Polarized few-layer g-C₃N₄ as metal-free electrocatalyst for highly efficient reduction of CO₂

Bing Zhang, Tian-Jian Zhao, Wei-Jie Feng, Yong-Xing Liu, Hong-Hui Wang, Hui Su, Li-Bing Lv, Xin-Hao Li (⊠), and Jie-Sheng Chen (⊠)

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received: 31 July 2017 Revised: 21 September 2017 Accepted: 22 September 2017

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

KEYWORDS

CO₂ reduction, two-dimensional (2D) materials, metal-free electrocatalyst, electrochemistry, nanostructures

ABSTRACT

The greenhouse effect and global warming are serious problems because the increasing global demand for fossil fuels has led to a rapid rise in greenhouse gas exhaust emissions in the atmosphere and disruptive changes in climate. As a major contributor, CO_2 has attracted much attention from scientists, who have attempted to convert it into useful products by electrochemical or photoelectrochemical reduction methods. Facile design of efficient but inexpensive and abundant catalysts to convert CO_2 into fuels or valuable chemical products is essential for materials chemistry and catalysis in addressing global climate change as well as the energy crisis. Herein, we show that two-dimensional few-layer graphitic carbon nitride (g-C₃N₄) can function as an efficient metal-free electrocatalyst for selective reduction of CO_2 to CO at low overpotentials with a high Faradaic efficiency of ~ 80%. The polarized surface of ultrathin g-C₃N₄ layers (thickness: ~ 1 nm), with a more reductive conduction band, yields excellent electrochemical activity for CO_2 reduction.

1 Introduction

Reduction of CO_2 to fuels over both homogeneous and heterogeneous catalysts has been widely studied [1–9]. Among these strategies [4–8] for activating and reducing CO_2 molecules, the electrocatalytic process using heterogeneous electrocatalysts was believed to be a more direct and efficient path [10, 11]. Despite considerable efforts, rational designing of efficient electrocatalysts, especially inexpensive and sustainable metal-free electrocatalysts, remains a scientifically challenging problem. There is consensus that fixation of CO_2 molecules on active sites and an appropriate energy input are the main steps for CO_2 reduction over an electrocatalyst [12]. The selectivity to certain products, such as carbon monoxide, formic acid, methanol, and other hydrogen carbons, is largely determined by the electronic structure, more precisely by the formal potentials of the electrocatalyst and also its surface functional groups. For example, heteroatom doping or an ionic liquid molecule coating were applied to modify the structure of nanocarbons, e.g.,

Address correspondence to Xin-Hao Li, xinhaoli@sjtu.edu.cn; Jie-Sheng Chen, chemcj@sjtu.edu.cn

2451

nanodiamonds, graphene, and nanotubes, and boost their activity for CO_2 reduction [13–17]. Pioneering works indicated significant potential for further engineering of the structure and chemistry of carbonaceous materials into more efficient metal-free electrocatalysts for CO_2 conversion [12, 18].

Materials based on graphitic carbon nitride $(g-C_3N_4)$, the most stable phase among all the allotropes of carbon nitride, have attracted much attention owing to their wide applications as sustainable heterogeneous catalysts for artificial photosynthesis, electrocatalysis, and organic catalysis [19–26]. Mesoporous g-C₃N₄ was also used as a heterogeneous catalyst to activate CO₂ for the oxidation of benzene to phenol at elevated temperatures [18]. Theoretical studies and experimental results also suggested that modified g-C₃N₄ has an appropriate energy potential for CO₂ reduction. Recently, g-C₃N₄-based nanomaterials were also applied as electrocatalysts for the hydrogen evolution reaction (HER) or oxygen evolution reaction [23, 24]. However, electrochemical reduction of CO₂ over metal-free g-C₃N₄ has not been reported in the literature. Further modification of the band structure and morphology of g-C₃N₄ materials is highly desired to boost the catalytic performance for electrocatalytic reduction of CO₂, especially to valuable chemical products, and to simultaneously suppress the HER.

Herein, we report the development of a metalfree g-C₃N₄-based electrocatalyst for selective CO₂ reduction to CO. A polarized ultrathin g-C₃N₄ layer (thickness: ~ 1 nm) was prepared on a large scale by a hydrothermal–thermal exfoliation method. The polarized surface and modified electronic structure induced by the ultrathin nanostructure yield high activity and stability in two-dimensional (2D) polarized g-C₃N₄ (2D-pg-C₃N₄) for CO₂ reduction in KHCO₃ electrolyte.

2 Experimental section

2.1 Materials

Dicyandiamide (DCDA) (Acros Organics, 99.5%), potassium hydrogen carbonate (Adamas Reagent Co., Ltd., 99%), dimethyl sulfoxide (DMSO, Aladdin, 99.9%), D_2O (Adamas Reagent Co., Ltd., 99.9%), ethanol (HPLC grade, Adamas Reagent Co., Ltd., 99.8%), and formic acid (Aladdin, 95%) were used as received. The Nafion[®] perfluorinated resin solution (5 wt.% in lower aliphatic alcohols and water; contains 15%–20% water) was purchased from Sigma-Aldrich.

