Synthesis of large-scale atomic-layer SnS₂ through chemical vapor deposition

Gonglan Ye¹, Yongji Gong^{2,5} (\boxtimes), Sidong Lei¹, Yongmin He¹, Bo Li¹, Xiang Zhang³, Zehua Jin¹, Liangliang Dong², Jun Lou¹, Robert Vajtai¹, Wu Zhou⁴, and Pulickel M. Ajayan^{1,2} (\boxtimes)

¹ Department of Materials Science & NanoEngineering, Rice University, Houston, Texas 77005, USA

² Department of Chemistry, Rice University, Houston, Texas 77005, USA

³ Department of Applied Physics, Rice University, Houston, Texas 77005, USA

⁴ Materials Science & Technology Division, Oak Ridge National Lab, Oak Ridge, TN 37831, USA

⁵ School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received: 23 September 2016 Revised: 21 December 2016 Accepted: 26 December 2016

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

KEYWORDS

metal dichalcogenides, tin disulfide, two-dimensional materials, chemical vapor deposition, photodetector

ABSTRACT

Two-dimensional layers of metal dichalcogenides have attracted much attention because of their ultrathin thickness and potential applications in electronics and optoelectronics. Monolayer SnS_2 , with a band gap of ~2.6 eV, has an octahedral lattice made of two atomic layers of sulfur and one atomic layer of tin. Till date, there have been limited reports on the growth of large-scale and high quality SnS_2 atomic layers and the investigation of their properties as a semiconductor. Here, we report the chemical vapor deposition (CVD) growth of atomic-layer SnS_2 with a large crystal size and uniformity. In addition, the number of layers can be changed from a monolayer to few layers and to bulk by changing the growth time. Scanning transmission electron microscopy was used to analyze the atomic structure and demonstrate the 2H stacking poly-type of different layers. The resultant SnS_2 crystals is used as a photoelectronic applications.

1 Introduction

Two-dimensional layered metal dichalcogenides (LMDs) such as MoS_2 [1–5] and WS_2 [6] have attracted great attention because of their potential applications in areas such as optics, electronics, and catalysis [3, 7–16]. For example, thinning down some 2D LMD materials such as MoS_2 and $MoSe_2$ [17, 18] from bulk to monolayer leads to new phenomena such as indirect

to a direct band gap transition and results in significant enhancement of photosensitivity [19–23]. MoS₂ has already been extensively studied due to its appealing optical and electronic properties. However, the investigation of 2D LMD SnS₂ is still in its nascent stage. Monolayer SnS₂ has the $P\overline{3}m1$ space group, where the Sn ions are coordinated by six S ions with a 1T polymorph structure [24–26]. Unlike MoS₂, SnS₂ has an indirect bandgap for both monolayer and bulk crystals.

Address correspondence to Yongji Gong, yongjigong@buaa.edu.cn; Pulickel M. Ajayan, ajayan@rice.edu

Its band gap ranges from 2.0 to 2.6 eV, as shown by both experimental and theoretical data, which is significantly larger than that for MoS₂. However, the relationship between the bandgap of SnS₂ and the number of layers is still unclear yet [27-30]. The benefit of the larger band gap of SnS₂ is that field effect transistors (FETs) based on this compound could have larger on/off current ratios and lower off-state leakage currents [31, 32]. More importantly, the wide band gap, which is larger than that of any other reported LMD, permits devices to operate at much higher voltages, frequencies, and temperatures, thus reducing operation costs and increasing the energy efficiency. Most studies on SnS₂ in the literature are focused on applications related to energy storage and conversion, such as lithium ion batteries and water splitting [33–36]. Until now, there are only a few reports on the growth and electrical and optical properties of atomically thin SnS₂ layers. Notably, recent studies have shown that monolayer SnS₂ is competitive and promising for electrical and optical devices, with a mobility of 50 cm²·V⁻¹·s⁻¹ as field-effect transistors [37] and a fast photocurrent response [19, 38-40].

