Surface-adsorbed ions on TiO₂ nanosheets for selective photocatalytic CO₂ reduction

Xiaogang Li^{1,§}, Wentuan Bi^{1,§}, Zhe Wang^{2,§}, Wenguang Zhu², Wangsheng Chu³ (\bowtie), Changzheng Wu¹ (\bowtie), and Yi Xie¹

- ¹ Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230026, China
- ² International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale (HFNL), Synergetic Innovation Center of Quantum Information and Quantum Physics, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- ³ National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
- [§] Xiaogang Li, Wentuan Bi and Zhe Wang contributed equally to this work.

Received: 14 September 2017 Revised: 20 November 2017 Accepted: 22 November 2017

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

KEYWORDS

two-dimensional nanomaterials, surface modification, ion adsorption, photocatalysis, TiO₂ nanosheets

ABSTRACT

A method based on the adsorption of ions on the surface of two-dimensional (2D) nanosheets has been developed for photocatalytic CO_2 reduction. Isolated Bi ions, confined on the surface of TiO₂ nanosheets using a simple ionic adsorption method facilitate the formation of a built-in electric field that effectively promotes charge carrier separation. This leads to an improved performance of the photocatalytic CO_2 reduction process with the preferred conversion to CH_4 . The proposed surface ion-adsorption method is expected to provide an effective approach for the design of highly efficient photocatalytic systems. These findings could be very valuable in photocatalytic CO_2 reduction applications.

1 Introduction

The excessive depletion of fossil fuels has led to a

global energy crisis and environmental challenges; the atmospheric accumulation of CO_2 (a greenhouse gas) has triggered increasing concerns [1–3]. The

Address correspondence to Changzheng Wu, czwu@ustc.edu.cn; Wangsheng Chu, chuws@ustc.edu.cn

photocatalytic conversion of CO_2 into energy-rich chemicals is considered a promising approach to replace fossil fuels and reduce the emission of CO_2 [4–6]. Despite recent progress, the photoconversion of CO_2 still suffers from a low efficiency due to the significant recombination of charge carriers of the photocatalysts [7, 8]. In addition, the selectivity required for carbonaceous products poses challenges in the design of the photocatalysts for product separation [9]. Therefore, the development of highly efficient and selective photocatalysts for CO_2 reduction is of a key importance.

The introduction of heterogeneous ions to catalysts is an effective strategy to tune the CO₂ reduction activity by virtue of their improved light harvesting and modulated charge transfer characteristics [10-12]. However, the doping ions in the bulk can act as recombination centers and hinder carrier migration, which is detrimental in the design of highly efficient photocatalytic systems [13]. Recently, two-dimensional (2D) nanosheets have been considered promising for photocatalysis owing to their rich active sites and shortened carrier transfer distances [14-18]. In addition, for 2D nanomaterials having atomic-scale thicknesses, the surface phases are as important as those in the bulk; this provides an alternative approach to engineer their intrinsic physicochemical properties by simply modifying the surface [19–24]. Therefore, the surface modification of 2D nanomaterials by the introduction of heterogeneous ions may provide a reliable model system for the design of photocatalysts for CO₂ reduction [25-27].

In this study, we demonstrated a surface ion adsorption method by confining isolated Bi ions on the surface of 2D TiO₂ for photocatalytic CO₂ reduction. The whole synthetic process is remarkably simple, convenient, and can be easily scaled up. The Bi ions which are adsorbed on the surface could induce a built-in electric field. This effectively facilitates charge carrier transfer and improves photocatalytic CO₂ reduction performance. The Bi ions on the TiO₂ nanosheets permit the preferred conversion of CO₂ to CH₄ through a cascade catalysis. We anticipate that the proposed surface ion adsorption method of adsorbing ions on the surface of catalysts will provide a novel approach for the design of highly efficient photocatalytic systems

2 Results and discussion

The synthetic process of TiO₂ nanosheets with Bi ions adsorbed on the surface (TiO₂-Bi) is illustrated in Fig. 1(a). The morphology of TiO₂ and TiO₂-Bi was revealed using transmission electron microscopy (TEM). Figures S1(a) and S1(b) in the Electronic Supplementary Material (ESM) show that both TiO₂ and TiO₂-Bi exhibit rectangular sheet structures with similar size and thickness. It is worth noting that no particles were observed on the surface of the TiO₂-Bi. The X-ray diffraction (XRD) patterns in Fig. S2 in the ESM show that TiO₂ and TiO₂-Bi have the same crystal structure which corresponds to that of anatase TiO₂ (JCPDS No. 21-1272). The TEM and XRD characterizations indicated that the introduction of Bi ions has almost no effects on the morphology and crystal structure of TiO₂.