2.2 Preparation of 2D-pg-C $_3N_4$ layers consisting of g-C $_3N_4$ foam

DCDA (4 g) was dissolved in 100 mL of deionized water under sonication for 10 min. The solution was sealed in a TeflonTM-lined autoclave and heated at 190 °C for 4 h. Liquid nitrogen was used to induce freezing-assisted assembly, and the freeze-dried samples were further heated at 550 °C for 4 h at a ramp rate of 2.3 °C/min in an N₂ atmosphere to obtain porous g-C₃N₄. Then 2D-pg-C₃N₄ layers consisting of g-C₃N₄ foam were obtained by further thermal exfoliation of the as-obtained porous g-C₃N₄ at 400 °C for 2 h in air.

2.3 Preparation of bulk g-C₃N₄

Bulk $g-C_3N_4$ was prepared by direct calcination of the DCDA powder at 550 °C in an N_2 atmosphere. After cooling naturally to room temperature, the as-obtained samples were used for further study and characterization.

2.4 Preparation of mesoporous g-C₃N₄

Mesoporous g-C₃N₄ (mpg-C₃N₄) samples were prepared according to our previous report [22]. Namely, 5 g of cyanamide was dissolved in 7.5 g of Ludox HS40 solution (dispersion of 40 wt.% of 12 nm SiO₂ particles in water) and heated at 65 °C overnight to remove water. The as-obtained white powder was heated at 600 °C for 4 h (ramp rate: 2.3 °C/min) under an N₂ atmosphere. The resulting brown-yellow powder was treated with 4 M HF acid for 24 h to remove the silica template. The powders were then centrifuged and washed three times with distilled water and twice with ethanol. Finally, the powders were dried at 60 °C under vacuum overnight.

2.5 Electrochemical measurements

The electrochemical HER activities of 2D-pg-C₃N₄ and control samples were measured using the rotating

disc electrode (RDE) technique. Samples (1 mg) were dispersed in a mixed solution containing 80 μ L of a 5 wt.% Nafion[®] solution in alcohol, 350 μ L of water, and 750 μ L of ethanol. The working electrode was prepared by transferring ink onto a glassy carbon RDE (5 mm in diameter; PINE Instruments, USA). Electrochemical tests were performed on a CHI 660C electrochemical workstation. A typical three-electrode system was used to conduct all the following electrochemical tests. A platinum wire was used as a counter electrode, and an Ag/AgCl electrode in saturated KCl solution was used as the reference electrode.

2.6 Electrochemical CO₂ reduction reaction test

A 2 M KHCO₃ aqueous solution was used as the electrolyte. Cyclic voltammetry (CV) measurements were made at 50 mV/s from -0.4 to -1.5 V for 100 cycles in the above gas-saturated electrolyte. Linear scanning voltammetry (LSV) measurements were made using the RDE in CO₂- or N₂-saturated electrolytes at a sweep rate of 10 mV/s.

2.7 Faraday efficiency calculation

The liquid products were quantified by ¹H nuclear magnetic resonance (NMR) spectroscopy, in which 0.5 mL of electrolyte (a total of 100 mL in the reactor) was mixed with 0.1 mL of D_2O , and 0.05 µL of DMSO was added as an internal standard. An electrolyte (0.5 mL) containing 10 µL of formic acid was used as the standard to verify the chemical shift of HCOOspecies and facilitate quantification of the amount of formic acid in the liquid products by calculating the factor *X* in the equation $n_F/n_D \times X = A_F/A_D$, where n_F is the molarity of formic acid, $n_{\rm D}$ is the molarity of DMSO, and $A_{\rm F}$ and $A_{\rm D}$ are the integrated areas of the ¹H spectrum corresponding to HCOO⁻ and DMSO, respectively. After the factor X is verified, the molarity of HCOO⁻ species in liquid products can also be calculated. Further, the gas-phase products (n_{CO} , n_{H2}) were determined by gas chromatography (GC, Shimadzu Co., Ltd.) with a thermal conductivity detector and flame ionization detector. Then the Faraday efficiency (FE) can be calculated as $FE = nN \times$ $96500/[(It) \times (60/0.5)]$, where N is the electron number for the HER or CO₂ reduction to CO and HCOO⁻ (here, *N* is 2); *n* represents n_{CO} , n_{H2} , or n_{F} ; *I* is the current (A); and *t* represents time (s).

