER in acid, XPS was conducted to examine the
change of chemical composition of its surface layer. Figure 1(c)
presents the XPS results of the SrRuO; ceramic electrode before
and after 30-h CP testing at 10 mA-cm,,” in 1.0 M HCIO,
solution. It is shown that the Sr 3p,,, peak, which is present at
277.1 eV in the pristine StRuO; ceramic with a chemical state of II
[46], has completely disappeared after testing, indicating the loss
of Sr in the surface layer during OER testing. The Ru element,
which has 3d;, and 3ds, peaks located at 284.8 and 280.7 eV
respectively in the pristine SrRuO; ceramic, remains in its IV
chemical state after testing. The surface analysis of the SrRuO,
ceramic electrode after 1-h and 7-h CP testing also shows the
obvious loss of Sr and presence of Ru IV state (Fig. 1(c)). Powders
collected from the surface layer after 30-h CP testing were
inspected with XRD (Fig. 1(d)), from which a pure phase of rutile

RuO, is unambiguously identified. HAADF-STEM and HRTEM
images of the powders scratched from the surface of the SrRuO,
ceramic electrode after 30-h CP testing (Figs. 2(a) and 2(b)) reveal
that the powders consist of ~ 2 nm clusters (Fig. S7 in the ESM)
with lattice fringes of rutile RuO,. EDS mapping confirms that the
clusters contain Ru and O elements (Fig. 2(c) and Fig. S8 in the
ESM). Evidently, the RuO,-cluster surface layer has been formed
due to the dominant leaching of Sr over Ru from SrRuO; during
OER (Fig. 2(d)). During the period of Sr leaching, a small part of
Ru(IV) is oxidized into higher valence and dissolved into the solution
(Fig. 1(b)). The dominant Sr* leaching plus minor loss of Ru*
would inevitably lead to the collapse of SrRuO; lattice and split the
bulk into clusters. The RuO, clusters are in fact the true active
species for the catalysis of OER in acid.

A direct measurement of the electrocatalytic performance of the
SrRuOs-derived RuO, clusters was performed on an electrode
made of pure RuO, clusters (see ESM for the details on harvesting
of the RuQ, clusters and the electrode preparation). The phase
and composition of the harvested RuO, clusters have been
confirmed to be pure rutile RuO, with XRD and free of Sr within
the detection limit of ICP analysis (Table S1 in the ESM), prior to
the electrode fabrication. The polarization curve of RuO, clusters
for the catalysis of OER in 1.0 M HCIO, solution (Fig. 3(a)) shows
an onset overpotential of ~ 135 mV. The whole polarization curve
closely resembles that of the pristine SrRuO; ceramic electrode
(Fig. S9 in the ESM). The Tafel slope of 71 mV-dec” is slightly
higher than that of SrRuO; ceramic (48.0 mV-dec”), which is
probably due to the prominent corrosion of Ru element in the
latter case especially at the initial OER stage (inset of Fig. 1(b)).
The overpotential required to reach 10 mA-cmy,” is as low as
160 mV, coinciding well with that for the SrRuO; ceramic
electrode.

The mass activity of the RuO, clusters is reported for the
electrode with 0.5 mg-cm™ loading (Fig. 3(a)). The overpotential at
50 mA-mg™ is ~ 190 mV for as-prepared RuO, clusters, which is
lowered by over 50 mV compared to the best values we could find
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leaching in 1 M
HCIO, solution

RuO, clusters

Figure2 The structural characterization of RuO, clusters derived from SrRuO; ceramic: (a) HAADF-STEM image and (b) HRTEM image of powders scratched
from the surface of SrRuO; ceramic electrode after 30-h CP testing (the inset shows the fast Fourier transformation of the lattice fringes of the RuO, clusters), revealing