Further efforts are required for the synthesis of high-quality, large-scale atomic-layer SnS₂ [38, 41]. Similar to other 2D layered materials such as graphene, MoS_2 and WS_2 , exfoliation of bulk SnS_2 is a simple and effective way to obtain the corresponding monolayers [42]. However, the exfoliated SnS₂ has limited applications due to poor control over thickness and size. Besides exfoliation, chemical vapor deposition (CVD) [37], hydrothermal methods [24], and spin coating techniques [43] have also been developed to produce atomic layer SnS₂. Among them, CVD is known to be the most successful method for the synthesis of various large-scale atomic layer 2D materials such as MoS₂, MoSe₂, and their heterostructures [44, 45]. Although some success has been achieved using CVD for growing SnS₂ atomic layers, there are challenges such as limitation in size and difficulty in controlling the number of layers down to the monolayer [38]. Thus, further improvement is necessary to obtain largescale and high quality SnS₂ with a controlled number of layers for practical applications [38, 39].

Here, we report a facile and scalable CVD method to synthesize large-size and high-quality SnS₂ atomic

layers. The edge of the single-crystal domains can be as long as 128 μ m and the layer numbers can be controlled from monolayer to bulk. The Raman peak position shift and intensity change are observed as a function of the number of layers. Atomic resolution scanning transmission electron microscopy (STEM) was further used to show the high-quality lattice of SnS₂ with 2H stacking between different layers (Sn aligned with Sn, and S aligned with S). Finally, photodetectors based on the CVD grown SnS₂ were fabricated with a high external quantum efficiency of 150% and an on/off ratio as high as 10², suggesting the potential applicability of SnS₂ in photodetectors and sensors.

2 Results and discussion

 SnS_2 was grown by using tin oxalate (SnC_2O_4) and sulfur as the Sn and S precursors, respectively. A clean Si wafer with 275 nm SiO₂ was used as the substrate located at the center of the furnace (Fig. 1(a)). 100 sccm Ar was used as the carrier gas and to create an inert atmosphere during the growth procedure, including the heating and cooling processes. The S powder was placed in another porcelain boat and located upstream in a lower temperature zone. The furnace was ramped up from room temperature to 600 °C over 15 min and maintained at this temperature for 5-10 min for the growth. Finally, the furnace was allowed to cool naturally. Compared to other Sn sources (Sn and SnO₂), SnC₂O₄ has medium vapor pressure at the reaction temperature (600 °C), which is beneficial for the reaction. The reaction process during CVD growth should be

$$SnC_2O_4 \rightarrow SnO + CO + CO_2$$
 (1)

$$2SnO + 5S \rightarrow 2SnS_2 + SO_2$$
(2)

Figure 1(b) shows a low-magnification optical image of the as-grown SnS_2 . High-coverage SnS_2 triangles and hexagons with atomic thickness and uniform size were formed after growth. The general size of the SnS_2 crystals ranges from tens of micrometers to more than a hundred micrometers (Figs. 1(b)–1(e)), and the largest crystal is about 128 µm in edge. The resultant atomic layers of SnS_2 were also characterized by a scanning electron microscope (Fig. S1 in Electronic Supple-

Figure 1 Synthesis and morphology of atomic-layer SnS_2 . (a) Schematic of the synthesis of SnS_2 by CVD, where sulfur and tin oxalate are used as the precursors. (b) Large-scale image to show the high yield of SnS_2 atomic layers. ((c)–(e)) Typical optical images of SnS_2 single crystals with round triangle, hexagon, and sharp triangle shapes, respectively. The edge of the SnS_2 single crystals can be as long as 128 µm. (f) Optical image showing a multilayer SnS_2 single crystal, which consists of a monolayer in the edge region and a five-layer region at the center (the layer numbers are marked out). (g) AFM image of a resultant SnS_2 single crystal. The height profile (inset) shows a thickness of 1.4 nm, illustrating that the tested SnS_2 single crystal is bilayer.

mentary Material (ESM)). The large size of the SnS₂ single crystals can facilitate device fabrication and corresponding characterizations. Notably, most of the SnS₂ single crystals do not exhibit sharp angels and straight edges, which are significantly different from the CVD grown MoS₂. Similar to other 2D materials, the thickness and the number of layers of the resultant SnS₂ can be easily distinguished via optical images owing to their optical contrast [25]. Clearly, the bright yellow regions in Fig. 1(b) indicate thick SnS₂ crystals (bulk), while the atomic layers appear blue in color. Figure 1(f) shows a 5-layer SnS₂ single crystal, where the layer number is marked in the figure. In addition, we can roughly tune the sample thickness by adjusting the growth time. For example, 5 min growth will

yield samples dominated by 1–5 layers in thickness, as shown in Figs. 1(b)–1(f), while bulk crystals become dominant with 10 min growth (Fig. S2 in ESM). The thickness of the as-grown SnS_2 was measured by atomic force microscopy (AFM). As shown in Fig. 1(g), the measured sample, which has uniform thickness and a clean surface, shows a thickness of 1.4 nm, corresponding to a bilayer SnS_2 crystal [38]. Monolayer SnS_2 crystals with a thickness of 0.87 nm were characterized by AFM (Fig. S3 in the ESM).