2.8 Characterization

Scanning electron microscopy (SEM) measurements were performed on a FEI Nova NanoSEM 2300. Transmission electron microscopy (TEM) and highresolution TEM (HRTEM) measurements were obtained using a JEM-2100F microscope operated at an acceleration voltage of 200 kV. Atomic force microscopy (AFM) tests were conducted with a Nanonavi E-Sweep Scanning Probe Microscope. The powder X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance X-ray diffractometer with Cu-K α radiation (λ = 1.5418 Å) at a scan rate of 6 °/min. UV–vis spectra were recorded with a Shimadzu UV-2450 UV–vis spectrophotometer.

3 Results and discussion

3.1 Structural characterizations

Among all the methods for preparing g-C₃N₄ nanosheets, concentrated acid exfoliation [25] and sonication in a polar solvent [26] are the two main methods described in literature. Although the excellent performance of thin g-C₃N₄ nanosheets in biological imaging, photocatalysis, and the water splitting reaction has been well demonstrated in pioneering works, mass production of ultrathin g-C₃N₄ nanosheets remains a significant challenge. The use of large amounts of concentrated acid is inconvenient and unsafe for real applications. Protonation is also inevitable, as both the chemical and electronic structures change during the acid exfoliation process. Long-time sonication of bulk g-C₃N₄, which has low yields, is not efficient enough for mass production of g-C₃N₄ thin layers. Moreover, because of their 2D structure with a very large aspect ratio, ultrathin g-C₃N₄ nanosheets easily aggregate and are packed into bulk phases during sample separation and reaction. As a result, we chose to construct three-dimensional (3D) monoliths composed of ultrathin g-C₃N₄ nanosheets, which are expected to have high mechanical stability for practical uses, including use as a metal-free electrocatalyst for CO₂ reduction here.

Porous but rigid g-C₃N₄ nanoassemblies (Fig. S1 in the Electronic Supplementary Material (ESM)) were prepared via a modified monomer preorganization method from DCDA. The mechanical properties of the g-C₃N₄ nanoassemblies obviously changed after thermal exfoliation. The as-fabricated 2D-pg-C₃N₄ became flexible (Fig. S2 in the ESM) and lightweight, with a density of 5.5 mg/cm³ (Fig. 1(a) and Fig. S3 in the ESM). Large-area SEM images (Fig. 1(b) and Fig. S4 in the ESM) revealed that the 2D-pg-C₃N₄ was obtained as monoliths of continuous but entangled nanosheets, whereas the bulk sample showed a condensed layer structure (Fig. S5 in the ESM). The detailed morphological characteristics of the primary g-C₃N₄ nanosheets were revealed by further TEM analysis (Fig. 2(c) and Fig. S6 in the ESM), confirming their uniform 2D structure and ultralow thickness (less than 3 nm; Fig. 1(d)). Because of the extremely low thickness of the primary subunits, the 2D-pg-C₃N₄ was easily torn into small pieces under mild ultrasonication within 50 s and was well dispersed in water (Fig. S7 and Movie S1 in the ESM). AFM analysis (Fig. 1(e)) of the dispersed 2D-pg-C₃N₄ on a mica substrate demonstrated the ultrathin 2D nature of the primary g-C₃N₄ nanosheets, which had an average thickness of 1 nm. The 2D-pg- C_3N_4 can also be expected to have a high surface area, and the surface area was calculated to be 292.4 m²/g from the nitrogen adsorption/desorption analysis results (Fig. 2(b) and Fig. S8 in the ESM).

Figure 1 Morphology of $g-C_3N_4$ monolith composed of 2D-pg-C₃N₄. Photograph (a), SEM image (b), TEM image (c), and HRTEM image (d) of the $g-C_3N_4$ monolith, and AFM analysis results (e) for the primary 2D-pg-C₃N₄ layers making up the $g-C_3N_4$ monolith. Inset in (b): schematic structure of the few-layer 2D-pg-C₃N₄.

Thermally exfoliated 2D-pg-C₃N₄ is thought to possess the characteristics of bulk g-C₃N₄, with some differences caused by its nanostructure. The XRD patterns of the 2D-pg-C₃N₄ sample revealed good development of the crystalline structure of graphitic carbon nitride (Fig. 2(a)). The relatively broad peak at 27.3° for the 2D-pg-C₃N₄ indicated only limited stacking in the *c* direction of the graphitic carbon nitride structure, which is also reflected by the less pronounced peak at 13.1°, originating from planar ordering parallel to the c axis [19, 26]. Fourier transform infrared (FTIR) spectroscopy (Fig. 2(c)) further demonstrated the similar chemical structures of the foam and bulk samples. The peak of the heptazine ring breathing mode at approximately 810 cm⁻¹ and the peaks originating from either the trigonal C-N=C (full condensation) or bridging C-NH-C group stretching mode in the region of 900 to 1,800 cm⁻¹ became sharper compared with those of bulk g-C₃N₄ in the FTIR spectra of 2D-pg-C₃N₄, suggesting an even condensed polymeric network [20, 26]. The thermal exfoliation process obviously helped remove the distorted and less condensed basic units, liberate the highly crystalline thin layers, and thus generate an even flexible nanofoam. Despite slight changes in the chemical structure, the band gap of the 2D-pg-C₃N₄ became even broadened and was estimated to be 2.88 eV, which was 0.15 eV larger than that of the bulk sample, as calculated from the UV-vis absorption spectra (Fig. 2(d)). The changed band structure is believed to be relevant to the redox ability of materials for electrocatalytic reactions.

