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Abstract 
In the United States, the buildings sector consumes about 76% of electricity use and 40% of all 
primary energy use and associated greenhouse gas emissions. Occupant behavior has drawn 

increasing research interests due to its impacts on the building energy consumption. However, 
occupant behavior study at urban scale remains a challenge, and very limited studies have been 
conducted. As an effort to couple big data analysis with human mobility modeling, this study has 

explored urban scale human mobility utilizing three months Global Positioning System (GPS) data 
of 93,000 users at Phoenix Metropolitan Area. This research extracted stay points from raw data, and 
identified users’ home, work, and other locations by Density-Based Spatial Clustering algorithm. 

Then, daily mobility patterns were constructed using different types of locations. We propose a novel 
approach to predict urban scale daily human mobility patterns with 12-hour prediction horizon, 
using Long Short-Term Memory (LSTM) neural network model. Results shows the developed models 

achieved around 85% average accuracy and about 86% mean precision. The developed models 
can be further applied to analyze urban scale occupant behavior, building energy demand and 
flexibility, and contributed to urban planning. 
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1 Introduction 

1.1 Background  

In the United States (U.S.), the buildings sector consumes 
about 76% of electricity use and 40% of all primary energy 
use and associated greenhouse gas emissions (DOE 2015). 
Occupant behavior, which includes the presence of people 
in the space, interactions between the occupant and building 
systems, and occupant adaptations to the built environment, 
has drawn increasing attention because of its impact on the 
energy consumption of buildings. Many researchers have 
investigated occupant behaviors at a single building scale, 
and very limited studies have been conducted at community 
scale or urban-scale (Barbour et al. 2019; Wu et al. 2020; 
Lu et al. 2021). With the development of information 
technologies, such as mobile technology, urban sensing, 
and IoT, big data that was generated by those technologies 
provides opportunities to better understand occupant 
behavior at urban scale (Salim et al. 2020).  

Meanwhile, the International Energy Agency (IEA) 
Energy in Buildings and Community (EBC) Annex 67 
(Jensen et al. 2017) investigated the energy flexibility in 
buildings, and developed the definition of it as the ability to 
manage building energy demand and generation considering 
local climate conditions, occupant needs, and energy network 
requirements. This definition clearly shows that building 
occupant behavior is a significant factor that impacts building 
energy demand and its flexibility. Recently, the Building 
Technologies Office from the United States Department of 
Energy (DOE) has initiated research on Grid-interactive 
Efficient Buildings (GEB) (DOE 2022), to make building 
operations coordinate with the grid regarding the amount 
and timing of energy use and reduce greenhouse gas emissions 
from buildings. Both GEB and Annex 67 require advanced 
understandings of building energy demand and energy 
flexibility.  

Researchers identified occupant behavior as the main 
cause of the uncertainty of building energy performance 
(Yan et al. 2015). On a city level, the urban scale building  
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energy models (UBEMs) aspires to become key planning 
tools for the holistic optimization of buildings, urban design, 
and energy systems in neighborhoods and districts (Happle 
et al. 2018). However, existing UBEMs mainly use physical 
simulation models of energy flows in and around groups of 
buildings, to represent the impact of the urban context on 
building energy demand (Fonseca and Schlueter 2015; Cerezo 
Davila et al. 2016; Reinhart and Cerezo Davila 2016). And 
inappropriate choice of occupant behavior model could 
result in oversized district energy systems, leading to 
over-investment and low operational efficiency (Happle  
et al. 2018). Therefore, it is critical to investigate urban 
scale occupant behavior and integrate it to the urban scale 
energy modeling process. Studies (Barbour et al. 2019; Dong 
et al. 2019; Wu et al. 2020) have investigated occupant 
behaviors at urban scale, the authors developed building 
occupancy models and integrated with UBEMs to understand 
their impact on energy consumption. Results (Wu et al. 2020) 
show that the reduction of predicted cooling and heating 
energy were up to 40% and 60% respectively.   

Furthermore, increasingly research efforts have been 
focused on human mobility study to understand the occupant 
behavior at urban scale. As part of human mobility study, 
recent studies extracted occupant profiles by processing 
GPS data from various data sources (Wu et al. 2020), 
including social media data (Lu et al. 2021), and Call Detail 
Records (CDR) data (Barbour et al. 2019). Other studies 
focused on modeling and predicting urban human mobility, 
such as future movement patterns and next locations (Feng 
et al. 2018; Wang et al. 2019b; Yang et al. 2020). Because 
of the temporal and spatial nature of human mobility data, 
studies have investigated the mobility patterns using a 
clustering-based algorithm naming the DBSCAN (Cesario 
et al. 2013; Huang and Wong 2015; Tang et al. 2015). And 
Recurrent Neural Network (RNN) models have been 
developed to learn human mobility patterns and predict 
next locations (Liu et al. 2016; Huang 2017; Khoroshevsky 
and Lerner 2017; Feng et al. 2018; Wang et al. 2019a; Guo 
et al. 2020; Yang et al. 2020).  

In this study, we focus on developing the urban scale 
human mobility models utilizing GPS data collected from 
smart mobile phones. As forementioned, considering the 
spatial and temporal characteristics of human mobility data, 
this study adopted DBSCAN and RNN to identify, model 
and predict patterns of human mobility for 93,000 users. The 
developed models can be further applied to analyze urban 
scale occupant behavior, building predictive control, building 
energy demand and energy flexibility.  

1.2 Structure of this paper 

This study modeled daily human mobility patterns from 

raw GPS data, and trained RNN models for 12-hour ahead 
mobility predictions. The paper is organized as follows: 
Section 2 covers literature review of the current building 
occupant behavior study and human mobility study. We 
detailed out the method of big data processing and analysis, 
as well as human mobility modeling and prediction in 
Section 3. Section 4 presents the results and discussions of 
this study, including stay point extraction, DBSCAN clustering 
and location labeling, LSTM model training and testing, and 
model performance evaluation. Section 5 concludes this paper 
with conclusions, scientific contributions, and limitations 
of this study.  