Raman spectroscopy is an effective technique to identify the crystal quality and the number of layers of 2D materials [46]. Figure 2(a) shows an optical image of a multilayer SnS_2 single crystal with an edge around 30 µm, characterized by a 514.5 nm laser. From

Figure 2 Raman characterization of the resultant SnS_2 . (a) Optical image of a multilayer SnS_2 . (b) Raman spectra of different layered SnS_2 samples marked in (a). Two main characteristic peaks are located at ~317 and ~208 cm⁻¹. (c) Enlarged Raman spectra at the characteristic peak of ~208 cm⁻¹. The E_g peak appears from the 3rd layer as the thickness increased from a monolayer to a few layers. (d) Change in position and intensity of the A_{1g} peak with number of layers. As the number of layers increases, the peak is blue-shifted and the peak intensity increases. (e) Optical image of a triangular SnS₂ single crystal and the corresponding Raman mapping of the A_{1g} mode (f).

the edge to the center, the layer number changes from a monolayer to a few layers. Notably, there are clear steps among the monolayer, bilayer, three layer, and four layer regions, marked as 1, 2, 3, 4, respectively, which are chosen on purpose to study the layer number dependence of Raman spectra. Figure 2(b) shows the Raman spectra of the chosen SnS₂ crystal collected at different layers. The two main peaks at 317 cm⁻¹ (A_{1g} phonon mode) and 208 cm⁻¹ (E_g phonon mode) are the characteristic peaks of SnS₂. As the thickness increases from monolayer to bulk, the E_g peak appears from the 3rd layer but its intensity is much weaker than that for the few-layer region (Fig. 2(c)). These phenomena match well with previously reported results, which can be attributed to the increase in the number of scattering centers for in-plane scattering [47, 48]. Furthermore, Fig. 2(d) shows the relationship between the A_{1g} peak and the number of layers, where a significant increase in the peak intensity and blueshift of the peak position are observed. Specifically, the peak shifts from 310.4, 311.5, 312.1, to 312.8 cm⁻¹ from the monolayer to four-layer samples. These changes provide a feasible method to identify the thickness of the SnS₂ atomic layers. Figures 2(e) and 2(f) show an optical image of a triangular SnS₂ single crystal and its corresponding Raman intensity map at 317 cm⁻¹. The uniform Raman intensity in the map indicates highly homogeneous and uniform SnS₂ atomic layers. Because of the indirect and wide band gap of SnS₂, it is difficult to examine its band gap by photoluminescence.

Z contrast imaging (*Z* is the atomic number) from an aberration-corrected STEM was used to further demonstrate the high crystal quality of the CVD grown SnS_2 at the atomic level. Since the image intensity is directly related to the averaged atomic number and the thickness of the sample, *Z* contrast imaging can be used to quantify the number of layers [49]. By using the poly(methyl methacrylate) (PMMA) assisted transfer technique, the resultant SnS_2 sample can be transferred onto a TEM grid. Figures 3(a) and 3(b) depict the lowmagnification Z contrast images of the resultant SnS₂. In Fig. 3(a), the dark area represents a bilayer region, while the bright part is a trilayer area [49]. Figure 3(b) shows the bi-, tri-, and four-layer SnS₂, with the corresponding thickness labeled in the image. The small particles and narrow cracks observed in Figs. 3(a) and 3(b) were caused by the transfer process [17]. In atomic resolution high-angle annular dark field (HAADF) (Fig. 3(c)) and bright field images (Fig. S4(a) in the ESM) and the deconvolved HAADF image (Fig. 3(d)) of the bilayer SnS₂, the intensity ratio between the bright and dark columns corresponds to the ratio between 2 overlapped Sn atoms (bright columns) and 2 S atoms at each less intense columns [50]. Considering the 1T phase of monolayer SnS₂ (octahedral), this bilayer structure should be a 2H stacking polytype of the two monolayers [25], where tin and sulfur in one layer aligned with tin and sulfur in the other layer, similar to a bulk crystal. The electron energy loss spectroscopy (EELS) analysis of the crystal illustrates the presence of S and Sn (Fig. S4(b) in the ESM). The diffraction pattern constructed from fast Fourier transform (FFT)