the formation of a surface layer of RuO, clusters. (c) HAADF-STEM image and element mapping. Scale bar, 500 nm. (d) Schematic illustration of formation of RuO,
clusters via Sr leaching from bulk StRuO; during OER in acid.
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Figure3 (a) Polarization curve for OER of as-prepared RuO, cluster ceramic in HCIO, solution (1.0 M) at a scanning rate of 0.1 mV-s™ and a rotating speed of 1,600
rpm (the inset is the corresponding Tafel plot). (b) Potential required to reach 10 mA-cmy,,” for SrRuO; ceramic over 30-h OER testing. (c) List of overpotentials at 10
mA-cmg,,* current density for comparing the OER performance of RuO, clusters with that of previously reported materials (N-doped WC nanoarray [1], IrO,/StTrO;
[22], RuO, [23], IrO, [23], Ba,YIrOy [31], Ba,PrIrO, [21], UfD-RuO, [32], Niy3Co,,-9Ac-AD [20], and NF-PVP/CoFe, 5 [29]) for OER in acidic electrolyte.

in literature for the OER catalysts in acid (Table S2 in the ESM).
The specific activity of the RuO, clusters has been derived by
normalizing the current to the BET surface area of the 0.5 mg-cm™
loading electrode. As listed in Table S2 in the ESM, it is shown

The catalytic stability of the RuO, clusters for OER in acid was
examined by 30-h CP measurement at a current density of
10 mA-cmy,,” (Fig. 3(b)). It is shown that at 0.5 mg-cm™ loading,
the overpotential of RuO,-clusters starts from ~ 160 mV and then

that the specific current of as-prepared RuO, clusters is
0.0101 mA-cm™ at 14 Vpye In comparison with previously
reported RuO, films or nanoparticles (Table S3 in the ESM), the

specific current density of the RuQ, clusters is obviously higher at
14 Vi

slowly increases to ~ 185 mV over 30-h testing to maintain a
current density of 10 mA-cm,,”. Slight increase of the loading
amount to 40 mgcm™ loading further improves the CP
performance, with the overpotential at 10 mA-cm,,” kept at ~ 160
+ 10 mV over 30 h (Fig. 3(b)). The HRTEM images of RuO,
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clusters after 30-h CP measurement (Fig. S10 in the ESM) show
that their size, morphology and crystal structure are well retained.
The chemical stability, measured as the material loss of RuO,-
cluster catalyst after 30-h CP testing at 10 mA-cm,,* by ICP
analysis, has been improved by nearly two orders of magnitude
compared to SrRuQO; ceramic (inset of Fig. 3(b) and Table S1 in
the ESM), as the dominant Sr leaching in the case of SrRuO; has
been avoided for the RuO,-cluster catalyst. The
chronoamperometry test was also carried out by using 1.39 Vyyg
of driven potential (Fig. S11 in the ESM) and the results show that
the current density is well retained within 15 h. It is thus shown
that the RuO, clusters exhibit ultrahigh activity, excellent stability
and durability for catalysis of OER in acid, which outperforms
previously reported catalysts to our best knowledge (Fig. 3(c)).

Both extrinsic and intrinsic factors might contribute to the
ultrahigh OER activity of as-derived RuO, clusters. Firstly, the
clusters possess very large specific surface area, giving rise to a
much higher density of active sites in the catalyst made of RuO,
clusters relative to that made of micro/nano-sized RuO,. Secondly,
enlarged Jahn-Teller distortion has occurred in the RuO, clusters.
Ru* has d* electronic configuration and a low-spin coordination
center (Table S4 in the ESM). Its four d electrons fill three t,,
orbitals of which two are singly occupied (left panel in Fig. S12 in
the ESM). Jahn-Teller distortion occurs in such a case, as
accompanied t,, orbital splitting results in reduction of the total
energy (right panel in Fig. S12 in the ESM). Structural changes of
the RuO, clusters relative to bulk RuO, (powders with size larger
than 10 pm) were tracked with X-ray absorption fine structure
spectra (Ru K-edge). The X-ray absorption near edge structure
(XANES) spectra are presented in Fig. 4(a), indicating the identical
chemical valence of Ru in both RuO, clusters and bulk. The
extended X-ray absorption fine structure (EXAFS) analysis, as
presented in Fig. 4(b), shows that the peaks fade fast with
increasing R in the RuO, clusters, which is consistent with the
small size of the clusters. The structure parameters of RuO,
clusters and bulk extracted from the Ru K-edge EXAFS fitting are
presented in Fig. S12 and Table S5 in the ESM. In rutile RuO,