As a powerful tool for discerning individual heavy atoms [28], high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) was employed to reveal the presence and configuration of the Bi ions on the TiO₂ structure. The HAADF-STEM image in Fig. 1(b) shows isolated bright spots that correspond to the Bi ions dispersed on TiO₂. This confirms the existence of isolated Bi atoms on the TiO₂ nanosheets. In order to reveal the local chemical environment around a Bi atom, extended X-ray absorption fine structure (EXAFS) spectrometry was performed at the Ti K-edge and Bi L₃-edge. The TiO₂-Bi shows identical Fourier transform (FT)-EXAFS curves with those of the supported TiO₂ at the Ti K-edge, as shown in Figs. S3(a) and S3(b) in the ESM. This indicates that the local geometrical structure of the TiO₂ support has not considerably changed with the introduction of Bi. In contrast, the Bi L₃-edge EXAFS spectra of the TiO₂-Bi sample exhibit completely different oscillations compared with those of the Bi₂O₃ reference sample. Figure S4 in the ESM shows that the EXAFS oscillations of the TiO₂-Bi behave almost as a single sine wave, while the EXAFS curves of the Bi₂O₃ sample exhibit finer oscillations, as outlined by the arrows in the figure. The k^2 -weighted Fourier transform shown in Fig. 1(c) additionally demonstrates

Figure 1 (a) Illustration of the TiO_2 -Bi synthetic process. (b) HAADF-STEM image of TiO_2 -Bi. (c) Fourier transforms of the Bi L₃-edge EXAFS oscillations of TiO_2 -Bi and Bi_2O_3 . (d) Comparison of the FT-EXAFS curves between the experimental data and fitting results of the TiO_2 -Bi. (e) Model of the TiO_2 -Bi structure.

the above behavior. For the TiO₂-Bi sample, only one significant peak was detected at a distance of 1.62 Å (no phase corrections), which emerges from the interactions with the first nearest oxygen atoms (Bi–O). It can be noticed that for distances larger than 2.0 Å, no considerable peaks can be distinguished from the background noise. This suggests that the isolated Bi ions were confined to the surface of TiO₂. The figure shows almost equal distances of the Bi-O peaks of TiO₂-Bi and Bi₂O₃ in the FT curves. This indicates that the Bi–O bond length in TiO₂-Bi is equal to that in Bi₂O₃. The slight decrease of the Bi–O peak intensity of the TiO₂-Bi sample suggests that the coordination number of oxygen is decreased or that the disorder of the oxygen shell is larger. In order to quantitatively obtain the local atomic arrangement of Bi on the TiO₂ surface, EXAFS data were fitted in the *R*-space (Fig. 1(d)). The obtained structural parameters are listed in Table S1 in the ESM. The fitting results show that the coordination number of the oxygen atoms in the Bi-TiO₂ sample is slightly smaller, while the average distance to the oxygen atoms around Bi is slightly larger, compared with those in the Bi₂O₃ reference sample. Using the EXAFS results, we propose a structural model of the TiO₂-Bi structure, where an isolated Bi bonds with two O atoms on the surface of TiO₂, as shown in Fig. 1(e).

The influence of Bi ions on the photocatalytic CO_2 reduction activity of TiO_2 is presented in Fig. 2. Figure 2(a) shows that the TiO_2 -Bi exhibits an enhanced CO_2 reduction activity, compared with blank TiO_2 . During the 14 h-test, the TiO_2 -Bi provides stable evolutions of CH_4 and CO, which indicates the stability of the TiO_2 -Bi. The TEM image and XRD

Figure 2 (a) Comparison between the photocatalytic CO_2 reduction performances of TiO_2 and TiO_2 -Bi. (b) Variation in the amount of CO and CH_4 during the 14 h-long test process.

pattern shown in Fig. S5 in the ESM indicate that TiO_2 -Bi after the photocatalytic reaction preserves the initial morphology and crystal structure, which additionally demonstrates its stability. The amount of CH₄ and CO during the 14-h-long test process is illustrated in Fig. 2(b). The TiO₂-Bi provides 6.38 µmol/g CO and 153.08 µmol/g CH₄, while the blank TiO₂ provides 3.74 µmol/g CO and 34.86 µmol/g CH₄ in 14 h. It is worth noting that compared with the 1.7 times improved conversion performance for CO, TiO₂-Bi exhibits preferred conversion for CH₄, as it is improved 4.4 times, compared to the blank TiO₂.