2 Literature review 

2.1 Motivation  

The IEA EBC has developed the Annex 66 (Yan et al. 2017) 
and Annex 79 (O’Brien et al. 2020) programs to advance 
the research of occupant behaviors in buildings. Among 
the scientific findings, data-driven modeling of occupant 
behavior is considered as a promising approach due to the 
fact of increasing data sources and rapid development of 
various sensing technologies. Additionally, research concludes 
that the building energy demand is largely impacted by 
occupant behaviors, and it could cause performance gap with 
insufficient consideration of occupant behaviors (Happle  
et al. 2018). Therefore, it is critical to investigate urban 
scale occupant behavior and include it into the urban scale 
energy modeling process. Occupant behavior in this study 
refers to the presence of people in the space, interactions 
between the occupant and building systems, and occupant 
adaptations to the built environment. Dong et al. (2022) 
developed a global building occupant behavior database 
including nine different categories of occupant behavior as 
well as indoor and outdoor environmental measurements. 
Those categories are door status, fan status, HVAC 
measurement, lighting status, occupancy measurement, 
occupant number measurement, plug load, shade status 
and window status.  

Previous study (Wu et al. 2020) has developed a novel 
mobility-based approach to study urban scale occupant 
behavior and showed promising results of its impacts on 
building energy consumption. Similar studies have been 
conducted to explore occupant behavior through urban 
human mobility (Jiang et al. 2016; Barbour et al. 2019; Kang 
et al. 2021; Lu et al. 2021). But the model used in Barbour 
et al. (2019) and Jiang et al. (2016) is a statistical model 
which adopts Markov chain for temporal choices and a 
rank-based exploration and preferential return model for 
spatial choices. This study aims to develop a purely data 
driven occupant behavior model from raw GPS data. Human 
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mobility studies include indoor mobility (Biczók et al. 2014; 
Tang et al. 2016; Trivedi et al. 2021) and outdoor mobility 
(Pan et al. 2013; Chen et al. 2014; Wang and Taylor 2016; 
Lin et al. 2018; Chang et al. 2021a) research areas. The 
indoor mobility refers to movements between locations  
or zones within an indoor environment at single building 
scale. In contrast, the outdoor mobility relates to human 
movements among various locations (e.g., buildings, roads, 
etc.) at city level. This study focuses on understanding 
outdoor human mobility among different buildings at urban 
scale. With the knowledge of how people travel at urban 
scale, occupant behavior models (e.g., occupant’s presence 
in a building) can be inferred (Jiang et al. 2016; Wu et al. 
2020). This section provides a comprehensive literature 
review of the occupant behavior and human mobility 
studies. 

2.2 Modeling occupant behavior at an urban scale  

Urban building energy modeling is fundamental for 
optimization of building operations and urban planning.  
And occupant behavior is one of the main factors that largely 
impact building energy demand. Happle et al. (2018) reviewed 
different occupant behavior modeling approaches used by 
various urban building energy models. It concluded that, 
occupant behavior models at urban scale are still limited. 
And it also projected that advanced urban scale occupant 
behavior models are essential to holistic urban planning 
and energy infrastructure optimization. To develop occupant 
behavior models at urban scale, big data and advanced 
modeling methods are needed. Salim et al. (2020) has 
conducted a holistic review of available urban scale 
occupant-centric data cross different disciplines, those  
data can be applied to model occupant behavior and energy 
usage patterns at urban scale. It summarized available 
occupant-centric data source into six different categories, 
such as survey data, building data, Internet of Things (IoT) 
sensor data, crowdsourcing data, city spatial data, and 
mobility data. Among those data sources, the mobility data 
covers GPS data, CDR dataset, social media check-ins, data 
from location-based services (LBS), and transportation 
data. To address the challenges to model occupant behavior 
at urban scale, Dong et al. (2021) studied existing modeling 
methods in building science domain and beyond. Since the 
urban scale building applications still heavily rely on occupant 
behavior models at single building level, the paper has 
identified and discussed potential modeling approaches 
from other domains such as transportation, epidemiology, 
disaster management, and smart retail domain. The study 
finds out both recurrent neural networks and graphical 
networks have drawn much attention, and has shown 
promising results as well. 

Recent studies have investigated occupant behavior and 
its impact on energy consumption at urban scale. Happle  
et al. (2020) developed data-driven and context-specific urban 
occupancy modeling methods based on LBS (location-based 
service) data collected from web mapping services in the 
downtown neighborhoods of 13 different U.S. cities. The 
study concludes that current standard occupancy schedules 
significantly overpredicted weekly building occupancy, and 
have significant impacts on district scale energy demand 
simulations. Built on the TimeGeo framework (Jiang et al. 
2016), Barbour et al. (2019) used the CDRs (Call Detail 
Records) of 1.92 million anonymous mobile users to develop 
urban scale occupancy model and simulated 3.54 million 
people in the building energy modeling study. Compared 
with standard building occupancy rates defined by the 
Department of Energy (DOE), the study observed energy 
consumption reduction could reach 15% for residential 
buildings and 21% for commercial buildings. The TimeGeo 
framework was established on a time-inhomogeneous 
Markov chain model for modeling temporal choices, and a 
rank-based exploration and preferential return (r-EPR) 
model for generating spatial choices. Another study (Kang 
et al. 2019) implemented max normalization and K-means 
clustering methods, to develop occupancy models for different 
types of buildings from GPS data collected by social network 
software. Dong et al. (2019) derived urban scale occupancy 
patterns at the individual building level, and compared 
them with synthetic schedules from DoE reference models. 
Energy study of example buildings showed significant 
differences up to 50% for large office buildings and 30% for 
strip malls. 

By analyzing raw GPS data collected by smart mobile 
phone users, Wu et al. (2020) presented a new approach to 
derive empirical occupancy profiles for various building 
types in San Antonio, Texas. The study combined mobility 
data with building data (998 buildings) to capture more 
realistic occupant dynamics within different building types. 
Based on the derived occupancy rates, simulation results 
show that the cooling and heating energy demand could be 
reduced by up to 40% and 60% respectively. Lu et al. (2021) 
investigated typical building occupancy schedules using 
data from social networks. Results showed that building 
occupancy profiles derived from various sources show similar 
trends. Similarly, Kang et al. (2021) also utilized GPS data 
collected from social networks to study typical weekly 
occupancy profiles for non-residential buildings. It adopted 
cluster analysis to extract the typical patterns of weekly 
occupancy profiles, 16 buildings were selected and tested 
to demonstrate the proposed approach. Compared with 
ASHRAE Standard 90.1, results showed that the standard 
could underestimate or overestimate building occupancy 
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conditions for different types of buildings at different times 
of the day.  