1963

structure, Ru* in each RuQg octahedron is bonded to two axial
oxygen ions at a relatively shorter distance (denoted as Ru-Ov)
and four in-plane oxygen ions at a longer distance (denoted as
Ru-Op). The fitting results (Table S5 in the ESM) show that
Ru-Op in the clusters is lengthened by about 1.5% compared to
the case of RuO, bulk while Ru-Ov in the clusters remains more
or less the same, indicating presence of enlarged Jahn-Teller
distortion in the RuO, clusters.

With the aid of DFT calculations, we further investigated the
influence of the identified Ru-O octahedra distortion in terms of
the electronic structure and intrinsic OER activity of RuO,. To
mimic Ru-O octahedra distortion as demonstrated in EXAFS
fitting results (Table S5 in the ESM), we constructed the atomic
structure of rutile RuO, with uniaxial strain applied in its ¢ axis
direction. The applied strain varies from —4% to 6% with a
increment of 2%. It is shown in Table S5 in the ESM that the
tensile strain elongates the Ru-O, bond and the compressive-
strain shortens Ru-O,, while the Ru-O, is kept almost
unchanged. The tensile-strain induced Ru-O octahedra distortion
shows the same type of enhanced Jahn-Teller distortion as found
in the RuO, clusters. Then the most stable (110) surface of rutile
RuO, was chosen to study its OER activity. By using previously
established models [50] for evaluating theoretical OER activity
with explicit water solvation and van der Waals interactions
included [51], we investigated the reaction paths and overall OER
activity as shown in Figs. S13 and S14, and Table S6-S8 in the
ESM. The transition from *O to *OOH is shown to be the
potential-limiting step of the overall OER processes with varied
strain. It is demonstrated that for OER process, the tensile strain
along ¢ axis can effectively lower the free energy of *OOH on
rutile RuO, surface (Fig. 4(c), and Figs. S13 and S14 in the ESM),
which can be rationalized by molecular orbital theory as well [52],
and thus reduce the OER overpotential. In our calculation, RuO,
with 2% strain imposed in c axis resembles the experimental
samples most in terms of RuOg octahedron distortion (Table S7 in
the ESM), and is shown to resultin a reduction of the overpotential by
~ 40 mV. The Jahn-Teller-like distortion in the octahedron of
RuO, could delicately tune the electronic structure of RuO,, and
hence further improves the already excellent OER performance.
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Figure4 The EXAFS characterization of RuO, clusters and the DFT simulation: (a) Ru K-edge XANES spectra of RuO, clusters and bulk; (b) magnitude of the
Fourier transforms of the k*-weighted Ru K-edge EXAFS function; () free energy diagram of OER on pristine and 6%-strained RuO,.
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4 Conclusion

In summary, we show that uniform RuO, clusters can be derived
from bulk SrRuO; via the dominant electrochemical leaching of Sr
over Ru in acid, demonstrating a facile top-down strategy for
synthesis of clusters from bulk material via leaching. The derived
RuO, clusters show a stable ultralow overpotential of ~ 160 mV at
10 mA-cmy,* over 30 h and are responsible for the apparent high
OER performance of the SrRuO; ceramic electrode. Although the
SrRuO; ceramic electrode suffers from severe material loss, the
RuO, clusters exhibit greatly improved durability as the dominant
electrochemical leaching of Sr has been avoided. The remarkably
high OER activity of RuO, clusters originates not only from the
ultrahigh specific surface area but also from the enhanced Jahn-
Teller distortion in the RuO, clusters compared to bulk rutile
RuO,. DFT calculations have shown that the presence of
enhanced Jahn-Teller distortion with Ru-O, lengthened by about
1.5% compared to the case of RuO, bulk can improve the intrinsic
activity of rutile RuO, by ~ 40 mV. The work has identified the as-
derived RuO, clusters as robust OER catalyst in acid, and
highlights the potential to obtain excellent catalysts in the cluster
regime where high density of active sites and strain tuning could
be envisaged.
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