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Abstract 

The prediction of building energy consumption offers essential technical support for intelligent 
operation and maintenance of buildings, promoting energy conservation and low-carbon control. 
This paper focused on the energy consumption of heating, ventilation and air conditioning (HVAC) 

systems operating under various modes across different seasons. We constructed multi-attribute 
and high-dimensional clustering vectors that encompass indoor and outdoor environmental 
parameters, along with historical energy consumption data. To enhance the K-means algorithm, 

we employed statistical feature extraction and dimensional normalization (SFEDN) to facilitate 
data clustering and deconstruction. This method, combined with the gated recurrent unit 
(GRU) prediction model employing adaptive training based on the Particle Swarm Optimization 

algorithm, was evaluated for robustness and stability through k-fold cross-validation. Within 
the clustering-based modeling framework, optimal submodels were configured based on the 
statistical features of historical 24-hour data to achieve dynamic prediction using multiple models. 

The dynamic prediction models with SFEDN cluster showed a 11.9% reduction in root mean 
square error (RMSE) compared to static prediction, achieving a coefficient of determination (R2) of 
0.890 and a mean absolute percentage error (MAPE) reduction of 19.9%. When compared to 

dynamic prediction based on single-attribute of HVAC systems energy consumption clustering 
modeling, RMSE decreased by 12.6%, R2 increased by 4.0%, and MAPE decreased by 26.3%.  
The dynamic prediction performance demonstrated that the SFEDN clustering method 

surpasses conventional clustering method, and multi-attribute clustering modeling outperforms 
single-attribute modeling.  
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1 Introduction 

1.1 Background 

The building sector contributes significantly to global 
energy consumption and carbon emissions, accounting for 
approximately 36% and 38% respectively (Global Alliance 
for Buildings and Construction 2020). In China, the energy 
consumption and carbon emissions of buildings account 
for 21% and 22% of the national total, respectively. Among 
them, the energy consumption of buildings in 2019 was 
1.02 billion tons of coal equivalent (Chinese Society for 
Urban Studies 2022). Given the current situation and the 

goal of achieving carbon peaking by 2030 and carbon 
neutrality before 2060, we face the formidable challenge 
of saving building energy consumption and decreasing 
building carbon emissions.  

The prediction of building energy consumption, a key 
strategy for enhancing building energy efficiency, has 
numerous applications in various fields such as building energy 
control (Cholewa et al. 2022; Elnour et al. 2022; Erfani et al. 
2024; Li et al. 2024), design optimization (Kim and Suh 
2021; Shen et al. 2024), retrofit evaluation (Li et al. 2019; 
Kim and Kim 2020; Seo et al. 2022), energy pricing guidance 
(Jota et al. 2011; Atalay et al. 2019), fault diagnosis (Fan et al. 
2017), demand-side management (Sala-Cardoso et al. 2018; 
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List of symbols 

a  whole data of one parameter 
Bconventional cluster matrix for conventional cluster method 
BSFEDN cluster matrix for SFEDN cluster method 
CO2  indoor CO2 concentration 
CV  coefficient of variation 
d  Euclidean distance 
E  HVAC systems energy consumption 
J  solar radiation intensity 
k  fold of across validation 
K  number of clusters 
m  attribute of cluster vector 
max  the maximum value 
min  the minimum value 
R2  coefficient of determination 
RHin  indoor relative humidity 
RHout  outdoor relative humidity 
Tin  indoor dry bulb temperature 
Tout  outdoor dry bulb temperature 
X  judging condition to model matching  
x  vector of one cluster parameter 

Y  cluster center 
y1,j  measured value 
y2,j  predicted value 

1y   average of measured value 

Abbreviations 

ANN  artificial neural network 
DNN  deep neural network 
DTW dynamic time warping 
GA  genetic algorithm 
GRU  gate recurrent unit 
HVAC heating, ventilation, and air conditioning 
LSTM long short-term memory neural network 
MAPE mean absolute percentage error 
PSO  particle swarm optimization 
RMSE root mean square error 
RNN  recurrent neural network 
SCOA sine cosine optimization algorithm 
SVR  support vector regression 

  
 
Mohammed et al. 2021), indoor discomfort evaluation 
(Boithias et al. 2012) and COVID-19 prevention and control 
(Risbeck et al. 2021; Li et al. 2022). Prediction methods 
can be broadly categorized into white-box, black-box, 
and gray-box approaches (Afram and Janabi-Sharifi 2014;  
Wei et al. 2018). White-box and gray-box models rely on 
physical principles, detailed building energy characteristics 
and assumptions in the modeling process (Afram and 
Janabi-Sharifi 2014; Liu et al. 2023). In contrast, black-box 
models analyze large datasets using algorithms to identify 
patterns in the data, enabling automated decision-making 
without relying on thermodynamic principles or specific 
building energy characteristics. However, the maximum 
achievable performance of black-box models is constrained 
by the characteristics of the data and its quality (Chen et al. 
2022). In particular, the intricate patterns of energy systems 
and the seasonal influence of environmental changes have 
heightened the challenges in prediction. Consequently, 
numerous researchers have turned to clustering methods 
as a strategy to alleviate these prediction challenges. This 
involves subdividing the overall dataset into subsets with 
similarities, aiming to enhance the accuracy and effectiveness 
of predictions. 