3.2 Electrochemical characterization

Our initial studies focused on the electrochemical reduction of CO_2 in KHCO₃ solution. LSV curves (Figs. 3(a) and 3(b)) of 2D-pg-C₃N₄ and control samples were obtained in a three-electrode system at a scan rate of 10 mV/s in 2 M KHCO₃ saturated with N₂ (HER process) or CO₂. As revealed by the LSV curves of the 2D-pg-C₃N₄ measured in the N₂- and CO₂-saturated electrolytes (Fig. 3(a)), the significantly enhanced current density after CO₂ flow directly demonstrated that reduction of CO₂ proceeds over the 2D-pg-C₃N₄-based working electrode. As control samples, bulk g-C₃N₄ and bare glassy carbon provided

Figure 2 Structural characteristics of 2D-pg-C₃N₄. XRD patterns (a), nitrogen adsorption/desorption isotherms (b), FTIR spectra (c), and UV-vis absorption spectra (d) of 2D-pg-C₃N₄ and bulk samples. Insets: schematic structures (b) and Kubelka–Munk plots (d) of the 2D-pg-C₃N₄ and bulk samples.

Figure 3 Electrochemical performance of CO₂ reduction over the 2D-pg- C_3N_4 catalyst and control samples. LSV curves in N₂- and CO₂-saturated 2 M KHCO₃ solutions (a) and Faradaic efficiency at different voltages for 12 h (c) of the 2D-pg- C_3N_4 catalyst for CO₂ reduction; LSV curves (b) and corresponding current densities at -1.2 V vs. Ag/AgCl (d) of the 2D-pg- C_3N_4 and control samples in CO₂-saturated 2 M KHCO₃ solution.

only negligible to low current density at the same working voltage for a 2D-pg- C_3N_4 catalyst in the CO₂-saturated electrolyte (Fig. 3(b) and Fig. S9(a) in the ESM). Further, the precursor of the 2D-pg- C_3N_4 sample without thermal exfoliation (Fig. S10 in the ESM) also showed weak performance in the CO₂-saturated electrolyte compared with the 2D-pg-C₃N₄ electrocatalyst (Fig. S9(b) in the ESM). The 2D-pg-C₃N₄ exhibited the best CO₂ reduction activity among all the samples tested here, with an onset potential of -0.9 V vs.

Ag/AgCl ($\eta_{CO} = -0.77$ V) (Fig. 3(a)). The current density achieved by the 2D-pg-C₃N₄ at -1.2 V vs. Ag/AgCl is 3.05 mA/cm², which is nearly 30 times larger than that over the bulk g-C₃N₄ catalyst (Fig. 3(d)).

Note that the precursor used to prepare the g-C₃N₄ samples was of ultrahigh purity. Highly pure water and solvents were also used in this work for materials synthesis. We conducted inductively coupled plasma emission spectrometry tests of g-C₃N₄ samples (Table S2 in the ESM), which excluded the possibility of the presence of even a trace amount of metal elements (below the ppm level) in our g-C₃N₄ foams. Moreover, the effect of an undetectable amount of metals on the CO₂ reduction activity of the samples is negligible, as is well demonstrated by the poor activity (Fig. 3(b)) of the bulk samples and mesoporous versions made from the same precursor.

