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 ABSTRACT 

Recently, the synthesis of ultrathin nanostructures has attracted increasing

interest because of their unique structure and properties. In this work, we

report the synthesis of sub-2.0-nm Ru and composition-tunable RuPt nanowire 

networks using an environmentally friendly aqueous method. The structures

were characterized using transmission electron microscopy (TEM), high-resolution

TEM, X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) spectroscopy. 

Moreover, the combined utilization of sodium n-dodecyl sulfate and potassium 

fluoride was determined to play a key role in the formation of these ultrathin

nanostructures. The electrocatalytic properties of the sub-2.0-nm RuPt nanowire 

networks were investigated for methanol oxidation in an acidic medium. The 

nanostructures displayed composition-dependent properties, and compared 

with commercial Ru50Pt50/C, the as-synthesized Ru56Pt44 ultrathin nanowire network

exhibited enhanced stability. 

 
 

1 Introduction 

Ru is a versatile element in the Pt group because of 

its robust roles in many laboratory and industrial 

applications such as hydrogenation, oxidation of 

alcohols, hydrogen generation, Fischer–Tropsch 

synthesis, biomass fuels, nitrogen fixation, and liquid 

fuel cells [1–7]. The size- and shape-controlled synthesis 

of metal nanocrystals has attracted extensive attention 

because of the intrinsic correlation between the 

structure and properties [8–13]. Compared with other 

Pt group metals such as Pt, Pd, and Rh, there has 

been no successful report on the synthesis of Ru 

nanocrystals with well-defined and controllable 

morphologies. Thus far, only the synthesis of a few 

sphere-like particles of Ru nanocrystals in organic 

media has been reported [14–18]. Recently, the synthesis 

of one-dimensional nanowires has attracted increasing 

interest because of their unique structure and properties 

[19–27]. Early studies on nanowires synthesized from 

solution systems [28–33] often focused on relatively 

large diameters (>5.0 nm). Until recently, reports on 

the synthesis of sub-2.0-nm nanowires in oleylamine 

systems were rare [34–36]. The synthesis of sub-2.0-nm 
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nanowires remains a challenge because these structures 

are often only a few atoms thick and one unit cell in 

width.  

In bottom-up, solution-based processes, surfactants 

and inorganic salts have often been exploited to tailor 

the size and shape of nanocrystals [37–40]. In this 

paper, we report a facile aqueous solution method for 

the synthesis of high-yield Ru networks consisting of 

ultrafine nanowires with sub-2.0-nm diameters in the 

presence of poly(vinylpyrrolidone) (PVP, MW = 40,000), 

sodium n-dodecyl sulfate (SDS), and potassium 

fluoride (KF). To the best of our knowledge, this study 

represents the first time that sub-2.0-nm Ru nanowires 

have been prepared. In addition, this method can be 

easily extended to synthesize composition-tunable, 

sub-2.0-nm RuPt nanowire networks under the same 

synthetic conditions with the introduction of a Pt pre-

cursor. The electrocatalytic properties of the Ru and 

RuPt nanowire networks for methanol oxidation were 

also investigated, and the RuPt nanowire networks 

displayed composition-dependent electrocatalytic 

properties. 

2 Experimental 

In a typical synthesis, RuCl3, PVP, SDS, and KF were 

dissolved in 8.0 mL of deionized water. The resulting 

homogeneous dark red solution was transferred to a 

12-mL Teflon-lined stainless-steel autoclave. The sealed 

vessel was then heated at 180 °C for 24 h. Figure 1(a) 

and Fig. S1(a) in the Electronic Supplementary Material 

(ESM) present transmission electron microscopy (TEM) 

images of the as-synthesized Ru sample prepared at 

180 °C for 24 h. These images clearly demonstrate that 

the products consist of networks of interconnecting 

ultrafine nanowires. The high-resolution TEM (HRTEM) 

images (Fig. 1(b) and Fig. S1(b) in the ESM) reveal that 

the nanowires with an average width of approximately 

1.5 ± 0.2 nm are composed of single-crystalline and 

twin boundaries, and stacking faults are readily 

observed along the nanowires. Clear lattice fringes 

appear on the surface of the Ru nanowires. The 

interval between two lattice fringes was determined 

to be 0.21 nm, similar to the distance between (002) 

planes of hexagonal Ru (0.214 nm, JCPDS 06-0663) [8]. 