To gain further insights into the improved activity of TiO₂-Bi, we performed ultraviolet–visible (UV–vis) absorption spectroscopy to evaluate the optical properties of the samples. As shown in Fig. S6(a) in the ESM, the absorption edge of TiO₂ is observed at approximately 388 nm, which corresponds to a band gap of 3.19 eV. TiO₂-Bi shows an absorption edge at 390 nm, which corresponds to a band gap of 3.18 eV. It is clear that the absorption of light by TiO₂ exhibits no obvious change after the introduction of Bi ions on the surface. It could be expected that the low amount of Bi has little effect on the light absorption. Therefore, the enhanced photocatalytic performance of TiO₂-Bi is not solely attributed to the light absorption. Further, we performed photoluminescence (PL) spectroscopy to evaluate the efficiency of charge carrier separation. As shown in Fig. S6(b) in the ESM, the introduction of Bi ions on the surface causes a remarkable decrease of the PL intensity. This demonstrates that the isolated Bi ions suppress the recombination of charge carriers.

In order to further study the transfer process of charge carriers, we perform lock-in based surface photovoltage (SPV) measurements, which are very suitable for the analysis of photoinduced charge transfer in nanomaterials with high sensitivity [29, 30]. As shown in Fig. 3(a), for both TiO₂ and TiO₂-Bi, when the wavelength is smaller than 400 nm, a strong SPV response is observed, caused by the intrinsic band to band transitions, which depends on the band gap. TiO₂-Bi shows a higher SPV response than TiO₂, which demonstrates the more effective separation of the charge carriers [31, 32]. It is worth noting that both TiO₂ and TiO₂-Bi have a weak SPV response between 400-800 nm, which can be attributed to the surface states [33]. In order to reveal the charge carriers transfer process, which is correlated with the surface states, we performed SPV phase spectroscopy. As illustrated in Fig. 3(b), the phase values of TiO_2 and TiO_2 -Bi are between 90° and 180° in the range of ~ 400–800 nm. This causes a negative value of $\cos(\phi)$, which indicates the accumulation of a negative charge at the surface [34, 35]. Therefore, the SPV signal in the range of 400-800 nm emerges owing to the electron transfer to the surface. Figure 3(a) shows that TiO₂-Bi exhibits a higher SPV response than TiO₂ in the range of 400-800 nm. This demonstrates that the transfer of photogenerated electrons to the surface of TiO₂ is enhanced by the introduction of Bi atoms. The SPV characterization additionally confirms that the isolated Bi atoms, confined on the surface of TiO₂, could promote the transfer of photogenerated electrons to the surface with a high efficiency of separation of charge

Figure 3 (a) SPV spectroscopy measurements of TiO_2 and TiO_2 -Bi. (b) Corresponding SPV phase spectroscopy measurements of TiO_2 and TiO_2 -Bi. (c) Total DOS of bare TiO_2 and TiO_2 -Bi, and site-projected DOS on the Ti and Bi in TiO_2 -Bi. The valence band maximum of bare TiO_2 is set to zero. The green dashed line indicates the Fermi-level of TiO_2 -Bi. (d) The charge density difference in TiO_2 -Bi. The regions of electron accumulation and depletion are outlined in yellow and blue, respectively.

carriers, thus facilitating the subsequent photocatalytic reaction.