2.3 Human mobility 

As an interdisciplinary field, human mobility study has drawn 
an increasing research attentions in recent years (Wang  
et al. 2019b; Yang et al. 2022). It refers to the movement of 
people among different locations at different times of the 
day. As the evolving of modern technologies, multi-source 
of big data provides new opportunities to explore urban 
human mobility across different disciplines, such as traffic 
analysis, disaster management, and epidemiology. For 
instance, social network services and mobile computing 
enable urban planners to investigate city dynamics (Pan  
et al. 2013). Taking advantage of the human mobility data 
and social media data, Pan et al. (2013) developed a system 
to detect and describe traffic anomalies in big cities. By 
studying the driver’s routine behavior on an urban road, the 
proposed system can identify anomalous traffic patterns or 
events. The system was tested with social media datasets 
and GPS trajectory datasets of taxi in Beijing. In another 
study, a social media based traffic congestion monitoring 
system was evaluated by the Twitter data and INRIX probe 
speed datasets in two U.S. major cities (Chen et al. 2014). 
With smart card data collected by Tokyo Metro and social 
media data from Twitter, researchers from Japan visualized 
the integrated traffic and social media analysis (Itoh et al. 
2014). Another study shows that better road traffic speed 
prediction can be achieved by fusing traditional speed 
sensing data with social media data, trajectory sensors from 
map and traffic service platforms (Lin et al. 2018). Jiang et al. 
(2019) proposed a model to predict cyclists’ destinations 
based on data from Mobike, which contains a GPS/3G 
module, and used Shanghai Mobike trajectory data to explore 
bike-sharing systems traffic flow and demand prediction, 
and address bike lane planning issues (Bao et al. 2017; Jiang 
et al. 2019).  

By analyzing individuals’ mobility data collected from 
Twitter, Wang and Taylor (2016) examined how natural 
disasters influence human mobility patterns in urban 
populations. Results showed that human mobility patterns 
are unlikely to deviate from the fundamental power-law 
during a natural disaster, but natural disasters can significantly 
change human mobility patterns even where the fundamental 
power-law still holds. Mohammadi and Taylor (2017) 
introduced a multivariate autoregressive model to predict 
buildings’ energy demand using mobility data collected from 
Twitter. Another research presented a social media-based 
approach to assess the severity and location of disaster impacts 
on highways (Chen et al. 2020). The author investigated 

disaster impacts on highways brought by Hurricane Harvey 
in Houston, the results showed the presented approach is 
feasible and applicable. On the other hand, a study was 
conducted to estimate massive population displacement 
during or after natural disasters. Wilson et al. (2016) analyzed 
human mobility patterns based on call detail records. They 
investigated the population left soon after the 2015 Nepal 
earthquake, population flow destinations, and return rates, 
which indicate where humanitarian aid should be directed 
and help to identify recovery and reconstruction progress. 

More recently, human mobility study has been conducted 
to understand impacts of COVID-19 pandemic (Buckee  
et al. 2020; Chang et al. 2021a, 2021b; Gozzi et al. 2021;  
Schulte-Fischedick et al. 2021; Liu et al. 2022). Buckee  
et al. (2020) suggested that the aggregated mobility data can 
provide approximately real time information about changes 
in human mobility patterns at urban scale. This will lead to 
efficient interventions on preventing the spreads of COVID-19. 
Chang et al. (2021a) introduced a decision-support tool  
to quantify the impact of human mobility dynamics on 
COVID-19 infection rates. With the knowledge of locations 
that infected individuals visited, the model can provide 
detailed analysis and inform more effective and equitable 
policy responses for COVID-19 (Chang et al. 2021b). 
Another study (Gozzi et al. 2021) used anonymized mobile 
phone data to estimate the effects of social inequalities 
cross communities on the mitigation of COVID-19. Other 
studies (Schulte-Fischedick et al. 2021; Liu et al. 2022) 
estimated the carbon emission changes upon the mobility 
during COVID-19.  

2.3.1 Machine learning in modeling human mobility 

Recent studies of human mobility focused on using machine 
learning approaches to derive mobility patterns, model and 
predicting the mobility trajectories. Considering the spatial 
characteristic of the mobility data, clustering algorithm like 
DBSCAN has been adopted by different studies to identify 
locations of interest and explore human mobility at urban 
scale. Liu et al. (2021) proposed a novel space-time analytical 
framework to study the AOIs (areas of interest) using   
the taxi GPS data in Manhattan, NYC. The study applied 
the ST-DBSCAN (Spatial-temporal Density-Based Spatial 
Clustering of Applications with Noise) algorithm and 
successfully identified 31 unique AOIs that highly correlated 
to famous places, landmarks, transit stations, etc. Currently, 
taxi trip plays an important role in the daily movements of 
urban residents, Tang et al. (2015) uncovered urban human 
mobility by analyzing city scale of GPS data from taxis in 
Harbin, China. The study adopted the DBSCAN algorithm 
to identify the clusters of pick-up and drop-off locations. 
The proposed approach was tested in a city area by splitting 
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the area into unique transportation districts, mobility patterns 
were modeled from distribution of taxi trips. Similar studies 
(Bonnetain et al. 2021; Smolak et al. 2021) have also taken 
advantage of DBSCAN to analyze and model human 
mobility at urban scale. Smolak et al. (2021) used DBSCAN 
to cluster stay point and concluded that the data processed 
with DBSCAN are more predictable. Bonnetain et al. (2021) 
utilized network signaling data to capture stationary activities 
from individual mobile devices, and rebuilt a fine-grained 
human mobility trajectories at urban scale. However, this 
study focused on estimating the number of trips over time 
inferred via the proposed framework. The analysis of 
individual mobility, stay duration, and mobility prediction 
are limited. Jurdak et al. (2015) analyzed geotagged tweets 
of more than six million users in Australia. DBSCAN 
algorithm was used in this study to identify locations from 
raw data and reduce the vagueness.  