in the inset of Fig. 3(c) shows the hexagonal structure. Furthermore, four-layer and seven-layer SnS₂ samples are characterized by STEM. As shown in Fig. 3(e), the STEM image of four-layer SnS₂ shows similar hexagonal lattice to the bilayer one. The patches with slightly different contrast are caused by the sample damage under electron beam illumination. In comparison, seven-layer SnS₂ is much more stable upon exposure to the electron beam. As shown in Fig. 3(f), the STEM image together with the FFT pattern shows the hexagonal structure of SnS₂ with a uniform contrast. The elemental composition of the CVD grown SnS₂ crystal is determined by X-ray photoelectron spectroscopy (XPS) (Fig. S5 in the ESM). From high-resolution XPS, the ratio of Sn/S is found to be ~1:1.98, suggesting reasonably stoichiometric composition of the CVD grown SnS₂.

To further illustrate the potential application of SnS_2 , a two-terminal device was fabricated on singlelayered SnS_2 with a Au/Ti (Au 38 nm/Ti 2 nm) electrode by e-beam lithography. The channel length and width were 2 µm and about 20 µm, respectively (Fig. 4(a)).

Figure 3 STEM characterization of SnS_2 atomic layers. (a) and (b) SnS_2 samples with different numbers of layers, where the thickness is quantified via averaged ADF imaging intensity. (c) STEM ADF image and (d) deconvolved ADF image of bilayer SnS_2 show its perfect hexagonal lattice, as confirmed by the corresponding FFT in the inset. ((e) and (f)) STEM ADF images of four-layer (e) and seven-layer SnS_2 samples (f). Inset in (f) shows the corresponding FFT pattern, revealing the hexagonal structure and high crystal quality.

Figure 4 Photodetection of a monolayer SnS_2 device. (a) Optical image of the fabricated device. (b) Photoconductivity spectrum of monolayer SnS_2 showing the strongest photoconductivity at about 390 nm with an estimated band gap of 2.6 eV. (c) *IV* curve of the SnS_2 device with different illumination powers. The non-linearity of the curve indicates the existence of a Schottky barrier between the electrodes and SnS_2 . (d) The response speed of the resultant SnS_2 .

Photoconductivity was performed on this device. Figure 4(b) shows the photoconductivity spectrum of the single-layered SnS₂. Monolayer SnS₂ showed the strongest photoconductivity with 390 nm light and the band gap of single-layered SnS₂ was determined to be about 2.6 eV. There is an obvious tail in the photoconductivity spectrum extending to about 650 nm. There might be two aspects contributing to this tail. First, the Schottky barrier between the Au/Ti electrodes and SnS₂ can lead to electron excitation from the metal Fermi surface to the conduction band of SnS₂. The other important aspect is the excitation from the energy levels inside the SnS₂ bandgap. These energy levels always serve as charge carrier trap states, which can lead to very high external quantum efficiency but longer response time, as discussed below [51]. Figure 4(c) shows the photoconductivity IV curve of the SnS₂ device. The *IV* curve does not show linearity, which indicates the existence of a Schottky barrier between the electrodes and SnS₂. As the bias voltage increases, the photocurrent increases. With a 15 V bias, the external quantum efficiency can be as high as 150%, because of the existence of trap states. It is noteworthy that the photoconductivity response is from monolayer SnS₂ rather than the 10 nm SnS₂ from Ref. [38], which might result in very different performances. After the photoexcitation, electrons are injected into conduction band and holes are left in the valence band; both the electrons and holes take part in the photoconductivity process. However, if one kind of charge carriers would be trapped at the trapping center, for example, if holes are trapped near the valence band, the electrons will stay in the conduction band for a longer time before combining with the holes. This effect leads to effective n-type doping and makes SnS₂ more conductive, yielding an external quantum efficiency of more than 100%. The other evidence for this trap state is the relatively low response speed, as demonstrated in Fig. 4(d). By fitting the falling edge of the modulated photocurrent, two time components

can be found, a fast component of 8 ms and a slow component of 150 ms. The slow response component is strong evidence for the existence of the trap states. The external quantum efficiency is higher than that in a previous report [38], and the response time is longer. These two factors together indicate the existence of trap states, which may result from the interface conditions between SnS_2 and SiO_2 . We also measured the FET performance of the resultant monolayer SnS_2 , as shown in Figs. S6 and S7 in the ESM.