In order to understand the mechanism of the observed accelerated charge transfer in TiO₂-Bi and reveal its electronic structure, we performed density functional theory (DFT) calculations. The adsorption structure of the Bi ions on the TiO_2 (001) surface is confirmed to be stable, as illustrated in Fig. 1(e). Figure 3(c) shows the density of states (DOS) of the TiO_2 (001) surfaces with and without the Bi surface adsorption. The energy of the valence band maximum of the blank TiO₂ substrate is set to zero. The energy bands of the two systems are aligned with respect to the core level of a Ti atom that is far away from the surface. Compared with the DOS of the blank TiO₂ substrate, the DOS of TiO₂-Bi does not show an obvious difference in the vicinity of the band gap region, whereas the Fermi-level of the TiO₂-Bi structure shifts into the conduction band. The site-projected DOS at the Ti and Bi reveal that the occupied states in the conduction band correspond to Ti, which indicates that electrons transfer from Bi to TiO2 upon the Bi adsorption. This can be further confirmed by the charge density difference plot, as shown in Fig. 3(d), where the charge density difference is calculated by subtracting the total charge densities of an isolated Bi ion and blank TiO_2 substrate from that of the combined TiO_2 -Bi. The electron transfer from the Bi ions to the TiO_2 substrate is expected to induce an electric field from the surface to the interior of the TiO_2 substrate, which could effectively promote a separation of the photon-generated charge carriers, as revealed by the above SPV and PL spectroscopy measurements.

As mentioned above, TiO₂-Bi exhibits a preferred conversion of CO₂ to CH₄. One well-accepted route for the formation of CH₄ is through the consecutive transfer of protons and electrons to CO, which is the intermediate product during the CO₂ reduction process [5, 36]. In other words, the preferred conversion to CH₄ of the TiO₂-Bi emerges from its improved activity in the CO reduction process. In order to confirm the above arguments, we performed a photocatalytic CO reduction test. As shown in Fig. 4(a), TiO₂-Bi provides a CH₄ evolution rate of 4.1 µmol/(g·h), 5.6 times larger than that for the blank TiO₂ which provides a CH₄ evolution rate of 0.78 µmol/(g·h).

Figure 4 (a) Photocatalytic CO reduction activities of TiO₂ and TiO₂-Bi. (b) Schematic of the CO₂ reduction process.

Therefore, we could conclude that the accelerated charge transfer in TiO_2 -Bi facilitates the CO reduction, which eventually leads to a preferred conversion of CH_4 , as illustrated in Fig. 4(b).

3 Conclusions

We proposed a surface ion adsorption method that provides enhanced CO_2 reduction activities for 2D photocatalysts. The Bi ions adsorbed on the surface of TiO₂ nanosheets act as electron donors that induce charge redistribution on the surface of TiO₂. This is expected to generate a built-in electric field that contributes to the separation of charge carriers. The accelerated charge transfer facilitates the further reduction of CO, eventually leading to a preferred CO_2 reduction to CH₄. We believe that the surface ion adsorption method could provide an effective approach for the design of highly efficient photocatalytic systems that are of significance in CO_2 reduction applications.

4 Methods

4.1 Preparation of TiO₂ nanosheets

The TiO₂ nanosheets exposed (001) facets are prepared by employing a hydrothermal method, similar to that reported by Xie et al. [37]. First, 12.5 mL of Ti(OC₄H₉)₄ and 1.5 mL of a hydrofluoric acid solution (concentration ~ 40 wt.%) were mixed in a dried Teflon-lined autoclave that has a capacity of 50 mL, followed by a hydrothermal treatment of the mixture at 180 °C for 24 h. Then, the system was allowed to naturally cool down to room temperature. The final product was collected by centrifuging the mixture, washed several times with 0.1 M NaOH, distilled water, and ethanol, and then dried overnight in a vacuum at 60 $^{\circ}$ C.

4.2 Preparation of TiO₂-Bi

First, 0.1 mmol BiCl₃ was dissolved into 0.5 M HCl solution, followed by addition of 50 mg as-synthesized TiO₂. The mixture was sonicated into a homogeneous solution. The solution was stirred at least 6 h and then kept standing overnight. Then, we poured the supernatant and transferred the bottom precipitate into an alumina boat with ethanol, followed by heating at 80 °C for 1 h in Ar atmosphere in order to dry the sample. Then, it was further heated at 200 °C for 1 h. The cooled sample was then washed with a diluted HCl solution to remove the extra BiCl₃, and further washed several times with distilled water and ethanol. Then, it was dried in a vacuum at 60 °C overnight for a further characterization.