The clustering algorithms mainly include fuzzy clustering, 
hierarchical clustering, density-based clustering, and K-means 
clustering. The current clustering metrics encompass 
squared cosine distance, Euclidean distance, Manhattan 
distance, Hamming distance, correlation distance, and 

dynamic time warping (DTW). They are used to measure 
the correlation between data. Subsequently, the elbow 
method (based on the sum of squared errors), silhouette 
method, and Dunn index are utilized to determine the 
optimal number of clusters. Czétány et al. (2021) used the 
hierarchical, fuzzy K-means, and K-means clustering methods 
to perform cluster analysis on the daily and annual electricity 
load time series of nearly a thousand single-family households 
in Hungary to determine energy consumption patterns. 
The elbow method, silhouette method, and Dunn index were 
employed to evaluate the clustering results, all indicating 
that clustering performance of K-means algorithm was the 
best. Moreover, a review of 127 studies on the application 
of clustering methods in building energy system design and 
energy policy formulation found that K-means is the most 
widely used clustering method, especially demonstrating good 
robustness in problems involving time series clustering 
(Kang et al. 2023). Ruiz et al. (2020) researched on time 
series feature extraction in energy, compared the clustering 
effects of squared cosine distance, Euclidean distance, 
Manhattan distance, Hamming distance, and correlation 
distance in K-means, Hierarchical clustering, K-medoids, 
and Gaussian mixture algorithms. They found that the 
clustering results of using squared Euclidean distance is 
better than other cluster methods.   

Commonly, clustering is one of the effective methods 
to recognize energy patterns and help prediction models to 
extract features in complex energy dataset. Studying on the  
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prediction of day-ahead hourly electric load of commercial 
buildings with non-stationary operation, Chen et al. (2017) 
employed a fuzzy clustering algorithm to cluster daily and 
hourly electric loads by rainy condition, day type, average 
hourly electric consumption, standard deviation of the 
hourly electric consumption, minimum, maximum and 
average ambient temperature for a whole day. And then, to 
reflect on the seasonal changes in outdoor climate, Luo et al. 
(2020) utilized K-means clustering to extract historical 
meteorological features throughout the year for predictive 
modeling of building energy usage. Furthermore, to analyze 
the seasonal changes and complex trends in energy 
consumption data, Somu et al. (2021) utilized the K-means 
algorithm to cluster the energy consumption data of 
complex and dynamic from an academic building. Li et al. 
(2021a) established a multi-attribute high-dimensional 
(the dimensions of every attribute are 24) clustering model 
that integrates the electricity, heating, cooling, and gas 
loads for complex load analysis of regional comprehensive 
energy systems. Bourdeau et al. (2021) employed cluster 
methods to study the impact of data collection time step 
and time frame on the data characteristics of daily electric 
load profiles in 14 educational buildings on the same campus. 
The results indicated that when the time frame of the 
dataset exceeded three months, all methods were influenced 
by seasonality, resulting in lower classification accuracy. 
Additionally, relying solely on the distribution of daily 
power loads for classification was limited, and additional 
metadata was required for explanatory variable investigation. 
Moreover, when additional variables were included in 
clustering, numerical differences and the correlation among 
the various data had potential interference with the clustering 
effect. To illustrate the correlation between clustering 
attributes and enhance the clustering effectiveness of the 
K-means algorithm, Chen et al. (2022) introduced a weighted 
Euclidean distance based on the Pearson correlation 
coefficient between the features (input variables) and cooling 
load (output variable). The prediction results demonstrated 
that the improved method outperformed the scenario 
without clustering, achieving a reduction in mean absolute 
percentage error (MAPE) of over 14%. Overall, concerning 
the dimension and attribute of clustering vectors remains 
an issue. Although the previous study mentioned the 
dimensions or attributes of clustering vectors, there was 
no comparison of clustering using different attributes and 
dimensions, let alone an analysis of prediction results based 
on this issue.  

On the other hand, determining how to partition the 
overall dataset into training set and testing set for cluster 
method and prediction models poses a pivotal challenge.  
In a departure from the conventional approach of seasonal 
division, Zhang et al. (2019) opted for the use of the 

K-means algorithm to cluster historical cooling loads, 
creating training sets for distinct load patterns. Ensuring 
each dataset comprised time series groups with similar 
features, trends, and seasonal patterns, Kohli et al. (2022) 
applied K-means based on DTW and silhouette coefficient 
to categorize the dataset into K clusters. Subsequently, 
60% of the data from each cluster was extracted for the 
formation of a pre-training set, 20% for model parameter 
fine-tuning, and the remaining 20% for testing. Moreover, 
the meticulous matching of clustering training sets with 
testing sets holds equal importance in enhancing the 
predictive capability of energy models. In essence, the 
selection and effective utilization of well-trained models 
during the testing phase are crucial. Zhang et al. (2019) 
used K-means clustering to partition the training dataset 
and employed the K-nearest neighbor algorithm to match 
the testing set with the best training set. Zhang et al. (2020) 
used the weighted Manhattan distance to quantify the 
dissimilarity between the test set and the training dataset 
and found that the predictive accuracy of the test set 
decreased as the weighted Manhattan distance increased. 
This is because in testing set, the prediction performance 
of models primarily depended on the experiences learned 
from the training progress. Therefore, the essence of the 
model selection problem lies in how to achieve a match 
between testing set and training set, which can be further 
interpreted as the similarity of them. Chen et al. (2022) 
used the weighted Euclidean distance to select the training 
data with the closest distance to the predicted sample as  
the current model’s training sample, thereby achieving 
a match between the forecasting and training dataset. 
However, the uncertainty of future conditions cannot be 
acquired in advance. It is unreasonable that prioritize  
the improvement of predictive accuracy by making prior 
assumptions about future conditions and ignoring the 
existence of uncertainty. 