The selectivity of the 2D-pg-C₃N₄ catalyst for CO₂ reduction was further investigated by analyzing the gas-phase and liquid-phase products. Then *I*-*t* curves were obtained for 12 h to verify the occurrence of electrochemical CO₂ reduction. ¹H NMR spectral analysis demonstrated complete conversion of CO₂ to HCOO⁻ with a chemical shift at 8.3 ppm (Fig. S11 in the ESM). Further, the gas-phase products were analyzed by GC. The Faradaic efficiency for the formation of CO (FE_{CO}) over the 2D-pg- C_3N_4 catalyst increased from 15.7% to ~ 80% with increasing voltage from -0.9 to -1.1 V vs. Ag/AgCl (Fig. 3(c)). Moreover, formation of formic acid over the 2D-pg-C₃N₄ catalyst was also confirmed by ¹H NMR analysis of the solution-phase products, which had Faradaic efficiencies between 20% and 11% at -0.9 to -1.1 V vs. Ag/AgCl (Fig. S12 in the ESM). As the main counterpart reaction, the HER was largely suppressed over the 2D-pg-C₃N₄ catalyst at low potentials (< -1.15 V vs. Ag/AgCl). Surprisingly, the total Faradaic efficiency for the conversion of CO₂ over the metal-free 2D-pg-C₃N₄ catalyst was about 91% at applied voltages between -1.05 and -1.15 V vs. Ag/AgCl, which is comparable to or even better than the reported values of state-ofthe-art catalysts, including metal-free and based catalysts (Table S1 in the ESM) [4, 6, 8, 27-32]. These results illustrated well the outstanding electrochemical CO₂ reduction performance of 2D-pg-C₃N₄ as a metal-free catalyst (Table S2 in the ESM). The source of CO and formic acid was also investigated using GC to analyze the possible gas products in the presence and absence of CO_2 gas. The fact that CO was not detected without the introduction of CO_2 into the KHCO₃ solution demonstrated the formation of CO from CO_2 reduction, rather than reduction of the KHCO₃, in our catalytic system (Fig. S13 in the ESM). Moreover, formic acid was also not observed by NMR in the absence of CO_2 gas. All these results demonstrated well that CO_2 was the only source for the formation of both CO and formic acid [4, 32].

3.3 Mechanism of CO_2 reduction on 2D-pg- C_3N_4 nanolayers

The large surface area and porous structure could not ensure high activity of the g-C₃N₄-based electrocatalysts for CO₂ reduction. The hierarchical structure of the foam-like monolith composed of 2D-pg-C₃N₄ with a large surface area also facilitates diffusion of CO₂ molecules to the active surface of the catalyst. The improved mass transfer efficiency of the 2D-pg-C₃N₄ is revealed by the electrochemical impedance spectra of the 2D-pg- C_3N_4 (Fig. S14 in the ESM), which exhibit a larger slope in the low-frequency range and thus an even lower mass diffusion resistance for further CO₂ reduction reactions. A benchmarked photocatalyst reported in the literature [22, 33, 34], mpg-C₃N₄, which also has a larger surface area but the same band structure as bulk $g-C_3N_4$, has been widely used as an efficient catalyst or photocatalyst for organic synthesis and water splitting reactions. For the CO₂ reduction reaction tested in our system, mpg-C₃N₄ exhibited only negligible improvement in the onset overpotential (Fig. 3(b)), although the current output was more or less elevated at high overpotentials, again owing to the improved mass transfer efficacy obtained by introducing nanopores. The remarkably enhanced reducing power of the 2D-pg- C_3N_4 , which presumably results from the formation of an ultrathin layered structure, is believed to significantly depress the onset overpotential for CO₂ reduction here. Indeed, temperature-programmed desorption (TPD) tests using CO_2 as the probe molecule (Fig. 4(b)) indicated an even lower CO₂ desorption peak for the 2D-pg-C₃N₄ than for the bulk sample, suggesting a more favorable activation process over 2D-pg-C₃N₄ for possible

reduction of CO₂ molecules [35–37].

The key role of the ultrathin structure of $g-C_3N_4$ layers for promoting CO₂ reduction was also demonstrated by monitoring possible changes in the electronic structure. Engineering carbon nitride materials into ultrathin layers obviously changed the electronic structure of $g-C_3N_4$ (Figs. 4(c)–4(e)), which has already been revealed by the UV-vis absorption spectra (Fig. 2(d)) of the 2D-pg- C_3N_4 and bulk samples. More importantly, the ultrathin 2D structure provides the g-C₃N₄ layers with a polarized surface with enhanced electron enrichment. X-ray photoelectron spectroscopy (XPS) N 1s and C 1s spectra (Figs. 4(d) and 4(e)) revealed obvious shifts of the characteristic peaks of sp² N (at 398.4 eV, Fig. 4(d)) and C (at 288.0 eV, Fig. 4(e)) atoms to lower binding energies, suggesting an enhanced electron density of aromatic rings in the ultrathin g-C₃N₄ layers. Note that the typical peaks of sp² C–C bonds of graphitic carbon at 284.6 eV, which generally appeared in all the g-C₃N₄ samples in the literature [38–40], are the same for both the 2D-pg- C_3N_4 and bulk samples. XPS valence band spectra (Fig. 4(c)) demonstrated that the valence band position is 1.18 eV, which is nearly 0.38 eV more negative than that of the bulk samples (1.56 eV). Only the C and N atoms in the conjugated C=N-N system of triazine shifted to lower binding energies compared with those of the bulk samples, presumably owing to the quantum effect originating from the ultrathin 2D structure [41]. As a result, the 2D-pg- C_3N_4 showed a more reductive conduction band edge at -1.70 eV (Fig. 2(d)) compared with that of the bulk sample at -1.17 eV. These polarized melem subunits of the 2D-pg- C_3N_4 material, which have been proposed as active sites for electrochemical reduction of CO₂ molecules to useful fuels [8], seem to significantly boost its activity.