Other studies (Liu et al. 2016; Huang 2017; Khoroshevsky 
and Lerner 2017; Feng et al. 2018; Wang et al. 2019a; Guo 
et al. 2020; Yang et al. 2020) applied neural networks to 
model human mobility at urban scale by predicting next 
locations. Given the temporal nature of the mobility data, 
RNN and its variant were mainly adopted in the literature. 
Feng et al. (2018) combined a multi-modal embedding RNN 
with a historical attention model to capture both sequential 
transitions and periodicity in the mobility data. Yang et al. 
(2020) developed the Flashback framework for modeling 
sparse user mobility traces, it explicitly uses spatio-temporal 
contexts to search past states with high predictive power for 
next location prediction. Liu et al. (2016) extended RNN to 
the Spatial Temporal Recurrent Neural Networks (ST-RNN) 
by incorporating both spatial distance information and 
time interval information. Guo et al. (2020) integrated 
attention mechanism to RNN model, and introduced 
Attentional Recurrent Neural Network framework (ARNN) 
to uncover both sequential regularity and transition regularity 
in the mobility data. Another study (Wang et al. 2019a) 
analyzed the characteristics of human mobility from real 
world GPS dataset, and extracted information of spatio- 
temporal regularities and user mobility preferences. Based 

on extracted feature, the study adopted LSTM network for 
multi-user destination prediction.  

2.4 Summary of research gaps and research contributions 

As shown in Figure 1, this section reviewed state of arts in 
both Occupant Behavior and Human Mobility domains. The 
discussions spread from single or multiple buildings level to 
urban scale. It covers modeling techniques, data sources 
and various applications. Through literature review, we 
have summarized current key knowledge gaps and our 
contributions in the occupant behavior and human mobility 
studies, as the following: 
(1) Gap: Lack of a prediction model of urban scale occupant 

behavior. Studies (Happle et al. 2018; Kang et al. 2021; 
Lu et al. 2021) have developed building occupancy profiles 
at urban scale based on various data sources. However, 
a generalized urban scale occupant behavior modeling 
framework is still needed. With the information of 
predicted occupant behavior at an urban scale, one can 
assess and better predict building energy demands, which 
contributes to better optimal building controls and 
increased energy flexibility. In this study, our contribution 
is to develop novel urban scale occupant behavior models 
using machine learning approaches based on raw GPS 
data that models individual occupant movement.   

(2) Gap: Insufficient understandings of the spatial-temporal 
patterns of the human mobility modeling at urban scale 
with fine granularity and a constant time (e.g., a whole 
day). Prior studies (Liu et al. 2016; Huang 2017; 
Khoroshevsky and Lerner 2017; Feng et al. 2018; Wang 
et al. 2019a; Guo et al. 2020; Yang et al. 2020) focus on 
predicting only single next location or a point of interest 
(e.g. next location or destination), while our study focuses 
on exploring and predicting the complete trajectory of 
human mobility for a whole day. In this study, our 
contribution is to derive daily mobility patterns in terms 
of various city-wide locations and predict future 12-hour 
ahead mobility patterns using LSTM model. The proposed 
mobility models can be utilized to understand and 

 
Fig. 1 Summary of the literature review 
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predict urban scale occupant behavior, assist to develop 
more realistic building predictive control algorithms 
and study building energy demand and its flexibility.   

3 Method  

Urban scale human mobility data has temporal and spatial 
characteristics, data collected from different users show 
various mobility patterns as shown in Figure 4 Those 
characteristics make human mobility data high dimensional 
and bring challenges to capture and model human mobility 
behavior at urban scale. The dataset in this study includes 
GPS records with high accuracy and granularity. However, 
noises could be introduced under some special circumstances, 
such as high-profile buildings around the GPS terminal, 
weak GPS signal. Meanwhile, human mobility data usually 
have a big size because of the large amounts of users and 
the fine granularity of data collection. It requires high 
computational power resources to process human mobility 
data. This section covers the methods that were adopted  
to process raw mobility datasets, as well as to model and 
predict daily human mobility patterns.   

3.1 Overview of the method 

Figure 2 provides an overview of the approach in this study. 
It includes (1) data processing, (2) data modeling and (3) 
performance evaluation. In data processing, we have 
implemented the “stay point detection” algorithm to extract 
stay points from the raw datasets with a specified time and 
distance threshold. DBSCAN algorithm was used to cluster 
the extracted stay points and identify important places such 
as home, work, and other locations. Then mobility patterns 
were constructed for each user represented by important  

places. Those patterns were later fed into the LSTM model 
for training and testing. Based on the trained LSTM models, 
sequence-to-sequence prediction was conducted to predict 
future human mobility patterns. At the end, we evaluated 
the performance of the developed LSTM models. In the 
case study for a typical user, confusion matrix was presented 
to evaluate prediction results, parameters such as precision 
and accuracy were calculated to quantify the model 
performance. The entire process was implemented on a 
Linux machine which has an AMD Ryzen 9 3950X 16-Core 
Processor, two NVIDIA Quadro RTX 5000 GPUs with 
16Gb memory each, and 115 Gb system memory. The 
model training and testing process took about four days to 
complete.  

3.2 Data preprocessing 

3.2.1 Data set description 

Dataset used in this study were collected from anonymized 
mobile phone users in the state of Arizona ranges from 
October 1st to December 31st in 2016. Raw data sets are 
in compressed CSV format with a total size of 307 GB. 
Table 1 listed all the variables from this dataset. The raw data 
includes a Unix format timestamp in Coordinated Universal 
Time (UTC) format, latitude, longitude, altitude, and 
horizontal accuracy of GPS records. Latitudes and longitudes 
are stored in decimal values as degrees, altitudes and 
horizontal accuracy are stored as decimal values in meters. 
Each row of records is associated with an anonymized 
unique ID which represents the device where data collected 
from. The temporal resolution of raw data is in seconds, 
and the spatial resolution represented by latitudes and 
longitudes in degrees with seven decimal places. The level  

 
Fig. 2 Overview of the approach in this paper (from raw GPS data to human mobility patterns) 
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Table 1 List of measuremetns in the raw data 

Name Description  

Timestamp UTC timestamp of the GPS record in Unix format

Unique ID Anonymized unique ID to represent the device 

Latitude  Decimal value of the latitude 

Longitude Decimal value of the longitude  

Altitude Decimal value of the altitude  

Horizontal Accuracy  Horizontal accuracy of the GPS record in meters

 
of horizontal accuracy can be as precise as 10 meters, but it 
differs between various device types (Pepe et al. 2020). Our 
stay point detection algorithm, discussed in the Section 3.2.3, 
can eliminate noise data points using a distance threshold 
(250 meters) and time threshold (10 minutes). This will 
also minimize the impact on the DBSCAN algorithm (ε = 
250 meters) caused by location accuracy. Similar raw data 
from the same data source have been used to extract building 
occupancy profiles (Dong et al. 2019; Wu et al. 2020), 
investigate urban mobility and accessibility (Akhavan et al. 
2019), and study commuting and travel patterns (Sadeghinasr 
et al. 2019). 