After clustering, another critical consideration arises: 
how to effectively train models across different clusters. 
The persistent use of a single fixed architecture for model 
training (Hsu 2015; Ko et al. 2017), grid search (Chitalia  
et al. 2020), or manual tuning, is employed to enhance 
adaptability to each dataset. However, relying solely on these 
methods fails to meet practical requirements for simplicity. 
Consequently, recognizing the need to enhance the adaptive 
capability of models, numerous scholars have advocated for 
the integration of optimization algorithms such as particle 
swarm optimization (PSO), genetic algorithm (GA), sine 
cosine optimization algorithm (SCOA), with predictive 
models like recurrent neural network (RNN), artificial neural 
network (ANN), support vector regression (SVR). Luo et al. 
(2020) utilized GA to optimize deep neural network (DNN) 
models for adaptive training in clustering results, resulting  
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in corresponding sub-models. The prediction results on the 
test set showed a reduction of 11.9% in MAPE. Luo and 
Oyedele (2021) used GA to select the optimal structure of 
the long short-term memory neural networks (LSTM) in 
order to improve its prediction accuracy and robustness. 
However, the GA algorithm was prone to local optima 
when optimizing hyperparameters through crossover and 
mutation methods. Kim and Cho (2019) found that the 
random initialization mechanism of PSO can effectively 
avoid the limitations of GA. By using PSO for global search 
of hyperparameters in the CNN-LSTM model, and after 
conducting 10-fold cross-validation, the prediction accuracy 
of the CNN-LSTM model was improved. Pawar et al. (2020) 
constructed a PSO-SVR model to predict building energy 
consumption on an hourly basis and one day in advance. 
The predictive accuracy of this model was superior to ANN, 
SVR, and PSO-ANN models. Zhou et al. (2020) utilized the 
artificial bee colony (ABC) and PSO to optimize a multilayer 
perceptron (MLP) neural network for estimating the cooling 
and heating loads of energy-efficient residential buildings. 
The results indicated that through the application of ABC 
and PSO, the mean absolute error for heating loads decreased 
by 22.32% and 24.28% respectively, while for cooling loads, 
it decreased by 10.36% and 12.00%. Somu et al. (2021) 
improved SCOA to optimize the hyperparameters of the 
CNN-LSTM model. The improved SCOA utilizes mutation 
operators based on Haar wavelets to update positions, 
thereby avoiding local optima. Li et al. (2023) used PSO  
to optimize the hyperparameters of the Informer model 
and achieved a 56.11% improvement in accuracy compared 
to the original model. Fan et al. (2023) proposed a 
PSO-BOA-LSTM-SVR model to address the volatile and 
variable nature of electricity load forecasting. By utilizing 
PSO, the model enhances the global optimization capability 
of the Bayesian optimization algorithm, thereby preventing 
it from getting stuck in local optima. This approach allows 
for better utilization of LSTM in extracting feature variables 
related to electricity consumption. Finally, the model 
integrates with an SVR model that exhibits strong mapping 
capabilities for nonlinear data. Overall, while much research 
has proposed various prediction models based on training 
adaptation, there has been less focus on validating the 
model’s generalization in the training sets. It is essential 
to implement cross-validation for effective model training. 
Furthermore, model adaptive training techniques have rarely 
been applied in conjunction with clustering methods.  

1.2 Research gap and objectives 

Cluster analysis was initially employed to recognize building 
energy characteristics and determine energy consumption 
trends over time and seasons. However, when applied to 

energy prediction, the clustering effect based on energy was 
limited. Despite introducing additional energy-related data 
to expand clustering vector attributes and dimensions, the 
performance of distance-based clustering algorithms was 
constrained by high-dimensional data. Therefore, there is 
an urgent need for a method that can reduce the dimensions 
of cluster vectors and weaken the correlation influence 
between data to strengthen cluster algorithms for model’s 
prediction. Meanwhile, in existing research, the testing set 
were clustered, and its role is often confined to static 
predictions using a single model, failing to fully exploit the 
essential functionality of cluster modeling. Lastly, various 
adaptive models can support the clustering data to train 
flexibly, lacking the validation of the generalization ability 
and robustness of adaptive models in different subsets from 
clustering. 

This study integrated meteorological data, indoor 
environmental data, and historical energy consumption 
data to construct multi-attribute and high-dimensional 
vectors. A method of statistical feature extraction was 
employed to reduce dimensions while preserving the original 
multi-attribute information. Subsequently, based on the 
principles of Euclidean distance clustering, the normalization 
was performed according to vector dimension instead  
of the conventional method according to attribute.  
This approach aimed to ensure the retention of original 
information while mitigating the impact of data attribute 
differences and correlations on clustering effects. Secondly, 
in order to enhance the training adaptability of the deep 
learning model, the particle swarm algorithm was employed 
to optimize the key parameters of the gated recurrent unit 
(GRU) model. Additionally, k-fold cross-validation was 
introduced to determine the sub-model architecture with the 
best performance. Thirdly, to achieve dynamic predictions, 
the study utilized historical 24-hour feature data to assess 
the uncertainty of future conditions and match the best 
sub-model for dynamic prediction using multiple models. 

2 Methods 

The research framework of this paper is shown in Figure 1. 
In the data preprocessing stage, the overall training-validation 
set is clustered by the K-means algorithm of statistical feature 
extraction and dimensional normalization (SFEDN). During 
the model training and validation stage, PSO is used to the 
parameter optimization for the GRU model, enabling adaptive 
training within each cluster. The k-fold cross- validation is 
introduced to assess the robustness and stability of the 
submodels. In the model matching stage, the best sub-model 
is selected by calculating the similarity between the statistical 
features based on the historical 24 hours and the cluster 
centers. In the dynamic prediction stage, feedback information 



Liu et al. / Building Simulation / Vol. 17, No. 9 

 

1443

from the model matching mechanism is used to achieve 
dynamic prediction using multiple models throughout the 
process.  

2.1 Data preprocessing 

The raw data consists of outdoor meteorological conditions, 
indoor environmental parameters, and data related to 
building energy consumption systems. To ensure the 
accuracy of the analysis, the raw data underwent necessary 
preprocessing. This involved supplementing missing values 

through linear interpolation. Outliers were also identified 
and removed using quartiles (Xiao and Fan 2014), with 
rejected outliers further supplemented through linear 
interpolation. Before inputting the data into the prediction 
models, normalization of inputs was performed.  