The role of the polarized melem subunits as active centers to promote CO₂ reduction over metal-free g-C₃N₄ was further illustrated by the corresponding Tafel plots (Fig. S15 in the ESM). The Tafel slope (161 mV/dec) obtained with the 2D-pg- C_3N_4 catalyst was consistent with a mixed mechanism, presumably a one-electron charge transfer from the catalyst to form CO₂⁻⁻ as the rate-determining process [42, 43]. In contrast, the large Tafel slope (321 mV/dec) of the bulk sample excluded the possibility of an electrocatalytic mechanism on its surface, where the physical CO₂ diffusion process dominated the reaction [44]. All of these results revealed that electrons are discharged more easily from the polarized melem subunits of the g-C₃N₄ nanosheets for further CO₂ reduction reactions. Although the more precise reaction mechanism awaits further study, the function of the electron-rich conjugated melem units, which is boosted by the ultrathin layered structure of 2D-pg-C₃N₄, in activating CO_2 by donating electrons is currently well-confirmed.

Figure 4 Roles of the 2D-pg- C_3N_4 nanolayers in CO₂ reduction. Faradaic efficiency at -1.1 V vs. Ag/AgCl (a), CO₂ TPD analysis results (b), XPS valence band spectra (c), XPS N 1s spectra (d), and XPS C 1s spectra (e) of the 2D-pg- C_3N_4 and bulk samples; (f) calculated band energy position of 2D-pg- C_3N_4 and bulk samples for possible electrochemical CO₂ reduction.

DIVERSITY PRESS 🖉 Springer | www.editorialmanager.com/nare/default.asp

The 2D-pg-C₃N₄, which is based on the most stable allotrope of carbon nitride, also exhibited high electrochemical stability for CO₂ reduction. The *I*-*t* curve showed high durability of the 2D-pg-C₃N₄ catalyst for CO₂ reduction without an obvious loss of current density (~ 3 mA/cm²) for more than 35,000 s (Fig. S16 in the ESM). The interconnected nanosheets in the foam-like monoliths could also maintain mechanical stability for long-term use in aqueous electrolytes. All the above features of the 2D-pg-C₃N₄ material illustrated its excellent potential for use as a sustainable and efficient catalyst for electrochemical reduction of CO₂ molecules to useful fuels.

4 Conclusion

In summary, we described a new electrocatalyst based on a metal-free g-C₃N₄ material for CO₂ reduction. We successfully engineered g-C₃N₄ into an interconnected monolith composed of 2D-pg-C₃N₄ to simultaneously boost the CO₂ reduction activity and improve the mass diffusion efficiency and mechanical stability. This metal-free electrocatalyst achieved a Faradaic efficiency of 91% at approximately -1.1 V vs. Ag/AgCl by selectively converting CO₂ to CO (~ 80%) and formic acid (~ 11%), and fully suppressing the HER process. Powerful inorganic and organic approaches are available for enhancing the electron transfer efficiency and modifying the ultrathin g-C₃N₄ layers, which are being considered as organic semiconductor nanosheets, indicating considerable potential for further facilitating the intrinsic activity of the g-C₃N₄-layerbased monoliths for selective conversion of CO₂ to specific hydrocarbon molecules. Our synthetic method also promises a general approach to preparing other functional carbon nitride nanosheets with significantly extended applications.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 21331004, 21673140, and 21671134), Innovation Program of Shanghai Science and Technology Committee (No. 16JC1401600), Shanghai Eastern Scholar Program, Shanghai Rising-Star Program (No. 16QA1402100) and SJTU-MPI partner group.

Electronic Supplementary Material: Supplementary material (related methods, SEM and electrochemical data) is available in the online version of this article at https://doi.org/10.1007/s12274-017-1866-y.