3.2.2 Select user of interest from raw data 

Figure 3 provides an overview of the raw data from 12 PM 
to 1 PM on Monday of October 31, 2016. The figure shows 
most data points are gathered around the Phoenix area. We 
have selected the raw data from Arizona State focusing on 
Phoenix Metropolitan Area. We have pre-selected a zip 
code area with the largest percentage of utility customers 
which adopted PV (Photovoltaics) and battery storage system. 
This area will be the focus of future building-to-grid 

research, which is currently not in the scope of this work. 
Then, the authors implemented spatial join between the 
raw GPS data and selected zip code area, as a result, 93,000 
users were obtained from the raw data set for a case study, 
size of the selected data is around 19.2 GB in parquet format. 
Parquet is an open source, column-oriented data storage 
format which is designed for efficient data storage and 
retrieval. Because of the nature of big data, this raw data 
selection process has many challenges such as insufficient 
system memory, low processing speed, long file loading 
time. We have taken advantage of the Python Dask Library 
to load the raw data in chunks and improve the processing 
speed.  

Figure 4 shows 3D plots of the raw data from four 
different users. In the figure, x-axis and y-axis represent 
latitude and longitude respectively, z-axis is the time of the 
day from 0 to 24 which also represented by a color scheme 
from blue to red. The morning and afternoon commute 
routes can be clearly observed. As shown in the figure, 
users stayed around the same location (e.g., home location) 
in the early morning and commuted to a different location 
(e.g. work location), then stayed at that location for several 
hours. In the evening, users started to commute back to the 
same location as the early morning, and stayed there for the 
rest of the night. Those trajectories clearly showed human 
mobility patterns at different times of a day. This study 
focuses on recognizing where users stayed in the day, and 
extracting those stay locations.  

3.2.3 Stay point detection 

This study focuses on understanding how users move from 
one location to another at urban scale. Therefore, we have 

 
Fig. 3 Raw GPS data represented by dots on map (12 PM to 1 PM, October 31, 2016)  
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constructed trajectories for each user based on the raw data. 
Raw data points (P1, P2, P3, …, Pn) include timestamp, 
longitude, and latitude for a sample user. As discussed in 
the beginning of Section 3, noised can be introduced under 
various unusual circumstances. Meanwhile, since this study 
focused on identifying locations where users stayed, data 
points collected while the user was traveling or commuting 
can be treated as noises. Hence, we implemented the 
“Stay Point Detection” algorithm, which has been broadly 
adopted in literature (Damiani et al. 2014; Jiang et al. 2016; 
Khoroshevsky and Lerner 2017; Suzuki et al. 2019). Figure 5 
shows a complete sample daily trajectory of a user, the 
green circles are raw data points represented by datetime, 
latitude and longitude. The gray dashed circle shows a group  

 
Fig. 5 Stay point detection (Circular dot represents raw GPS data 
point, hexagon represents stay point. Dashed circles represent 
time threshold 10 minutes, and distance threshold 250 meters) 

of data points within the distance threshold (250 meters) 
and time threshold (10 minutes), those thresholds were 
adopted from literature (Jiang et al. 2016; Barbour et al. 
2019). Within the dashed circle, a stay point represented  
by a purple polygon was extracted to represent one of the 
user’s stay locations.  

Each stay point represents where the user stayed within 
a distance threshold and time threshold, it has a longitude, 
latitude, arrival time and departure time. As shown in the 
Eq. (1), points Pi, Pi+1, …, Pi+n represent a group of data 
points within the specified thresholds. The datetime of 
the first data point (Pi) and the last data point (Pi+n) in this 
group represents the arrival and departure time for this 
stay point (Sj). Stay duration (Tstay) is the time difference 
between the datetime of Pi+n and Pi. Longitude and latitude 
of the stay point are represented by lonSj and latSj that 
calculated by the average latitude and longitude of points Pi, 
Pi+1, …, Pi+n. Further analysis will be conducted to identify 
important locations where the user frequently stayed among 
those stay points. 
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Fig. 4 Trajectory of sample users represented by GPS raw data at different times of the day 
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3.2.4 Identify stay locations 

Stay point reveals the location where the user stayed at 
urban scale, then a clustering algorithm was used to cluster 
the stay points into different location groups. DBSCAN 
algorithm is a well-known clustering algorithm which is 
commonly used in machine learning and data mining studies 
(Schubert et al. 2017; Chen et al. 2018; Liu et al. 2019). 
Recent studies (Jurdak et al. 2015; Tang et al. 2015; Bonnetain 
et al. 2021; Liu et al. 2021; Smolak et al. 2021) implemented 
DBSCAN to identify locations of interest and investigate 
human mobility at urban scale. As Figure 6 shown, given a 
set of stay points from a user, DBSCAN can group the stay 
points that are close to each other within specified distance 
and include a minimum number of points.  

( ) ( ){ }: ,εN x y D d x y ε= Î £                     (2) 

In Eq. (2), Nε(x) denotes the neighborhood of x, and 
|Nε(x)| represents the total number of points in the 
neighborhood of point x. D is a set of stay points extracted 
from the user’s raw GPS data. ε is the radius of the circle 
around each data point to check the density. d(x, y) is 
the distance between points x and y from D. Nmin specifies 
the minimum number of points within radius of ε to be 
considered as a cluster.  

 

Fig. 6 Illustration of DBSCAN algorithm (ε is 250 meters, minimum 
three points to be considered as a cluster): (a) core point; (b) border 
point; (c) noise point; (d) final cluster results  

Based on a set of stay points as shown in Figure 6, 
DBSCAN algorithm works as followings,  
 if x, y Î D, |Nε(x)| ≥ Nmin, y Î Nε(x) and |Nε(y)| < Nmin, y 

is the border point of the neighborhood of point x 
(Figure 6(b)), and x is the core point (Figure 6(a)).  