The dataset was divided into a training-validation set 
and a testing set, with the training-validation set comprising 
80% of the data and the testing set comprising 20%. The 
process of constructing the multi-attribute high-dimensional 
clustering vectors, as shown in Figure 2, begins by 
reshaping the n-day hourly training-validation dataset into 

 
Fig. 1 Research framework 

 
Fig. 2 Data preprocessing for clustering of the K-means algorithm of statistical feature extraction and dimensional normalization (SFEDN)
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24-dimensional (hourly) vectors based on daily units. The 
maximum, minimum, and average values within each day 
are statistic as the features for each attribute. If there are a 
total of m attributes, the dimension of the vector becomes 
3m. This results in an n-row, 3m-column clustering matrix. 
Subsequently, considering the calculation principle of 
Euclidean distance point to point, this method differs from 
the conventional normalization method, which is typically 
carried out attribute-wise. Instead, it normalizes according 
to the dimensions of the clustering vectors. This means 
that the normalization reflected on the dimensions of the 
clustering vectors for each attribute’s feature values, rather 
than normalizing each attribute independently (Figure 3). 
Normalization can reduce the sensitivity of clustering 
algorithms to variations in the magnitude of different 
data, thereby enhancing the robustness of the clustering 
algorithm (Fan et al. 2021). The equations of the min-max 
normalization can refer to Equation (1) and Equation (2). 

The raw cluster matrix (A) comprises m attributes (x), 
each derived from m parameters. 

[ ]1 ,..., mx x=A                                      

There are 24n data points (representing n whole days) 
in each attribute (xconventional), and its dimension is 24n. 

[ ]conventional 24
1 , 1 24), (ij n

a i n j
´

= £ £ £ £x              

With statistical feature extraction, the dimension of 
each attribute (xSFEDN) decreases to 3n. 

1 2 3max{ }, min{ }, ave{ }i i i i i ib a b a b a= = =                 

[ ]SFEDN 1 2 3 3, , , (1 )i i i nb b b i n
´

= £ £x                      

The conventional normalization method is performed 
attribute-wise. In contrast, the SFEDN method normalizes 
based on the dimensions of the clustering vectors. Both 

methods utilize data min-max normalization, and the 
equations for min-max normalization are as follows: 

{ }
{ } { },conventional

min
, (1 , 1 24)

max min
ij

ij

a a
a i n j

a a
-

¢ = £ £ £ £
-

   

(1) 

{ }
{ } { },SFEDN

min
, (1 , 1 3)

max min
ij j

ij
j j

b b
b i n j

b b
-

¢ = £ £ £ £
-

  (2) 

Then, the cluster matrix reconstructed as 

conventional ,conventional 24[ ] , (1 , 1 24 )ij n ma i n j m´¢= £ £ £ £B     

SFEDN ,SFEDN 3[ ] , (1 , 1 3 )ij n mb i n j m´¢= £ £ £ £B            

where, m is the attribute of cluster vector or the number of 
cluster parameters, x is the vector of one cluster parameter, 
a is the whole data of one parameter, max{ai} is the 
maximum value for a whole day, min{ai} is the minimum 
value for a whole day, ave{ai} is the average value for a 
whole day, min{a} is the minimum of one parameter, 
max{a} is the maximum of one parameter, min{bj} is the 
minimum of all of bj, max{bj} is the maximum of all of bj, 
Bconventional is the cluster matrix for conventional cluster 
method, BSFEDN is the cluster matrix for SFEDN cluster 
method. 

2.2 Cluster processing and feature representation 

This paper referenced Kang et al. (2023) and Ruiz et al. 
(2020) to utilize the K-means algorithm for clustering, 
Euclidean distance as the clustering metric, and the optimal 
number of clusters was determined by silhouette coefficient. 
K-means is one of the robust clustering algorithms used to 
group similar data points into a predefined n number of 
clusters. By employing randomly initialized cluster centers,  

 
Fig. 3 Data preprocessing for clustering of the K-means algorithm of attribute normalization and no feature extraction (conventional
method) 
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points are partitioned into n clusters based on their 
proximity to these centers. New cluster centers are generated 
through the average of points within each cluster. This 
process iterates until the centroids no longer change, 
completing the clustering. The silhouette coefficient method 
(Arbelaitz et al. 2013; Li et al. 2020) is used to evaluating 
the clustering effectiveness based on the proximity and 
separation of the clusters. The proximity refers to the 
average distance between a vector and other vectors within 
the same cluster, while the separation refers to the average 
distance between a vector and all vectors in other clusters. 
The silhouette coefficient value closer to 1 indicating better 
clustering performance. The Euclidean distance has been 
proven to be more stable in analyzing energy-related features 
compared to other distances, as discussed in Bourdeau et al. 
(2021). Moreover, in Euclidean space, the Euclidean distance 
represents the length of the line connecting two points and 
is commonly used as a measure of similarity. Therefore, 
this paper adopts the Euclidean distance as the metric for 
K-means algorithm clustering. 

As shown in Figure 4, different subsets are obtained 
through clustering analysis of the training-validation set 
using the K-means algorithm based on Euclidean distance 
and silhouette coefficient method. Each subset will be utilized 
for adaptive model training and verification of clustering 
effectiveness, while the optimized sub-models will offer 
model selection for dynamic prediction applications. Based 
on the Pearson correlation coefficient (Sala et al. 2021), it 
accurately represents the feature differences among various 
subsets by examining the relationship between the model’s 
input and output. 