Figure 1(c) presents X-ray diffraction (XRD) patterns  

 

Figure 1 Representative TEM (a) and HRTEM (b) images of Ru 
nanowire networks synthesized at 180 °C for 24 h and XRD profile 
of as-synthesized products (c). 

of the Ru nanowire networks. Only one peak is 

clearly observed at 42.3° in the XRD spectra, which 

was indexed to the (002) planes of hexagonal phase 

Ru (JCPDS 06-0663) and is consistent with the HRTEM 

analysis. Hexagonal-phase-pure Ru nanowires were 

also prepared and confirmed by Wong’s group [31] 

using a polycarbonate membrane as a growth template 

and Ponrouch’s group [41] using the porous structure 

of an anodic aluminum oxide membrane as the growth 

template. 

3 Results and discussion 

In the synthesis of metal nanostructures using PVP, 

PVP often plays dual roles as the reductant and 

surface-protecting agent because of the presence of 

the hydroxyl groups at the ends of PVP molecules 

[40]. Moreover, the coordinated use of both SDS  

and KF is vital to the formation of the Ru nanowire 

networks reported here. No products were obtained 
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from the reaction where SDS and KF were absent. 

Figure 2(a) and Fig. S2(a) in the ESM present typical 

TEM images obtained in the absence of KF. The 

products consisted of dominant ultrafine worm-like  

 

Figure 2 TEM images of Ru samples synthesized in the absence 
of KF (a) and SDS (b) and TEM images of Ru samples synthesized 
using SDS:KF mole ratios of (c) 1:1 and (d) 4:1. 

rods with diameters of less than 2.0 nm together with 

a small number of nanoparticles. In the absence of 

SDS, the products (Fig. 2(b) and Fig. S2(b) in the ESM) 

were similar to those obtained in the absence of KF. 

These results indicate that the SDS and KF tune the 

nuclei and growth rate of Ru nanocrystals, and high- 

yield Ru nanowire networks cannot be obtained in 

their absence. Many previous reports have indicated 

that halogen anions and surfactants control the 

morphology of metal nanocrystals by tuning the 

growth rate. For example, nanocubes can be obtained 

using Br−, Pd, Pt, and Rh [42–44], and one-dimensional 

Pd [45], Pt [29], and Au [30, 34, 35] nanowires can be 

synthesized using I− and alkylamine. To deepen the 

understanding of the effect of SDS and KF, a series of 

controlled experiments were performed by varying 

the SDS/KF molar ratio. Halving the SDS/KF molar 

ratio led to the formation of ultrafine worm-like rods 

together with a minority of branched nanowires and 

particles (Fig. 2(c)). In addition, doubling the SDS/KF 

molar ratio led to products consisting of shorter 

worm-like rods and more particles (Fig. 2(d)). These 

results indicate that the appropriate ratio of SDS/KF 

plays a key role in achieving high-yield Ru nanowire 

networks. 

A time evolutionary process is often used to clarify 

the formation mechanism of nanocrystals [30, 34, 45]. 

Figure 3(a) and Fig. S3(a) in the ESM present TEM 

images of the sample prepared with a reaction time 

of 6 h. The products were composed of ~2.0-nm-sized 

particles, and wires were not observed. Upon increasing 

the reaction time to 12 h, the products were composed 

of mixtures of particles and worm-like rods (Fig. 3(b) 

and Fig. S3(b) in the ESM). The number of particles was 

significantly reduced, the worm-like rods lengthened 

into worm-like wires, and branched wires appeared 

upon increasing the reaction time to 15 h (Fig. 3(c) and 

Fig. S3(c) in the ESM). The products were composed 

of longer wires with more and longer branches and 

nanowire networks upon further increasing the reaction 

time to 18 h (Fig. 3(d) and Fig. S3(d) in the ESM). These 

primary intermediates clearly demonstrate that the 

wires evolved from particles through the oriented- 

attachment mechanism (Fig. 3(e) and Fig. S4 in the 

ESM). This mechanism has been used to deduce   

the formation of nanowire network nanostructures  
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Figure 3 TEM images of Ru samples synthesized in reaction 
time of (a) 6 h, (b) 12 h, (c) 15 h, and (d) 18 h. (e) TEM images of 
initial intermediates. 

synthesized from solution systems [23, 30, 46, 47], 

where nanowires are produced by oriented aggregation 

of faceted nanocrystals, and the total surface energy 

of the system decreases. Metal Ru has two crystal 

phases, namely the cubic phase and hexagonal phase. 