 However, if x, y Î D, |Nε(x)| ≥ Nmin, y Ï Nε(x) and |Nε(y)| 
< Nmin, y is a noise point (Figure 6(c)), and x is the core 
point (Figure 6(a)).  

 Core points and its border points will form a cluster as 
the shaded area shown in Figure 6(d), and noise points 
will be put into the noise cluster.  

Figure 7 shows the sample results after implementing 
the DBSCAN algorithm (ε = 250 meters, Nmin = 3), cluster 
number −1 is the noise cluster that contains all the noise 
stay points. Cluster 0 to 8 are individual clusters find by the 
algorithm. As highlighted in the figure, each cluster may 
include various number of stay points. Considering the 
distance threshold from the process of stay point detection, 
ε was also set as 250 meters. Nmin was set as 3 to get most 
clusters which cover different location types, meanwhile 
given that each stay point was already represent numerous 
raw data points. Next, in the mobility modeling process, 
those clusters will be evaluated by arrival time, departure 
time, and the duration of stays.  

3.3 Human mobility modeling  

In this study, the human mobility patterns are represented 
by different types of stay locations such as home, work, and 
other locations. Since our data were collected from smart 
mobile phone users, we have assumed that the phone is 
around the user all the time and each user has only one home 
location. By implementing DBSCAN algorithm in previous 
step, user’s stay points have been labeled as different cluster 
numbers. Each cluster may have various density, stay duration, 
arrival and departure time. To model human mobility, it  
is necessary to assess those clusters and understand the 
connections among those stay points. Next, the time windows 
of home stay, work stay, and other stay were pre-defined as 
followings: 
 |Thome| denotes the time window of home stays from 8 

PM to 6 AM the second day; 
 |Twork| denotes the time window of work stays from 9 

AM to 6 PM the same day; 
 Other times will be considered as other stays. 

For each user, all the stay points will be visited and labeled 
as one of those three types of stays based on following 
judgements: 
 If the date time of a stay point (TSj) is within the time 

window of home stays (|Thome|) and the duration of this 
stay (Tstay) is equal or greater than 1.5 hours, then the 
stay point (Sj) will be labeled as home location; 
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 For some rare conditions if the stay duration is equal or 
greater than 24 hours, the stay point (Sj) will also be 
labeled as home location; 

 However, if the date time of a stay point (TSj) is within 
the time window of work stays (|Twork|) and the duration 
of this stay (Tstay) is equal or greater than 1.5 hours, then 
the stay point (Sj) will be labeled as work location;  

 Otherwise, the stay point (Sj) will be labeled as other 
locations.  

Afterwards, the cluster with dominant home labels will 
be considered as home type of cluster, and all the stay 
points within the cluster will be labeled as home locations. 
Similarly, the cluster with dominant work labels will be 
labeled as work type of cluster, and all the stay points within 
the cluster will be labeled as work locations. Otherwise, the 
stay points will be considered as other locations within the 
other type of cluster. The assumption was made that each 
user has only one home location, but could have multiple 
work and other locations. For the home cluster, a home 
location can be extracted as the centroid of this cluster. For 
the work clusters, location of work stays can be calculated 
as the centroid of the work clusters. Other locations can be 
identified as the centroid of the clusters that included other 
locations. In the end, for each user, a home location was 
extracted, a ranking list of work locations, and a ranking 
list of other locations were constructed respectively together 
with the probabilities of those locations appeared in the data. 

This could be further used to interpret human mobility 
patterns to exact locations.   

Figure 8 visualized the results of the above human 
mobility modeling process. All circles stand for stay points, 
orange colored stay points belong to home type of cluster, 
blue colored stay points represent work type of cluster, green 
colored stay points were labeled as other type of cluster. 
The radius of each circle stands for length of stay duration, 
the larger the circle and the longer the stay duration. As a 
result of this modeling process, all the stay points have been 
labeled either home, work, or other type of locations.  

Next, daily human mobility patterns can be constructed 
based on the various location types of stay points. The pattern 
includes one data point for every hour of the day. As 
shown in Figure 9, every daily mobility pattern has 24 stay 
points represented by H (home), W (work), or O (other) 
locations. Those mobility patterns are then grouped by day 
of week for further analysis.  

3.4 Model training and prediction  

Recurrent Neural Network (RNN) has been broadly  
used for time series prediction, and sequence-to-sequence 
prediction as well (Marino et al. 2016; Rahman et al. 2018; 
Fan et al. 2019; Kim et al. 2021; Mughees et al. 2021). 
Studies have used RNN for next location prediction or travel 
destination prediction to understand human mobility at  

 
Fig. 7 Example results of the DBSCAN algorithm (Nine clusters were identified including the noise cluster) 
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urban scale (Liu et al. 2016; Huang 2017; Khoroshevsky 
and Lerner 2017; Feng et al. 2018; Wang et al. 2019a; Guo 
et al. 2020; Yang et al. 2020). However, studies for modeling 
and prediction of daily human mobility patterns for a whole 
day with constant prediction horizon are still very limited. 
This study adopted a variant of RNN modules named 
LSTM to learn and predict daily human mobility patterns 
at urban scale. Figure 10 shows the overall structure of this 
LSTM neural network model. It works as following: given 
stay points S1, S2, ..., Sj as inputs (represented by location 
types) to the model, LSTM cell generates the hidden state 
and provides an output based on the input; both the hidden 

state and output will be passed to the next LSTM cell as 
inputs to generate new hidden state and next output;   
this process continues until a desired length of pattern    
is generated. In summary, the LSTM model utilized for the 
prediction task receives sequences of stay points represented 
by location types as inputs and outputs, as demonstrated  
in Figure 10. For the prediction task, the model takes in   
a sequence of 12-hour data points and generates one   
data point at each step until the output length reaches   
12, effectively completing a pattern of a full day spanning 
24 hours. 