4.3 Photocatalytic activity measurements

The photocatalytic CO_2 reduction performance was evaluated in a gas-closed circulation system equipped with a vacuum line. A 100 mg photocatalyst powder was put in a glass reactor filled with CO_2 , followed by an injection of 2 mL H₂O and then illuminated using a 300 W Xe lamp (PLS-SXE300/300UV, Trusttech Co., Ltd.). The amounts of CO and CH₄ were determined by performing gas chromatography (Agilent 7890B). The measurement method for the photocatalytic CO reduction performance is the same as that for the CO_2 reduction.

4.4 Characterization

TEM images were acquired using an H-7650 (Hitachi, Japan) microscope operated at an acceleration voltage of 100 kV. The powder XRD was performed using a Philips X'Pert Pro Super diffractometer with a graphite monochromatized Cu-K α radiation (λ = 1.54178 Å). The HAADF-STEM measurements were performed using a JEOL JEM-ARF200F TEM/STEM equipped with a spherical aberration corrector. Steady-state UV-Vis absorption spectra were recorded using a Perkin Elmer Lambda 950 spectrophotometer. PL emission spectra were obtained using a FLUOROLOG-3-TAU fluorescence spectrometer (Horiba) upon excitation at 300 nm. The SPV spectra measurements were performed using a lock-in amplifier. The measurement system consisted of a monochromatic light, lock-in amplifier (SR830–DSP) with a light chopper (SR540), photovoltaic cell, and computer. The monochromatic light was provided by passing the light from a 500 W xenon lamp (CHF-XM500, Trusttech Co., Ltd.) through a grating monochromator (Omni-3007, No. 16047, Zolix).

The Bi L₃-edge and Ti K-edge EXAFS data were collected at the beamline 1W1B of the Beijing Synchrotron Radiation Facility (BSRF, Beijing) and at the beamline 14W1 of the Shanghai Synchrotron Radiation Laboratory (SSRL, Shanghai) at room temperature. The typical energies of the storage ring were 2.5 GeV (BSRF) and 3.5 GeV (SSRF). A Ti foil was used to calibrate the Si (111) double crystal monochromator, and then it was used to collect EXAFS data for the reference spectrum. The Ti K-edge EXAFS data of TiO₂ and TiO₂-Bi and Bi L₃-edge EXAFS data of the Bi₂O₃ reference sample were measured in the transmission mode by mixing the sample with a graphite powder, which was then pressed into a disc that has a diameter of 10 mm. The Bi L₃-edge EXAFS data of TiO₂-Bi were collected in the fluorescence mode using a Lytle detector by pressing the sample into the disc that has a diameter of 10 mm.

4.5 Computational methods

First-principles calculations were performed using the Vienna *ab-initio* simulation package (VASP) [38], which is based on DFT and plane wave basis sets;

the projector-augmented wave (PAW) method was employed [39, 40]. The employed exchange correlation functional was obtained using the Perdew-Burke-Ernzerhof (PBE) [41] parameterization of the generalized gradient approximation (GGA). In order to overcome the well-known band gap issues of TiO₂, we employed the GGA+U method to treat the 3d electrons of Ti [42], which provides an intrinsic band gap of 3.1 eV of the bulk anatase TiO₂ for U = 7.0. In order to avoid interactions between the slabs, a vacuum of more than 15 Å is introduced in the model. A Γ-centered $3 \times 3 \times 1$ Monkhorst–Pack [43] k-point mesh was employed for the Brillion zone sampling of the 4×4 supercell. The outermost s- and p-electrons of Bi and O, and s-, p-, and d-electrons of Ti were considered for the valence states in the PAW potentials. The energy cut-off of the plane wave basis was set to 400 eV. The electronic minimization was performed using a tolerance of 10⁻⁴ eV, while the ionic relaxation was performed using a force tolerance of 0.01 eV/Å for each ion. All these parameters were carefully tested to ensure convergence and accuracy.

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2015CB932302), National Natural Science Foundation of China (Nos. U1432133, 11621063, 21701164, and 11374273), National Program for Support of Top-notch Young Professionals and the Fundamental Research Funds for the Central Universities (Nos. WK2060190084, WK2060190058, and WK2340000063). We also appreciate the support from the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology.