3 Conclusion

In conclusion, we report a facile CVD method to synthesize 2D atomic-layer SnS_2 . The size of the resultant SnS_2 single crystal domains can be as large as 128 µm and thinned down to monolayer and bilayer. An external quantum efficiency of 150% can be achieved as a photodetector, promising for electronic and optoelectronic applications. More importantly, the wide bandgap of SnS_2 opens up more opportunities for the applications of 2D materials.

4 Experimental section

4.1 Growth of atomic layers SnS₂ via CVD

Sulfur (99.5%, Sigma-Aldrich) powder and tin oxalate (SnC_2O_4) powder were used as the S and Sn precursors, respectively. S was placed in an alumina boat at the upstream, where the temperature was lower, which was around 200 °C during growth. Another boat with the Sn precursor and a top face down Si/SiO₂ substrate was placed at the center of the quartz tube (the hot zone). The temperature program was set as follows: ramping up from room temperature to 600 °C in 15 min, then 600 °C for 5–10 min, and cooling to room temperature naturally. 100 sccm Ar was used during the entire process. The growth was affected under atmospheric pressure.

4.2 TEM sample preparation

The TEM samples were prepared by using a poly(methyl methacrylate) (PMMA) assisted transfer technique. First, the SnS₂/SiO₂/Si substrate was spin-coated by a PMMA film (3,500 rpm for 40 s). Then, SiO₂

was etched by 2 M KOH solution, and the PMMA/SnS₂ was subjected to a lift-off process. Subsequently, the PMMA/SnS₂ was transferred onto the TEM grid and dried naturally. Finally, PMMA was washed away by acetone and 2-propanol.

Acknowledgements

This work was supported by the Army Research Office MURI (No. W911NF-11-1-0362), the FAME Center, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. This research was supported in part by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division (WZ), and through a user project conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

Electronic Supplementary Material: Supplementary material (the morphology characterization of SnS₂ atomic layers, AFM images, TEM images, and XPS characterization) is available in the online version of this article at http://dx.doi.org/10.1007/s12274-017-1436-3.

References

- Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. *Nature* 2009, *457*, 706–710.
- [2] Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M.-T.; Lin, C.-T.; Chang, K.-D.; Yu, Y.-C.; Wang, J. T.-W.; Chang, C.-S.; Li, L.-J. et al. Synthesis of large-area MoS₂ atomic layers with chemical vapor deposition. *Adv. Mater.* 2012, 24, 2320–2325.
- [3] Li, H.; Wu, J.; Huang, X.; Yin, Z. Y.; Liu, J. Q.; Zhang, H. A universal, rapid method for clean transfer of nanostructures onto various substrates. *ACS Nano* 2014, *8*, 6563–6570.
- [4] Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS₂ film-based fieldeffect transistors for sensing NO at room temperature. *Small* 2012, *8*, 63–67.
- [5] Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication.

Angew. Chem., Int. Ed. 2011, 50, 11093-11097.

- [6] Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS₂ monolayer from chemical vapor deposition. *Adv. Opt. Mater.* 2014, 2, 131–136.
- [7] Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R. Direct chemical vapor deposition growth of WS₂ atomic layers on hexagonal boron nitride. *ACS Nano* **2014**, *8*, 8273–8277.
- [8] Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F. et al. Growth of large-area 2D MoS_{2(1-x)}Se_{2x} semiconductor alloys. *Adv. Mater.* **2014**, *26*, 2648–2653.
- [9] Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J.-K.; Hsu, W.-T.; Huang, J.-K.; Hsu, C.-L.; Chiu, M.-H. et al. Monolayer MoSe₂ grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582–8590.
- [10] Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transitionmetal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. *Angew. Chem., Int. Ed.* 2015, 54, 1210–1214.
- [11] Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. *Chem. Soc. Rev.* 2015, 44, 2713–2731.
- [12] Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.
- [13] Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. *Adv. Mater.* 2016, *28*, 1917–1933.
- [14] Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. *Nat. Commun.* 2013, *4*, 1444.
- [15] Yin, Z. Y.; Chen, B.; Bosman, M.; Cao, X. H.; Chen, J. Z.; Zheng, B.; Zhang, H. Au nanoparticle-modified MoS₂ nanosheet-based photoelectrochemical cells for water splitting. *Small* **2014**, *10*, 3537–3543.
- [16] Ma, C. B.; Qi, X. Y.; Chen, B.; Bao, S. Y.; Yin, Z. Y.; Wu, X.-J.; Luo, Z. M.; Wei, J.; Zhang, H.-L.; Zhang, H. MoS₂ nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. *Nanoscale* 2014, 6, 5624–5629.
- [17] Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.;

Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe₂. *ACS Nano* **2014**, *8*, 5125–5131.