Based on the processed data from 93,000 users in Phoenix 

 
Fig. 8 Location types of different clusters of stay points (home, work, and other clusters) 

 
Fig. 9 Sample of daily human mobility patterns (represented by hourly location type) 

 
Fig. 10 LSTM sequence to sequence model
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Metropolitan Area, daily human mobility patterns were 
constructed for each user. However, those categorical data 
represented by location patterns cannot directly be fed into 
the LSTM model. We have adopted the one-hot encoding 
to convert the input categorical data (home, work, and 
other) to a binary vector with values of 1 and 0. Since the 
categorical value in this study is relatively simple (only 
three different location types), one-hot encoding fits well 
with the experiment settings. Shadow neural networks were 
used to construct the LSTM models. The hidden dimension 
size was set as five, training epochs were 1000 with learning 
rate scheduler started at 0.1. Finally, an LSTM model was 
developed for each user, with 80% of the user’s data for 
model training and 20% of the user’s data for model testing. 
This study focuses on understanding the dynamics of human 
mobility patterns over the course of a day. In this study, 
the input sequences and target sequences were designed 
to cover a duration of 23 hours of a day while training the 
model. This duration was selected to capture a comprehensive 
view of the movements and transitions of individuals 
throughout most of their day. During training, the input 
sequence represents a 23-hour window of human mobility 
patterns, which is used to predict the target sequence, 
representing the next step in the mobility pattern. This 
approach allows the model to learn and understand the 
underlying patterns and dependencies within human mobility 
patterns over a day, which can then be used to predict 
future mobility patterns. It's important to note that the 
target sequence is one step ahead of the input sequence, 
which means that the model is predicting the next step in 
the mobility pattern based on the input sequence. This 
ensures that the model is trained to predict future mobility 
patterns, rather than simply memorizing, and reproducing 
the input sequence. In the model validation process, the 
user’s daily mobility pattern was predicted based on the 
first 12 hours’ sequence data. This study has developed 
an LSTM model for each user to capture and model the 
complex dynamics of urban human mobility. While the 
models share the same structure, they were trained and tested 
using different datasets. The experiment was conducted 
using the hardware described in Section 3.1, and the results 
showed that each user takes approximately eight seconds  
to complete both the training and testing process. The 
following section presents detailed results of this LSTM 
model training and testing process. 

4 Results and discussions 

4.1 Results  

This section presents the results of data pre-processing, 
analyzing, and modeling of the selected 93,000 users in 

Phoenix Metropolitan Area, Arizona. The data covers 
three months from October 1, 2016, to December 31, 2016. 
Figure 11 shows the raw data of a typical user plotted on 
the map, the color scheme represents different hours of the 
day. Overlap between data points and the street network on 
the map can be observed, it clearly shows the user’s commute 
routes along the roads. Noted that some spots on map have 
a higher density of raw data points which indicate potential 
stay locations (home, work or other). Next, in data processing, 
stay points were successfully detected from users’ raw data 
with a distance threshold of 250 meters, and a time threshold 
of 10 minutes. As illustrated in Figure 12, the blue circles 
represent stay points, and the gray dots refers to the raw 
data points of the typical user. The following analysis was 
based on those stay points extracted from raw data. In the 
above Figure 8, DBSCAN algorithm and the mobility modeling 
process successfully identified the home, work, and other 
locations as well as stay durations from the stay points.  

Based on the labeled stay points, user’s daily mobility 
patterns were constructed, represented by different location 
types. Figure 13 shows the daily human mobility patterns 
in three months represented by different location types.  
It can be observed that the user commuted between home 
and work locations most of the time and visited other 
locations occasionally. The figure also shows that the user 
stayed at home most of the time. Those patterns indicate that 
the user’s daily human mobility pattern is highly predictable. 
Afterwards, those daily patterns were grouped together by 
weekdays and weekends. Then, 80% of the data was used to 
train the LSTM model, and 20% of the data were used for 
model testing. Figure 14 visualizes the patterns of training 
data on weekdays and weekends in 24 hours from the typical 
user. Most of the patterns started and ended at home 
location, very few patterns stared or ended at work location 
on weekdays. This aligns with the high dimensional nature 
of mobility data, as the user’s location varies at different 
times of the day and the mobility pattern also varies on 
different days of the week. Testing data were used to 
validate the trained LSTM model with a 12-hour prediction 
horizon. Figure 15 shows the results of model testing both 
on weekdays and weekends. In 24 hours of a day, the data 
from 0AM to 12PM were treated as inputs into the model 
to predict the user’s mobility of next 12 hours (indicated by 
green shaded area in the figure). The blue patterns are 
ground truth, and the orange patterns are prediction results 
by the trained model. To better illustrate the differences 
between ground truth and prediction results, the orange 
patterns were shifted to above of the ground truth. As results 
show, the trained LSTM model can learn and predict the 
dynamics of daily human mobility patterns. The following 
analysis quantified the model performance with evaluation 
matrix.  
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Figure 16 shows the confusion matrix of the LSTM 
model for a typical user, it compares the actual values 
with predicted results for different location types. True 
positives (TP), true negatives (TN), false positives (FP), 

and false negatives (FN) are commonly used to evaluate the 
performance of machine learning models on categorical 
data. In this case study, the location types are categorical 
data. Take the evaluation of “home” location as an example, 

 
Fig. 11 Raw GPS data on map of a typical user 

 
Fig. 12 Stay points on map detected from raw GPS data of a typical user 
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TP means when the true value is home, and the predicted 
value is also home; FP means when the true value is not 
home, but the predicted value is home; FN means when the 
true value is home, but the predicted value is not home; 
and the rest cases belong to TN. In this figure, the darker cell 
means more data points fall in that category. The matrix 
indicates that among the data records of this typical user, 
home locations accounted for the majority, followed by 

work and other locations. To evaluate the performance of 
this LSTM model, both precision and accuracy have been 
selected. Accuracy relates to how close the prediction value 
is to the actual value. And precision refers to how close are 
the predictions to each other. Those metrics have been 
used in the literature (Li and Huang 2013; Chatterjee et al. 
2017; Ghosh and Ghosh 2018) to evaluate the performance 
of machine learning models. Eq. (3) shows the process  

 
Fig. 13 Human mobility patterns represent by location type (one month data at hourly level) 

 
Fig. 14 Sample of LSTM model training data (80% of the data were used for model training) 

 
Fig. 15 Sample of LSTM model testing results (20% of the data were used for model testing)  
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of calculating precision and accuracy.   