Electronic Supplementary Material: Supplementary material (TEM images, XRD, PL and EXAFS results) is available in the online version of this article at https://doi.org/10.1007/s12274-017-1933-4.

References

 Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO_2 reduction in water. *Science* **2015**, *349*, 1208–1213.

- [2] Schneider, J.; Jia, H. F.; Muckerman, J. T.; Fujita, E. Thermodynamics and kinetics of CO₂, CO, and H⁺ binding to the metal centre of CO₂ reduction catalysts. *Chem. Soc. Rev.* 2012, *41*, 2036–2051.
- [3] Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO₂ hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO₂ reduction. *Chem. Rev.* 2015, *115*, 12936–12973.
- [4] Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible–light driven CO₂ reduction to CO in CH₃CN/H₂O solution. *Angew. Chem., Int. Ed.* **2017**, *56*, 738–743.
- [5] Neaţu, Ş.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold–copper nanoalloys supported on TiO₂ as photocatalysts for CO₂ reduction by water. *J. Am. Chem. Soc.* 2014, *136*, 15969–15976.
- [6] Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO₂. *J. Am. Chem. Soc.* 2017, *139*, 8078–8081.
- [7] Chang, X. X.; Wang, T.; Zhang, P.; Wei, Y. J.; Zhao, J. B.; Gong, J. L. Stable aqueous photoelectrochemical CO₂ reduction by a Cu₂O dark cathode with improved selectivity for carbonaceous products. *Angew. Chem., Int. Ed.* **2016**, *55*, 8840–8845.
- [8] Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO₂ photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO₂ single crystals. *J. Am. Chem. Soc.* **2012**, *134*, 11276–11281.
- [9] Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Self-assembly of nitrogen-doped TiO₂ with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. *Nano Res.* 2014, *7*, 1528–1547.
- [10] Liu, X.; Inagaki, S.; Gong, J. L. Heterogeneous molecular systems for photocatalytic CO₂ reduction with water oxidation. *Angew. Chem., Int. Ed.* **2016**, *55*, 14924–14950.
- [11] Akimov, A. V.; Asahi, R.; Jinnouchi, R.; Prezhdo, O. V. What makes the photocatalytic CO₂ reduction on N-doped Ta₂O₅ efficient: Insights from nonadiabatic molecular dynamics. *J. Am. Chem. Soc.* **2015**, *137*, 11517–11525.
- [12] Li, H. Y.; Gan, S. Y.; Wang, H. Y.; Han, D. X.; Niu, L. Intercorrelated superhybrid of AgBr supported on graphitic-

 C_3N_4 -decorated nitrogen-doped graphene: High engineering photocatalytic activities for water purification and CO_2 reduction. *Adv. Mater.* **2015**, *27*, 6906–6913.

- [13] Huang, J. H.; Shang, Q. C.; Huang, Y. Y.; Tang, F. M.; Zhang, Q.; Liu, Q. H.; Jiang, S.; Hu, F. C.; Liu, W.; Luo, Y. et al. Oxyhydroxide nanosheets with highly efficient electron– hole pair separation for hydrogen evolution. *Angew. Chem.*, *Int. Ed.* **2016**, *55*, 2137–2141.
- [14] Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. *Chem. Soc. Rev.* 2015, 44, 2713–2731.
- [15] Li, J.; Zhan, G. M.; Yu, Y.; Zhang, L. Z. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. *Nat. Commun.* 2016, 7, 11480.
- [16] Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. *Adv. Mater.* **2016**, *28*, 1917–1933.
- [17] Bi, W. T.; Li, X. G.; Zhang, L.; Jin, T.; Zhang, L. D.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H₂ evolution. *Nat. Commun.* **2015**, *6*, 8647.
- [18] Liu, G. G.; Wang, T.; Zhang, H. B.; Meng, X. G.; Hao, D.; Chang, K.; Li, P.; Kako, T.; Ye, J. H. Nature-inspired environmental "phosphorylation" boosts photocatalytic H₂ production over carbon nitride nanosheets under visiblelight irradiation. *Angew. Chem., Int. Edit.* **2015**, *54*, 13561– 13565.
- [19] Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. *Nat. Nanotechnol.* 2016, *11*, 218–230.
- [20] Guo, Y. Q.; Xu, K.; Wu, C. Z.; Zhao, J. Y.; Xie, Y. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. *Chem. Soc. Rev.* 2015, *44*, 637–646.
- [21] Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J. X.; Dravid, V. P. Ligand conjugation of chemically exfoliated MoS₂. J. Am. Chem. Soc. 2013, 135, 4584–4587.
- [22] Zhu, X. J.; Guo, Y. Q.; Cheng, H.; Dai, J.; An, X. D.; Zhao, J. Y.; Tian, K. Z.; Wei, S. Q.; Zeng, X. C.; Wu, C. Z. et al. Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe₂ triggered by surface molecular adsorption. *Nat. Commun.* **2016**, *7*, 11210.
- [23] Mi, S. Y.; Liu, Y. X.; Wang, W. D. Photo-depositing Ru and RuO₂ on anatase TiO₂ nanosheets as Co-catalysts for photocatalytic O₂ evolution from water oxidation. *Chin. J. Chem. Phys.* **2016**, *29*, 585–590.