- [18] Wu, J.; Li, H.; Yin, Z. Y.; Li, H.; Liu, J. Q.; Cao, X. H.; Zhang, Q.; Zhang, H. Layer thinning and etching of mechanically exfoliated MoS₂ nanosheets by thermal annealing in air. *Small* **2013**, *9*, 3314–3319.
- [19] Xia, J.; Huang, X.; Liu, L. Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D.-D.; Li, J.-J.; Gu, C.-Z.; Meng, X.-M. CVD synthesis of large-area, highly crystalline MoSe₂ atomic layers on diverse substrates and application to photodetectors. *Nanoscale* **2014**, *6*, 8949–8955.
- [20] Schmidt, H.; Wang, S. F.; Chu, L. Q.; Toh, M.; Kumar, R.; Zhao, W. J.; Castro Neto, A. H..; Martin, J.; Adam, S.; Özyilmaz, B. et al. Transport properties of monolayer MoS₂ grown by chemical vapor deposition. *Nano Lett.* **2014**, *14*, 1909–1913.
- [21] Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and fewlayer MoSe₂ films on SiO₂ substrates. *Nano Lett.* **2014**, *14*, 2419–2425.
- [22] Keyshar, K.; Gong, Y. J.; Ye, G. L.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y. M.; Machado, L.; Kabbani, M. et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS₂). *Adv. Mater.* **2015**, *27*, 4640–4648.
- [23] Koski, K. J.; Cui, Y. The new skinny in two-dimensional nanomaterials. ACS Nano 2013, 7, 3739–3742.
- [24] Feng, J. J.; Chen, J. T.; Geng, B. S.; Feng, H. T.; Li, H. J.; Yan, D.; Zhuo, R. F.; Cheng, S.; Wu, Z. G.; Yan, P. X. Two-dimensional hexagonal SnS₂ nanoflakes: Fabrication, characterization, and growth mechanism. *Appl. Phys. A* 2011, 103, 413–419.
- [25] Seminovski, Y.; Palacios, P.; Wahnón, P. Effect of van der Waals interaction on the properties of SnS₂ layered semiconductor. *Thin Solid Films* **2013**, *535*, 387–389.
- [26] Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS₂ transistors. *Nat. Mater.* 2014, *13*, 1128–1134.
- [27] He, X. C.; Shen, H. L. *Ab initio* calculations of band structure and thermophysical properties for SnS₂ and SnSe₂. *Phys. B: Condens. Matter* **2012**, 407, 1146–1152.
- [28] Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide—An emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. *ACS Nano* 2014, *8*, 10743–10755.