References

- Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. S. Conversion of CO₂ from air into methanol using a polyamine and a homogeneous ruthenium catalyst. *J. Am. Chem. Soc.* 2016, *138*, 778–781.
- [2] Pan, Y.-X.; Sun, Z.-Q.; Cong, H.-P.; Men, Y.-L.; Xin, S.; Song, J.; Yu, S.-H. Photocatalytic CO₂ reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. *Nano Res.* **2016**, *9*, 1689–1700.
- [3] Wang, C. M.; Luo, X. Y.; Luo, H. M.; Jiang, D.-E.; Li, H. R.; Dai, S. Tuning the basicity of ionic liquids for equimolar CO₂ capture. *Angew. Chem., Int. Ed.* **2011**, *50*, 4918–4922.
- [4] Gao, S.; Jiao, X. C.; Sun, Z. T.; Zhang, W. H.; Sun, Y. F.; Wang, C. M.; Hu, Q. T.; Zu, X. L.; Yang, F.; Yang, S. Y. et al. Ultrathin Co₃O₄ layers realizing optimized CO₂ electroreduction to formate. *Angew. Chem., Int. Ed.* 2016, 55, 698–702.
- [5] Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO₂ reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.
- [6] Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Status and perspectives of CO₂ conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. *Energy Environ. Sci.* 2013, *6*, 3112–3135.
- [7] Sarkar, A.; Gracia-Espino, E.; Wågberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A.-R.; Pitkänen, O.; Sharifi, T.; Kordas, K.; Mikkola, J.-P. Photocatalytic reduction of CO₂ with H₂O over modified TiO₂ nanofibers: Understanding the reduction pathway. *Nano Res.* **2016**, *9*, 1956–1968.
- [8] Zhang, S.; Kang, P.; Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. Polyethylenimineenhanced electrocatalytic reduction of CO₂ to formate at nitrogen-doped carbon nanomaterials. *J. Am. Chem. Soc.* 2014, *136*, 7845–7848.
- [9] White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. *Chem. Rev.* 2015, *115*, 12888–12935.

- [10] Zhu, Q. G.; Ma, J.; Kang, X. C.; Sun, X. F.; Liu, H. Z.; Hu, J. Y.; Liu, Z. M.; Han, B. X. Efficient reduction of CO₂ into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. *Angew. Chem., Int. Ed.* **2016**, *128*, 9158– 9162.
- [11] Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. *Nature* 2016, *529*, 68–71.
- [12] Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. *Nat. Commun.* **2013**, *4*, 2819.
- [13] Sato, S.; Morikawa, T.; Saeki, S.; Kajino, T.; Motohiro, T. Visible-light-induced selective CO₂ reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta₂O₅ semiconductor. *Angew. Chem., Int. Ed.* **2010**, *49*, 5101–5105.
- [14] Ge, J.-M.; Zhang, B.; Lv, L.-B.; Wang, H.-H.; Ye, T.-N.; Wei, X.; Su, J.; Wang, K.-X.; Li, X.-H.; Chen, J.-S. Constructing holey graphene monoliths via supramolecular assembly: Enriching nitrogen heteroatoms up to the theoretical limit for hydrogen evolution reaction. *Nano Energy* 2015, 15, 567–575.
- [15] Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic liquidmediated selective conversion of CO₂ to CO at low overpotentials. *Science* 2011, 334, 643–644.
- [16] Mahurin, S. M.; Fulvio, P. F.; Hillesheim, P. C.; Nelson, K. M.; Veith, G. M.; Dai, S. Directed synthesis of nanoporous carbons from task-specific ionic liquid precursors for the adsorption of CO₂. *ChemSusChem* **2014**, *7*, 3284–3289.
- [17] Zhang, B.; Wang, H.-H.; Su, H.; Lv, L.-B.; Zhao, T.-J.; Ge, J.-M.; Wei, X.; Wang, K.-X.; Li, X.-H.; Chen, J.-S. Nitrogen-doped graphene microtubes with opened inner voids: Highly efficient metal-free electrocatalysts for alkaline hydrogen evolution reaction. *Nano Res.* 2016, *9*, 2606–2615.
- [18] Goettmann, F.; Thomas, A.; Antonietti, M. Metal-free activation of CO₂ by mesoporous graphitic carbon nitride. *Angew. Chem., Int. Ed.* **2007**, *46*, 2717–2720.
- [19] Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. *Nat. Mater.* **2009**, *8*, 76–80.
- [20] Han, Q.; Wang, B.; Zhao, Y.; Hu, C. G.; Qu, L. T. A graphitic-C₃N₄ "seaweed" architecture for enhanced hydrogen evolution. *Angew. Chem., Int. Ed.* **2015**, *54*, 11433–11437.
- [21] Li, X.-H.; Chen, J.-S.; Wang, X. C.; Sun, J. H.; Antonietti, M. Metal-free activation of dioxygen by graphene/g-C₃N₄

nanocomposites: Functional dyads for selective oxidation of saturated hydrocarbons. J. Am. Chem. Soc. 2011, 133, 8074–8077.