2.3 PSO enabled adaptive GRU model 

The GRU model, which is a variant of LSTM, aims to tackle 
the problem of gradient disappearance in long-term memory 
and back propagation (Chung et al. 2014). It boasts fast 
response speed and high prediction accuracy. The PSO is a 
classic intelligent algorithm. It analogizes the optimization 
problem as a group of raptors, the solution space as the 
flying space of a bird flock, and each bird’s position in the 
space simulates the complementary feeding process within 
the bird flock. The solution space represents the solution to 
be optimized. The core idea is the sharing of information 
among the particles in the group. In the problem-solving 
space, the movement of particles transitions from disorder 
to order, thereby obtaining the optimal solution to the 
problem (Gad 2022). 

As shown in Figure 5, the GRU model achieves adaptive 
optimization in different training sets through PSO, thereby 
generating sub-models for energy consumption prediction 
that adapt to different features. Subsequently, each sub-model 
needs to undergo k-fold cross-validation to select models 
with good robustness and stability. 

The k-fold cross validation is commonly used for 
establishing baseline models and evaluating model accuracy. 
It helps to prevent overfitting and assess the generalization 
capability of the model (Peng et al. 2020; Li et al. 2021b; 
Abdallah et al. 2022). As shown in Figure 6(a), the training 
set consists of the union of k − 1 subsets, while the 
remaining subset is designated as the testing set. And then, 
the predicted results are averaged over k cross-validation 
experiments. This article adopted 5-fold cross validation,  

 
Fig. 4 The cluster processing and feature analysis of training-validation dataset 
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(a) The calculation method of prediction results in validation set 

 
(b) The training process of prediction models using k-fold cross validation 

Fig. 6 The process of k-fold cross validation 

where the training-validation set is divided into a 4:1 ratio 
(Vijayalakshmi et al. 2023). As Figure 6(b) shows, each 
subset will undergo k validation to generate k candidate 
sub-models. Due to the changes in the validation set,  
the hyperparameters of the trained models will differ, 
indicating that the performance of the models will also vary. 
These sub-models with different parameters will then be 
cross-validated in the other k − 1 training sets. Finally, 
based on the minimum of MAPE, a sub-model with good 
robustness and stability in the k sub-models will be selected 
for dynamic prediction. 

2.4 Model matching for dynamic prediction 

As shown in the Figure 7, while predicting the HVAC 
system energy consumption of i time sample, the key step 
is to choose the optimal prediction model. According to 
the judging condition X(3×m), the first step is to calculate the 
distance between of X(3×m) and cluster center Y. And then, 
the second step is model matching. For instance, if the 
judging condition indicates that the best submodel for 
predicting energy consumption at time i is Model C2. After 
that, the third step is to determine the input parameters of 
the model. Lastly, the fourth step is predicting the HVAC 
system energy consumption of i time sample. This process 
entails selecting a model based on the judging condition for 
each prediction moment and utilizing the chosen model 
to make the prediction. The final presentation of results 
reflects the alternating prediction of different models. 

As shown in Figure 8, when predicting the energy  

 
Fig. 5 The modeling process of training adaptation based on PSO and the assessment of generalization capability based on k-fold cross 
validation 
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consumption at time i, the maximum, minimum, and 
average values are extracted from the historical data of time 
steps i − 24 to i − 1 to form elements of the judgment 
condition vector X. If there are m input parameters, the 
number of elements in X is 3m. As illustrated in Figure 9, 
by calculating the Euclidean distance (d) between X and the 
cluster centers Y of all training subsets, the best model 
prediction is selected. For example, when the distance 

 
Fig. 8 The process of judging condition generation in dynamic 
prediction 

 
Fig. 9 The method of model matching in dynamic prediction 

between X and Y2 is the smallest, Model C2 is the optimal 
model. 

2.5 Parameters setting of PSO-GRU model 

This paper referenced the range for the hyperparameter 
optimization of deep learning models from (Luo and 
Oyedele 2021), and combined with the process of manual 
tuning to determine the key hyperparameters affecting the 
predictive performance of the GRU model: GRU units, 
dropout rate, and initial learning rate. The optimization 
range for the model parameters and the structural settings 
are shown in Table 1 and Table 2, respectively.  

Table 1 Decision variables of PSO for GRU models 

Parameter Range 

Number of GRU units 20–120 

Dropout rate 0.01–0.5 

Initial learning rate 0.001–0.1 

Learning rate drop factor 0.1-0.5 

Table 2 PSO parameters 

Parameter Value 

Initial population size 20 

Maximum iteration 5 

Particle dimension 4 

Inertia weight 0.4–0.9 

Learning rate C1 2 

Learning rate C2 2  

 
Fig. 7 The process of dynamic prediction 
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2.6 Evaluation metric of prediction performance  

The evaluation metric of prediction accuracy of the models 
included the root mean square error (RMSE), coefficient of 
variation (CV), R2, and mean MAPE. Higher prediction 
accuracy was indicated by smaller values of RMSE, CV, 
MAPE, and larger values of R2. The formulas of metrics are 
as follows: 
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t
j jj

y y

t
=

-
=

å
                      (3) 

1

1CV RMSE 100%
 y

= ´                             (4) 

( )

( )

2
1, 2,12

2

1, 11

1

t
j jj

t
jj

y y
R

y y
=

=

-
= -

-

å
å

                       (5) 

1, 2,

1,1

1MAPE 100%
t

j j

jj

y y
t y=

-
= ´å                     (6) 

where, y1,j is the measured value, 1y  is the average of 
measured value, y2,j is the predicted value. 

3 Case study 

3.1 Building information 

The case study was a commercial office building with heating, 
ventilation, and air conditioning (HVAC) systems located 
in Tianjin, China (Figure 10). This building was divided 
into six floors with a total area almost 5,232 m2. The annual 
energy consumption of this building was 46.1 kWh/(m2·a). 
Building energy consumption consists mainly of HVAC 
systems, plugs, and lighting. The energy consumption of 
HVAC systems accounted for 40% of a building’s annual 
energy consumption, whereas plug and lighting energy 
consumption accounted for 28% and 14%, respectively.  