- [29] Liu, Z. X.; Deng, H. Q.; Mukherjee, P. P. Evaluating pristine and modified SnS₂ as a lithium-ion battery anode: A firstprinciples study. ACS Appl. Mater. Interfaces 2015, 7, 4000–4009.
- [30] Zhuang, H. L.; Hennig, R. G. Theoretical perspective of photocatalytic properties of single-layer SnS₂. *Phys. Rev. B* 2013, 88, 115314.
- [31] Joshi, P. D.; Joag, D. S.; Rout, C. S.; Late, D. J. Photosensitive field emission study of SnS₂ nanosheets. In *Proceedings* of the 2014 27th International Vacuum Nanoelectronics Conference, Engelberg, 2014, pp 241–242.
- [32] Nørby, P.; Johnsen, S.; Iversen, B. B. Fine tunable aqueous solution synthesis of textured flexible SnS₂ thin films and nanosheets. *Phys. Chem. Chem. Phys.* **2015**, *17*, 9282–9287.
- [33] Chang, K.; Wang, Z.; Huang, G. C.; Li, H.; Chen, W. X.; Lee, J. Y. Few-layer SnS₂/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. *J. Power Sources* 2012, 201, 259–266.
- [34] Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS₂-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. *Adv. Mater.* 2014, *26*, 3854–3859.
- [35] Wahnón, P.; Conesa, J. C.; Palacios, P.; Lucena, R.; Aguilera, I.; Seminovski, Y.; Fresno, F. V-doped SnS₂: A new intermediate band material for a better use of the solar spectrum. *Phys. Chem. Chem. Phys.* **2011**, *13*, 20401–20407.
- [36] Zhong, H. X.; Yang, G. Z.; Song, H. W.; Liao, Q. Y.; Cui, H.; Shen, P. K.; Wang, C.-X. Vertically aligned graphene-like SnS₂ ultrathin nanosheet arrays: Excellent energy storage, catalysis, photoconduction, and field-emitting performances. *J. Phys. Chem. C* 2012, *116*, 9319–9326.
- [37] Song, H. S.; Li, S. L.; Gao, L.; Xu, Y.; Ueno, K.; Tang, J.; Cheng, Y. B.; Tsukagoshi, K. High-performance top-gated monolayer SnS₂ field-effect transistors and their integrated logic circuits. *Nanoscale* 2013, *5*, 9666–9670.
- [38] Su, G. X.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S. D.; Maharjan, S.; Dong, P.; Ajayan, P. M.; Lou, J.; Peng, H. B. Chemical vapor deposition of thin crystals of layered semiconductor SnS₂ for fast photodetection application. *Nano Lett.* 2015, *15*, 506–513.
- [39] Wen, S. J.; Pan, H.; Zheng, Y. B. Electronic properties of tin dichalcogenide monolayers and effects of hydrogenation and tension. *J. Mater. Chem. C* 2015, *3*, 3714–3721.
- [40] Zschieschang, U.; Holzmann, T.; Kuhn, A.; Aghamohammadi, M.; Lotsch, B. V.; Klauk, H. Threshold-voltage control and enhancement-mode characteristics in multilayer tin disulfide field-effect transistors by gate-oxide passivation with an alkylphosphonic acid self-assembled monolayer. J. Appl. Phys. 2015, 117, 104509.

- [41] Shibata, T.; Miura, T.; Kishi, T.; Nagai, T. Synthesis of single crystal SnS₂ by chemical vapor transport method at low temperature using reverse temperature gradient. *J. Cryst. Growth* **1990**, *106*, 593–604.
- [42] Liu, Y. C.; Kang, H. Y.; Jiao, L. F.; Chen, C. C.; Cao, K. Z.; Wang, Y. J.; Yuan, H. T. Exfoliated-SnS₂ restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. *Nanoscale* **2015**, *7*, 1325–1332.
- [43] Řičica, T.; Střižík, L.; Dostál, L.; Bouška, M.; Vlček, M.; Beneš, L.; Wágner, T.; Jambor, R. SnS and SnS₂ thin films deposited using a spin-coating technique from intramolecularly coordinated organotin sulfides. *Appl. Organomet. Chem.* 2015, 29, 176–180.
- [44] Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe₂/MoSe₂ heterostructures. *Nano Lett.* 2015, *15*, 6135–6141.
- [45] Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS₂/MoS₂ monolayers. *Nat. Mater.* 2014, *13*, 1135–1142.
- [46] Bhatt, S. V.; Deshpande, M. P.; Sathe, V.; Chaki, S. H. Effect of pressure and temperature on Raman scattering and an anharmonicity study of tin dichalcogenide single crystals. *Solid State Commun.* 2015, 201, 54–58.
- [47] Ahn, J. H.; Lee, M. J.; Heo, H.; Sung, J. H.; Kim, K.; Hwang, H.; Jo, M.-H. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS₂ and orthorhombic p-type SnS crystals. *Nano Lett.* 2015, 15, 3703–3708.
- [48] De Groot, C. H.; Gurnani, C.; Hector, A. L.; Huang, R. M.; Jura, M.; Levason, W.; Reid, G. Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether precursors. *Chem. Mater.* 2012, 24, 4442–4449.
- [49] Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J.-C. Intrinsic structural defects in monolayer molybdenum disulfide. *Nano Lett.* **2013**, *13*, 2615–2622.
- [50] Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. *Nature* **2010**, *464*, 571–574.
- [51] Lei, S. D.; Wen, F. F.; Li, B.; Wang, Q. Z.; Huang, Y. H.; Gong, Y. J.; He, Y. M.; Dong, P.; Bellah, J.; George, A. et al. Optoelectronic memory using two-dimensional materials. *Nano Lett.* **2015**, *15*, 259–265.