TPPrecision
TP FP

TP TNAccuracy
TP TN FP FN

=
+

+
=

+ + +

                   (3) 

Based on the confusion matrix in Figure 16, calculation 
results show that the LSTM model of this typical user has 
an overall 91% accuracy, and around 91% weighted average 
of precision. We then analyzed the accuracy and precision 
of the model for all tested users. Figure 17 shows the overall 
accuracy distribution of the LSTM model. The average 
prediction accuracy of weekdays’ data is 85.05%, and 85.26% 
for data on weekends. Figure 18 shows the overall precision 
distribution of the LSTM model. The average prediction 
precisions are 86.03% on weekdays and 86.09% on weekends. 
Meanwhile, both figures also show the LSTM model 
predicted 100% accurately and precisely for large amount 

of mobility patterns. This will be discussed in the following 
subsection.  

4.2 Discussions  

Model testing results showed that this study predicted daily 
human mobility patterns both accurately and precisely, 
with overall 85% accuracy and 86% precision. As shown in 
Figure 11 and Figure 12, the total number of stay points is 
much smaller than the total number of raw data points. 
Since the focus of this study is understanding the locations 
where users stayed and its datetime, the raw data points of 
commuting, or with very short stay duration were excluded 
when processing. Stay points were extracted from a group 
of raw data points that were within the specified time 
threshold and distance threshold. The values of those 
thresholds were adopted based on published research work 
(Jiang et al. 2016; Khoroshevsky and Lerner 2017; Barbour 
et al. 2019; Suzuki et al. 2019) and tested in our dataset.  

 
Fig. 16 Confusion matrix of the LSTM model for a typical user 

 
Fig. 17 Overall accuracy distribution of the LSTM model 
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Figure 8 clearly showed that the home, work, and other 
locations were successfully identified from stay points. In 
this process, the assumption is each user only has one home 
location, if multiple home locations are detected, the one 
with the greatest visit frequency will be considered as the 
default home location. For users with multiple work or other 
locations, a ranking list of locations with corresponding 
probabilities was constructed based on users’ mobility history. 
Those two lists can be further used to decode mobility 
patterns to exact locations.  

While the models showed relatively high accuracy and 
precision as anticipated, this study simplified users’ locations 
into three categories and constructed mobility patterns using 
the sequence of location types. In Figure 16, we can observe 
large numbers of correct predictions for both home and 
work locations from this typical user. However, quite a few 
false positives and false negatives were observed for other 
types of locations. This is expected due to the low frequency 
of other locations that appeared in daily mobility patterns. 
As shown in Figure 13, the user commuted between home 
location and work location most of the time. Considering 
the low frequency together with the stochastic nature of 
human mobility, the LSTM model cannot capture and 
predict the patterns of other locations as good as other types 
of locations. However, some prediction results showed equal 
or close to 100% accuracy or precision, this is attributed by 
high regularity mobility patterns of some users. Although 
the patterns of users may vary, the current structure of the 
LSTM model only takes into account the output and hidden 
state from the previous step to generate a single output for 
the next step. As a result, we believe that the difficulty of the 
task at each step remains constant using the current model 
regardless of input data. 

As previous studies (Barbour et al. 2019; Wu et al. 2020) 

showed, more representative occupancy profiles can be 
derived from human mobility based approach. Compared 
to the standard reference provided by the U.S. Department 
of Energy, simulation results of different building types 
revealed potential heating and cooling energy savings up  
to 60%. Mobility models in this study contribute to the 
understandings of human movement patterns at urban scale, 
which leads to better understanding of daily travel distance, 
arrival and departure time to home, office, and other locations. 
Furthermore, it will expand the knowledge of, deriving 
urban scale building occupancy profiles, predicting city energy 
demand by communities or districts at different times of the 
day, planning for building to grid integration and energy 
flexibility.  

5 Conclusions 

In this study, we have investigated urban scale human 
mobility utilizing GPS data collected from smart mobile 
phones. Three months’ raw data of 93,000 users in Phoenix 
Metropolitan Area were processed to detect users’ stay points 
based on specified time threshold and distance threshold. Built 
on user’s stay points, the DBSCAN clustering algorithm 
was used to identify different clusters of stay locations. Those 
clusters were further examined and labeled as home, work, 
or other locations, by analyzing the arrival time, departure 
time, and stay duration. On top of that, we have built daily 
mobility patterns for those users represented by different 
types of locations. In addition, this study proposed a novel 
approach to predict urban scale human mobility patterns 
using a type of recurrent neural network models named LSTM. 
Shadow neural networks were applied to constructed 
LSTM models for each user. The models were successfully 
trained and tested based on daily human mobility patterns. 

 
Fig. 18 Overall precision distribution of the LSTM model 
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Testing results of 12-hour ahead prediction show that the 
model can predict daily human mobility patterns accurately 
and precisely. The overall accuracy is around 85% and 
average precision is close to 86%.  

Limited studies existed to model and predict human 
mobility patterns at urban scale. Compared with current 
studies, the scientific contributions are summarized as 
follows: (1) It proposed a big data approach based on smart 
phone GPS data to study urban scale human mobility. This 
study also conquered the computational challenges caused 
by large size of raw datasets. (2) Developed human mobility 
modeling approach and built mobility models for 93,000 
users at urban scale in Phoenix Metropolitan Area of Arizona 
State. (3) Trained and tested LSTM models to predict daily 
human mobility patterns with 12-hour prediction horizon, 
resulted in high accuracy and precision. (4) The models 
that have been developed can be utilized to conduct a more 
in-depth analysis of occupant behavior at an urban scale, 
develop more realistic building predictive control algorithms, 
as well as examine the energy demand of buildings and 
building energy flexibility.    

As an effort to integrate big data analysis with human 
mobility modeling and prediction, this study has the following 
limitations: (1) Since this study focused on locations where 
users stayed at urban scale, raw data points that were collected 
while commuting or traveling were excluded by the stay 
point detection algorithm. (2) This study assumed that each 
user have only one home location, but could have multiple 
work and other locations. (3) A universal evaluation life 
schedule was used to examine each stay points and identify 
home, work, and other locations. This study did not consider 
the special life schedules like working at night and staying 
at home during daytime. 
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