3.2 Data set and the input variables of model 

As show in Figure 11, the output of prediction model is 
HVAC systems energy consumption (EHVAC,i), and the 
inputs, 7 variables, are the values of historical HVAC 
systems energy consumption (EHVAC,i−1), outdoor dry bulb 
temperature (Tout,i−1), outdoor relative humidity (RHout,i−1), 
solar radiation intensity (Ji−1), indoor CO2 concentration 
(CO2,i−1), indoor dry bulb temperature (Tin,i−1), and indoor 
relative humidity (RHin,i−1) before the i time series. 

The data collection period was from September 1 to 
August 30 of next year. The overall data size is 365 d, and 
the temporal resolution is 1 h. It is ensuring that testing set 

 
(a) Outdoor 

 
(b) Indoor 

Fig. 10 The view of the office building 

 
Fig. 11 The inputs and output of prediction models 

and training-validation set comprised time series groups 
with similar features, trends, and seasonal patterns (Kohli 
et al. 2022). The testing set consists of data from the last six 
days of each month (approximately accounted 20% by the 
overall data). The statistics features of main parameters are 
presented in Table 3. 

3.3 The attribute and dimension of clustering vector  

As shown in Table 4, two cases are set for studying the 
performance difference of the SFEDN method to cluster 
multiple attributes and single multiple attributes. In Case 1, 
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Table 3 The statistics features of main parameters 
 

Training-validation set Testing set 

Parameter Unit Max Min Average Max Min Average

Tout °C 35.6 −16.2 13.8 36.1 −9.8 13.2 

RHout % 99% 7% 58% 98% 7% 56% 

J W/m2 865 0 154 866 0 164 

Tin °C 27.6 18.4 23.7 27.7 16.7 23.7 

RHin % 84% 7% 39% 83% 12% 36% 

CO2 ppm 1706 814 1009 1599 832 1017 

E kW·h 161.5 7.2 41.2 157.6 11.0 42.8 

Table 4 The attribute and dimension of cluster vector 

Dimension of cluster vector 

Case Attribute of cluster vector Conventional SFEDN 

1 Tout, RHout, J, Tin, RHin, CO2 24 × 6 3 × 6 

2 E 24 3 

 
there are six attributes involving clustering of Tout, RHout, 
J, Tin, RHin, and CO2. In Case 2, it is one attribute and 
involves clustering of E.  

4 Results 

In Section 4.1, for multi-attribute clustering, both the SFEDN 
method proposed in this paper and the conventional 
method determined the optimal number of clusters to   
be 2 based on the silhouette coefficient. In Section 4.2,  
an analysis was conducted on the differences in the 
characteristics of Pearson correlation coefficients among 
the subsets after clustering. In Section 4.3, the predicted 
results (MAPE) of each subset after k-fold cross-validation 
were presented to assess the robustness and stability of the 
model. In Section 4.4, a comparison was made between 
the performance indicators of the multi-modal dynamic 
prediction method using SFEDN clustering modeling and  
the single-model static prediction method on the test set. 
The results showed that dynamic prediction using SFEDN 

outperformed static prediction in Case 1, both RMSE and 
CV are reduced by 11.9%, R2 reaches 0.89, and MAPE is 
reduced by 19.9%. The dynamic prediction using conventional 
clustering reduced RMSE and CV by 7.8%, reaching an R2 
of 0.879 and reducing MAPE by 10.6% compared to static 
prediction. Meanwhile, the dynamic prediction performance 
demonstrated that the SFEDN clustering method surpassed 
conventional clustering method, and multi-attribute clustering 
modeling outperformed single-attribute modeling. 

4.1 The number of clusters  

As shown in Figure 12, the optimal number of clusters 
between the SFEDN method and the conventional method. 
According to the principle that the larger the value of the 
silhouette coefficient, the better the clustering is (Li et al. 
2020; Sala et al. 2021). In Case 1, when K is 2, the clustering 
effect of SFEDN method and conventional method are best. 
In Case 2, the SFEDN clustering method has an optimal K 
of 2, while the conventional method has an optimal K of 3. 
In order to expand the comparison, we explored the case 
where the number of clusters in Case 1-Case 2 is 2 and 3. 
The size of data subsets and the mapping cluster distribution 
on calendar were shown in the Appendix. 

4.2 The Pearson correlation coefficient in subsets 

As shown in Figure 13 and Figure 14, the Pearson 
correlation coefficient before and after clustering in the 
training-validation set has undergone significant changes, 
indicating that the dataset has been decomposed into 
multiple feature-significant subsets through clustering.  
As shown in Figure 13(a), compared to the overall set, the 
variables with correlation coefficients exceeding 0.4 with 
the HVAC system energy consumption in subset C1 are 3 
(CO2, Tout, and J), while the correlation coefficients with the 
HVAC system energy consumption in subset C2 do not 
exceed 0.4, but the correlation coefficients of Tout, Tin, and  

  
(a) Case 1 (b) Case 2 

Fig. 12 The determination of cluster number with silhouette coefficient method 
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RHin were improved compared to the overall set. According 
to Figure 13(b), when clustering into 3 subsets, the subset 
C1 advocated by SFEDN method has significantly weaker 
correlation compared to the other two subsets, while  
the subset C3 of conventional clustering also has weaker 
significance compared to the other two subsets. The 
comparison of subset features based on single attribute 
(HVAC system energy consumption) clustering shown in 
Figure 14(a). The subset C2 of both clustering methods has 
two variables with a correlation coefficient of more than 0.4 
with HVAC system energy consumption (CO2 and J), while 
the parameters in both subsets C1 do not reach 0.4 or fall 
below −0.4. The features of subset C2 are significantly 
better than those of subset C1. As shown in Figure 14(b), 
the features of subset C3 of both clustering methods   
are clearly superior to other subsets. The quality of energy 
consumption feature parameters directly affects the 
prediction performance of the model. 