- [24] Fan, Z. X.; Huang, X.; Han, Y.; Bosman, M.; Wang, Q. X.; Zhu, Y. H.; Liu, Q.; Li, B.; Zeng, Z. Y.; Wu, J. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. *Nat. Commun.* 2015, *6*, 6571.
- [25] Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. *Science* **2016**, *352*, 797–800.
- [26] Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as Co-catalyst for enhanced photocatalytic H₂ evolution. *Adv. Mater.* **2016**, *28*, 2427–2431.
- [27] Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal–organic frameworks to form uniform Ru₃ clusters for efficient oxidation of alcohols. *J. Am. Chem. Soc.* 2017, *139*, 9795–9798.
- [28] Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt₁/FeO_x. *Nat. Chem.* **2011**, *3*, 634–641.
- [29] Kronik, L.; Shapira, Y. Surface photovoltage phenomena: Theory, experiment, and applications. *Surf. Sci. Rep.* 1999, 37, 1–206.
- [30] Lu, Y. C.; Lin, Y. H.; Wang, D. J.; Wang, L. L.; Xie, T. F.; Jiang, T. F. A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties. *Nano Res.* 2011, *4*, 1144–1152.
- [31] Liu, Z. Y.; Sun, D. D.; Guo, P.; Leckie, J. O. An efficient bicomponent TiO₂/SnO₂ nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. *Nano Lett.* **2007**, *7*, 1081–1085.
- [32] Li, H. Y.; Wang, D. J.; Fan, H. M.; Jiang, T. F.; Li, X. L.; Xie, T. F. Synthesis of ordered multivalent Mn-TiO₂ nanospheres with tunable size: A high performance visible-light photocatalyst. *Nano Res.* 2011, *4*, 460–469.
- [33] Xin, B. F.; Jing, L. Q.; Ren, Z. Y.; Wang, B. Q.; Fu, H. G.

Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO₂. *J. Phys. Chem. B* **2005**, *109*, 2805–2809.

- [34] Peng, L. L.; Xie, T. F.; Lu, Y. C.; Fan, H. M.; Wang, D. J. Synthesis, photoelectric properties and photocatalytic activity of the Fe₂O₃/TiO₂ heterogeneous photocatalysts. *Phys. Chem. Chem. Phys.* **2010**, *12*, 8033–8041.
- [35] Gross, D.; Mora-Sero, I.; Dittrich, T.; Belaidi, A.; Mauser, C.; Houtepen, A. J.; Da Como, E.; Rogach, A. L.; Feldmann, J. Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J. Am. Chem. Soc. 2010, 132, 5981–5983.
- [36] Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO₂ on TiO₂ and other semiconductors. *Angew. Chem., Int. Ed.* 2013, *52*, 7372–7408.
- [37] Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. *J. Am. Chem. Soc.* 2009, *131*, 3152–3153.
- [38] Kresse, G.; Furthmüller, J. Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **1996**, *54*, 11169–11186.
- [39] Blöchl, P. E. Projector augmented-wave method. *Phys. Rev.* B 1994, 50, 17953–17979.
- [40] Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* 1999, 59, 1758–1775.
- [41] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868.
- [42] Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of stoner I. Phys. Rev. B 1991, 44, 943–954.
- [43] Methfessel, M.; Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. *Phys. Rev. B* 1989, 40, 3616–3621.