In our present synthetic route, hexagonal phase 

nanowires enclosed with {001} planes were obtained, 

as supported by the XRD analysis (Fig. 1(c)) and lattice 

fringe spacing (Fig. 1(b)). Based on these results, the 

formation of Ru nanowire networks is suggested to 

proceed via consecutive processes (Scheme 1). In the 

initial stage, the Ru3+ precursors were reduced and 

nucleated. Then, the nuclei grew to form sub-2.0-nm 

particles. The particles evolved to form rods, short  

 

Scheme 1 Proposed formation mechanism of Ru nanowire 
networks. 

wires, and nanowire networks, in sequence, pre-

ferentially along the growing <001> direction through 

oriented attachment. Furthermore, attachment possibly 

occurred along one of the {001} facets because all   

of the {001} facets are equivalent, which led to the 

formation of branched or circuited wires [30]. The 

oriented-attachment mechanism is also demonstrated 

by the lack of obvious width variation along the 

length direction during the growth process [23, 30] 

(Figs. 3(a)–3(d)) and the clear joining of two facets 

observed in the nanowires (Fig. 1(b) and Fig. S1(b)). 

Because the experiments were performed in a closed 

system, it remains challenging to unravel the growth 

mechanism of the nanowire networks. 

Moreover, the present synthetic route can be easily 

extended to synthesize composition-tunable, sub-2.0-nm 

RuPt bimetal nanowire networks through the intro-

duction of a Pt precursor (see the ESM for details). 

Figure S5(a) in the ESM presents TEM images of the 

as-synthesized RuPt bimetal alloy with a theoretical 

Ru/Pt molar ratio of 1:1. The product consists of nearly 

100% selectivity of nanowires terminated with larger 

particles. The HRTEM images in Fig. 4(a) and Fig. S6 

(in the ESM) indicate that the diameters of the nano-

wires and particles were 1.5 ± 0.2 nm and less than 

5.2 nm, respectively. The surface lattice fringe interval of 

the particles and wires was determined to be 0.23 nm, 

which corresponds to the (111) facet of face-centered 

cubic (fcc) Pt. With increasing Ru content, the larger 

terminals gradually disappeared (Figs. 4(b)–4(d) and 

Figs. S5(b)–S5(d) in the ESM). When the theoretical 

Ru/Pt molar ratio increased to 2.4:1, the diameter of 

the terminals was nearly consistent with that of the 

wires (Fig. S5(d) in the ESM and Fig. 4(d)). Energy- 

dispersive X-ray spectroscopy (EDX) analysis (Fig. 5 

and Table S1 in the ESM) indicated that these samples 

were composed of Ru and Pt. The composition of these 

as-synthesized RuPt nanowire networks could be tuned  
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Figure 4 HRTEM images of RuPt nanowire networks prepared 
using Ru:Pt molar ratios of 1:1 (a), 1.2:1 (b), 1.8:1 (c), and 

2.4:1 (d). 

 

Figure 5 EDX spectra of RuPt nanowire networks prepared 
using Ru:Pt molar ratios of 1:1 (a), 1.2:1 (b), 1.8:1 (c), and 2.4:1 (d). 

to Ru58Pt42, Ru56Pt44, Ru65Pt35, and Ru73Pt27. Figure S7 in 

the ESM presents an XRD pattern of the as-synthesized 

RuPt nanowire networks. The diffraction pattern can 

be readily indexed to the (111), (200), (220), and (311) 

planes of an fcc lattice and lies between those for pure 

Pt (JCPDS 65-2868) and Ru metals. Although the basal 

structure of Ru is hexagonal close-packed (hcp) (which 

is why pure Ru easily forms the hcp structure), Ru 

has another fcc structure [8, 48]. Therefore, when 
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Ru and Pt (Pt has an fcc structure) are coreduced, 

they have the potential to form an fcc structure. This 

observation indicates that Ru and Pt formed a solid- 

solution alloy. Electrochemical voltammetric methods 

can also provide overall structural information for 

catalysts. Figure S8(a) in the ESM presents the cyclic 

voltammograms of the Ru and RuPt nanowire alloys 

recorded in 0.5 M H2SO4. The hydrogen adsorption/ 

desorption behaviors of the RuPt alloys are obviously 

different from that of single Ru. Furthermore, the 

element mapping analysis (Fig. S9 in the ESM) reveals 

that the Ru and Pt were well distributed in the 

nanowire networks. These results clearly indicate 

that Ru and Pt formed a solid-solution alloy. 