4.3 The prediction results in training set with k-fold 
cross validation 

According to the model’s training process with k-fold 
cross-validation as shown in Figure 6, we used the minimum 

of MAPE obtained from k-fold cross-validation to assess 
the robustness and stability of the model. Furthermore,  
a sub-model with good robustness and stability in the k 
subset will be selected for dynamic prediction. The prediction 
results in the training set with k-fold cross-validation are 
presented from Figure 15 to Figure 18. For example, in the 
multi-attribute clustering using the SFEDN method, the 
best sub-model for subset C1 generated through 5-fold 
cross-validation is Model 2 (Figure 15(a1)). 

4.4 The performance of dynamic prediction 

As shown in Figure 19, the comparison between the 
dynamic prediction using clustering-based modeling and 
the static prediction using a single model was conducted. 
Additionally, the dynamic predictions based on the 
SFEDN clustering method were compared with those using 
conventional clustering. The dynamic prediction performance 
demonstrated that the SFEDN clustering method surpassed 
conventional clustering method, and multi-attribute clustering 
modeling outperformed single-attribute modeling. 

When cluster number is 2, the performance metrics 
showed that the dynamic prediction of multiple-attribute 

  
(a) K = 2 (b) K = 3 

Fig. 13 The Pearson correlation coefficient after clustering (Case 1) 

  
(a) K = 2 (b) K = 3 

Fig. 14 The Pearson correlation coefficient after clustering (Case 2) 
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(a1) Subset C1 of SFEDN cluster (a2) Subset C2 of SFEDN cluster 

  
(b1) Subset C1 of conventional cluster (b2) Subset C2 of conventional cluster 

Fig. 15 The MAPE of submodels with k-fold cross validation in training set (Case 1, K =2) 

  
(a1) Subset C1 of SFEDN cluster (a2) Subset C2 of SFEDN cluster 

  
(b1) Subset C1 of conventional cluster (b2) Subset C2 of conventional cluster 

Fig. 16 The MAPE of submodels with k-fold cross validation in training set (Case 2, K = 2) 
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(a1) Subset C1 of SFEDN cluster (a2) Subset C2 of SFEDN cluster 

  
(a3) Subset C3 of SFEDN cluster (b1) Subset C1 of conventional cluster 

  
(b2) Subset C2 of conventional cluster (b3) Subset C3 of conventional cluster 

Fig. 17 The MAPE of submodels with k-fold cross validation in training set (Case 1, K = 3) 

  
(a1) Subset C1 of SFEDN cluster (a2) Subset C2 of SFEDN cluster 

Fig. 18 The MAPE of submodels with k-fold cross validation in training set (Case 2, K = 3) 
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(a3) Subset C3 of SFEDN cluster (b1) Subset C1 of conventional cluster 

  
(b2) Subset C2 of conventional cluster (b3) Subset C3 of conventional cluster 

Fig. 18 The MAPE of submodels with k-fold cross validation in training set (Case 2, K = 3)  (Continued) 

 
(a) RMSE 

 
(b) CV 

Fig. 19 The prediction performance comparison in testing set 
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clustering using the SFEDN method, compared to static 
prediction, reduced RMSE and CV by 11.9%, achieved 
an R2 of 0.890 and reduced MAPE by 19.9%. Compared 
to the dynamic prediction of single-attribute clustering 
modeling using the SFEDN method, both RMSE and CV 
decreased by 12.6%, R2 increased by 4.0%, and MAPE 
decreased by 26.3%.  

When cluster number is 3, the dynamic prediction 
of multiple-attribute clustering using SFEDN method 
reduced RMSE and CV by 9.1%, achieving an R2 of 0.883 
and reducing MAPE by 14.3% compared to static 
prediction. On the other hand, the dynamic prediction 
using conventional clustering reduced RMSE and CV by 
0.5%, with an R2 of 0.859 and a reduction of MAPE by 6.0% 
compared to static prediction. However, the performance 
of the dynamic prediction of single attribute (HVAC 
system energy consumption) clustering was not as good as 
static prediction.  

In summary, in the optimal number of cluster (K = 2), 
the dynamic prediction performance demonstrated that the 
SFEDN clustering method surpassed conventional clustering 
method, and multi-attribute clustering modeling outperformed 
single-attribute modeling. The real curves of dynamic 
prediction in testing sets were shown in the Figure 20 and 
Figure 21. 

5 Discussion, limitations and future direction 

In this paper, we integrated meteorological data, indoor 
environmental data, and historical energy consumption 
data to construct multi-attribute and high-dimensional 
vectors for clustering. We employed a method of statistical 
feature extraction to reduce dimensions while preserving 
the original multi-attribute information. Subsequently, 
based on the principles of Euclidean distance clustering, the 
normalization was performed according to vector dimension 
instead of the conventional method based on attribute. 
This approach aimed to ensure the retention of original 
information while mitigating the impact of data attribute 
differences and correlations on clustering effects.  

To enhance the training adaptability of the deep learning 
model, we employed the PSO to optimize the key parameters 
of the GRU model. Additionally, k-fold cross-validation 
was introduced to determine the sub-model architecture 
with the best prediction performance. Finally, to achieve 
dynamic predictions, we extracted historical 24-hour feature 
data to assess the uncertainty of future conditions and 
matched the best sub-model for dynamic prediction using 
multiple models.  