- [22] Cai, Y. Y.; Li, X. H.; Zhang, Y. N.; Wei, X.; Wang, K. X.; Chen, J. S. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott–Schottky photocatalyst. *Angew. Chem., Int. Ed.* 2013, *52*, 11822–11825.
- [23] Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. *Angew. Chem., Int. Ed.* **2014**, *53*, 7281–7285.
- [24] Liang, Q. H.; Li, Z.; Bai, Y.; Huang, Z.-H.; Kang, F. Y.; Yang, Q.-H. Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. *Sci. China Mater.* 2017, 60, 109–118.
- [25] Zhou, Z. X.; Wang, J. H.; Yu, J. C.; Shen, Y. F.; Li, Y.; Liu, A. R.; Liu, S. Q.; Zhang, Y. J. Dissolution and liquid crystals phase of 2D polymeric carbon nitride. *J. Am. Chem. Soc.* 2015, *137*, 2179–2182.
- [26] Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. *Adv. Mater.* 2013, 25, 2452–2456.
- [27] Fang, Y. X.; Flake, J. C. Electrochemical reduction of CO₂ at functionalized Au electrodes. J. Am. Chem. Soc. 2017, 139, 3399–3405.
- [28] Nganga, J. K.; Samanamu, C. R.; Tanski, J. M.; Pacheco, C.; Saucedo, C.; Batista, V. S.; Grice, K. A.; Ertem, M. Z.; Angeles-Boza, A. M. Electrochemical reduction of CO₂ catalyzed by Re(pyridine-oxazoline)(CO)₃Cl complexes. *Inorg. Chem.* 2017, *56*, 3214–3226.
- [29] Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajtai, R. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. *Nat. Commun.* 2016, 7, 13869.
- [30] Wu, J. J.; Yadav, R. M.; Liu, M. J.; Sharma, P. P.; Tiwary, C. S.; Ma, L. L.; Zou, X. L.; Zhou, X.-D.; Yakobson, B. I.; Lou, J. et al. Achieving highly efficient, selective, and stable CO₂ reduction on nitrogen-doped carbon nanotubes. *ACS Nano* 2015, *9*, 5364–5371.
- [31] Xu, J. Y.; Kan, Y. H.; Huang, R.; Zhang, B. S.; Wang, B. L.; Wu, K.-H.; Lin, Y. M.; Sun, X. Y.; Li, Q. F.; Centi, G. et al. Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. *ChemSusChem* **2016**, *9*, 1085–1089.

- [32] Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636.
- [33] Li, X.-H.; Wang, X. C.; Antonietti, M. Solvent-free and metal-free oxidation of toluene using O₂ and g-C₃N₄ with nanopores: Nanostructure boosts the catalytic selectivity. *ACS Catal.* 2012, 2, 2082–2086.
- [34] Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 2009, 131, 1680–1681.
- [35] Li, Q.; Yang, J. P.; Feng, D.; Wu, Z. X.; Wu, Q. L.; Park, S. S.; Ha, C.-S.; Zhao, D. Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO₂ capture. *Nano Res.* **2010**, *3*, 632–642.
- [36] Li, X. C.; Wu, M.; Lai, Z. H.; He, F. Studies on nickelbased catalysts for carbon dioxide reforming of methane. *Appl. Catal. A: Gen.* 2005, 290, 81–86.
- [37] Doyle, A. M.; Shaikhutdinov, S. K.; Jackson, S. D.; Freund, H.-J. Hydrogenation on metal surfaces: Why are nanoparticles more active than single crystals? *Angew. Chem., Int. Ed.* 2003, *42*, 5240–5243.
- [38] Zhang, J. S.; Zhang, M. W.; Yang, C.; Wang, X. C. Nanospherical carbon nitride frameworks with sharp edges

accelerating charge collection and separation at a soft photocatalytic interface. *Adv. Mater.* **2014**, *26*, 4121–4126.

- [39] Yu, H. J.; Shang, L.; Bian, T.; Shi, R.; Waterhouse, G. I. N.; Zhao, Y. F.; Zhou, C.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Nitrogen-doped porous carbon nanosheets templated from g-C₃N₄ as metal-free electrocatalysts for efficient oxygen reduction reaction. *Adv. Mater.* **2016**, *28*, 5080–5086.
- [40] Li, Y. G.; Zhang, J.; Wang, Q. S.; Jin, Y. X.; Huang, D. H.; Cui, Q. L.; Zou, G. T. Nitrogen-rich carbon nitride hollow vessels: Synthesis, characterization, and their properties. *J. Phys. Chem. B* **2010**, *114*, 9429–9434.
- [41] Lei, W. W.; Portehault, D.; Dimova, R.; Antonietti, M. Boron carbon nitride nanostructures from salt melts: Tunable watersoluble phosphors. J. Am. Chem. Soc. 2011, 133, 7121–7127.
- [42] Bandi, A.; Kühne, H. M. Electrochemical reduction of carbon dioxide in water: Analysis of reaction mechanism on ruthenium-titanium-oxide. J. Electrochem. Soc. 1992, 139, 1605–1610.
- [43] Eastwood, B. J.; Christensen, P. A.; Armstrong, R. D.; Bates, N. R. Electrochemical oxidation of a carbon black loaded polymer electrode in aqueous electrolytes. *J. Solid State Electrochem.* **1999**, *3*, 179–186.
- [44] Tammeveski, K.; Arulepp, M.; Tenno, T.; Ferrater, C.; Claret, J. Oxygen electroreduction on titanium-supported thin Pt films in alkaline solution. *Electrochim. Acta* 1997, 42, 2961–2967.