RuPt alloys are often used as catalysts for methanol 

oxidation in liquid fuel cells [49]. Figure S8(b) in the 

ESM presents the steady-state cyclic voltammograms 

of the RuPt and Ru catalysts in a mixture of 1.0 M 

methanol and 0.5 M H2SO4 at 20 °C. The oxidation 

current was normalized to the electroactive surface 

area calculated using underpotential deposited Cu 

stripping techniques [50, 51], which is commonly 

used to assess the activity of RuPt catalysts. As 

shown in Fig. S8(b), the catalysts displayed composition- 

dependent catalytic performance. The peak current 

densities for the Ru56Pt44, Ru58Pt42, Ru65Pt35, and 

Ru73Pt27 nanowire networks were 0.26, 0.13, 0.15, and 

0.14 mA·cm−2, respectively. Among these structures, 

the Ru56Pt44 nanowire network catalyst exhibited the 

maximum catalytic activity, and the single Ru did not 

demonstrate catalytic activity for methanol oxidation. 

To evaluate the performance of the Ru56Pt44 nanowire 

network, the catalytic properties of commercial  

Ru50Pt50/C (80 wt.%, Johnson Matthey) were also tested 

under the same conditions. In the potential scan, the 

peak currents of the Ru56Pt44 nanowire network and 

commercial Ru50Pt50/C were 0.26 mA·cm−2 at 0.53 V 

and 0.3 mA·cm−2 at 0.48 V, respectively (Fig. 6(a)). 

Moreover, the mass activities of the Ru56Pt44 nanowire 

network and commercial Ru50Pt50/C were 167 and  

198 mA·mg
−1 

Pt , respectively (Fig. S8(c) in the ESM). The 

specific/mass activity on the Ru56Pt44 nanowire network 

was weaker than that on commercial Ru50Pt50/C 

(Figs. S8(b) and S8(c)). Long-term chronoamperometric 

experiments are often utilized to evaluate the 

electrocatalytic activity and stability of catalysts under 

continuous operating conditions [52]. Figure 6(b) 

presents the current vs. time curves recorded at 0.35 V 

for 1,800 s. Compared with the initial current density, 

64% of the current density of the Ru56Pt44 nanowire 

network was maintained after 1,800 s, whereas  

only 39% of that of the commercial Ru50Pt50/C was 

maintained. Clearly, the final current density of the 

Ru56Pt44 nanowire network is higher than that of the 

commercial Ru50Pt50/C. Thus, the Ru56Pt44 nanowire 

network exhibited enhanced electrocatalytic stability. 

Moreover, after the oxidation test, the Ru56Pt44 retained 

its nanowire network morphology (Fig. S10 in the 

ESM). 

4 Conclusions 

In conclusion, for the first time, high-yield single Ru 

and composition-tunable RuPt alloy nanowire networks 

consisting of ultrafine nanowires with sub-2.0-nm 

widths were prepared using a one-pot, single aqueous  

 

Figure 6 Electrocatalytic properties of as-synthesized Ru56Pt44 nanowire networks and commercial Pt50Ru50/C for methanol oxidation. 
(a) Steady-state cyclic voltammograms (50 mV·s−1). (b) Current–time curves measured at 0.35 V in a mixture of 1.0 M methanol and 0.5 M
H2SO4 at 20 °C. 
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phase method. Investigation of the formation mechanism 

clearly revealed that the nanowire networks were 

formed through particle attachment via consecutive 

processes including the formation of rods, short wires, 

and branched wires and that use of an appropriate 

SDS/KF ratio is a decisive factor. The electrocatalytic 

activity of these nanowire networks toward methanol 

oxidation was also investigated, with the results 

indicating that the RuPt nanowire networks displayed 

composition-dependent properties. 
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