The performance indicators of the dynamic prediction 
(Figure 19) showed that the dynamic prediction using the  

 
(c) R2 

 
(d) MAPE 

 
Fig. 19 The prediction performance comparison in testing set  (Continued) 
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(a) SFEDN cluster 

 
(b) Conventional cluster 

Fig. 20 The real curve of dynamic prediction in testing set (Case 1, K = 2) 

 
(a) SFEDN cluster 

 
(b) Conventional cluster 

Fig. 21 The real curve of dynamic prediction in testing set (Case 1, K = 3) 
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SFEDN clustering method reduced RMSE and CV by 11.9%, 
achieving an R2 of 0.890 and reducing MAPE by 19.9% 
compared to static prediction. While the dynamic prediction 
performance based on multi-attribute clustering modeling 
(Case 1) exhibits robust predictive capabilities, the dynamic 
prediction based on single-attribute clustering modeling 
falls short of static prediction. However, to improve the 
performance of prediction models, these are some issues 
that should be discussed: 
1) The configuration of attributes and dimensions in the 
cluster matrix 
This article delved into the impact of multi-attribute  
and single-attribute clustering scenarios on prediction 
outcomes. The results indicated that clustering analysis 
effectively decomposed the data, generating subsets with 
significant characteristic differences, thereby providing 
robust training datasets for sub-models adaptable to various 
feature conditions. Therefore, relying solely on energy 
consumption clustering is insufficient for achieving optimal 
clustering effects, and the incorporation of relevant data for 
multi-attribute clustering is deemed essential (Bourdeau  
et al. 2021). Future research should further refine the 
prediction of heating, cooling, lighting, and socket energy 
consumption. Determining the attributes and dimensions 
of the clustering vector for maximizing accurate prediction 
is crucial. Constraints extend beyond the type of predicted 
energy, encompassing correlations between model inputs 
and outputs, input intercorrelations, and algorithmic 
mechanisms, all of which may influence clustering vector 
construction. 

2) The importance of the testing set in multi-model predictions. 
In this paper, the testing set is treated as an independent set, 
simulating a virtual dataset from an uncertain future, and is 
excluded from clustering to prevent information leakage. 
The objective is to ensure that prediction conditions for  
the testing set remain unknown during model training, 
preventing any potential bias. Our approach involves 
assessing these conditions before inputting them into the 
models during forecasting. 

Evaluating the uncertainty of prediction conditions 
involves calculating the Euclidean distance between the 
statistical features of the past 24 hours’ data and the 
clustering centers of each training subset. We focused on 
the matching prediction trained prediction models to match 
the prediction conditions instead of matching training 
subset with testing set. The optimal subset model is then 
matched for dynamic prediction through multi-model 
blending.  

The model matching mechanism, relying on statistical 
features of the past 24 hours’ data to prevent information 
leakage, enhances robustness and provides safeguards 

multi-modal prediction. However, dependence on historical 
information entails risks, and unforeseen situations may 
arise in future conditions. Therefore, accurate historical 
information and a stable energy system operation status  
are prerequisites for matching the optimal subset model 
accurately. Robustness can be further improved through 
measures such as enhancing online prediction frameworks, 
integrating online feedback attention mechanisms, 
self-learning integration, and reinforcement learning 
integration. 

In summary, this paper successfully implements 
multi-model dynamic prediction based on multi-attribute 
feature extraction and clustering modeling, yielding 
commendable prediction results. Nevertheless, there remains 
a gap in defining the optimal attribute combination and 
dimension settings for clustering vectors associated with 
predicted energy consumption types. The mechanism of 
judging future conditions based on historical information 
has inherent limitations. To enhance the implementation 
of the proposed dynamic prediction framework, robust 
system operation and effective historical data are indispensable. 
Furthermore, when employing more advanced prediction 
models such as transfer learning, we can explore the 
generalization ability of model predictions on training and 
testing sets with entirely different distributions (Xu et al. 
2024) and compare these results to those obtained from 
training and testing sets with the same distribution. This 
approach may yield new and valuable insights for forecasting 
energy consumption in increasingly complex future energy 
systems. 

6 Conclusion 

This paper integrated meteorological parameters and indoor 
environmental parameters to construct multi-attribute 
high-dimensional clustering vectors, and the clustering 
effect of the K-means algorithm was enhanced by the 
SFEDN method. Within the framework of cluster modeling, 
PSO was employed to implement adaptive training and 
optimization of the GRU deep learning model across 
different feature subsets. The optimal number of clusters 
was determined using the silhouette coefficient method, 
and k-fold cross-validation was introduced to assess the 
robustness and stability of the submodels. Simultaneously, 
in the testing set with completely unknown prediction 
conditions, ensuring no information leakage and suitability 
for training-validation sets, the optimal sub-model was 
determined by calculating the statistical features of the past 
24 hours’ data and the Euclidean distance between the 
clustering centers of each training subset. The dynamic 
prediction model based on multi-attribute clustering with 
SFEDN achieved a 11.9% reduction in both RMSE and CV, 
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a 3.8% increase in R2, and a 19.9% reduction in MAPE 
compared to static prediction. When compared to dynamic 
prediction based on single-attribute clustering modeling, 
both RMSE and CV decrease by 12.6%, R2 increases by 
4.0%, and MAPE decreases by 26.3%. In summary, the 
dynamic prediction performance demonstrated that the 
SFEDN clustering method surpasses conventional clustering 

method, and multi-attribute clustering modeling outperforms 
single-attribute modeling in HVAC systems. Lastly, when 
integrating clustering and prediction models, further 
discussion is needed to determine the optimal number of 
attributes and dimensions for clustering. Further research 
is needed on how to better pair the training and testing sets, 
or how to use a well-trained model. 

Appendix 

Table A The size of the dataset (in days) corresponding to each cluster 
 

K = 2 K = 3 

Cluster method Case C1 C2 C1 C2 C3 

1 137 156 124 109 60 
SFEDN 

2 124 169 66 77 150 

1 121 172 113 116 64 
Conventional 

2 121 172 65 177 51* 

*Note: the minimum dataset comprises 51 days (1224 hours/points) of data. 

 

(a) Case 1 (b) Case 2 

Fig. A1 The mapping cluster distribution on calendar (K = 2) 
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