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Abstract 

For building heating, ventilation and air-conditioning systems (HVACs), sensor faults significantly 
affect the operation and control. Sensors with accurate and reliable measurements are critical for 
ensuring the precise indoor thermal demand. Owing to its high calibration accuracy and in-situ 

effectiveness, a virtual sensor (VS)-assisted Bayesian inference (VS-BI) sensor calibration strategy 
has been applied for HVACs. However, the application feasibility of this strategy for wider ranges 
of different sensor types (within-control-loop and out-of-control-loop) with various sensor bias 

fault amplitudes, and influencing factors that affect the practical in-situ calibration performance 
are still remained to be explored. Hence, to further validate its in-situ calibration performance and 
analyze the influencing factors, this study applied the VS-BI strategy in a HVAC system including a 

chiller plant with air handle unit (AHU) terminal. Three target sensors including air supply (SAT), 
chilled water supply (CHS) and cooling water return (CWR) temperatures are investigated using 
introduced sensor bias faults with eight different amplitudes of [−2 °C, +2 °C] with a 0.5 °C interval. 

Calibration performance is evaluated by considering three influencing factors: (1) performance 
of different data-driven VSs, (2) the influence of prior standard deviations σ on in-situ sensor 
calibration and (3) the influence of data quality on in-situ sensor calibration from the perspective 

of energy conservation and data volumes. After comparison, a long short term memory (LSTM) is 
adopted for VS construction with determination coefficient R-squared of 0.984. Results indicate 
that σ has almost no impact on calibration accuracy of CHS but scanty impact on that of SAT and 

CWR. The potential of using a prior standard deviation σ to improve the calibration accuracy is 
limited, only 8.61% on average. For system within-control-loop sensors like SAT and CHS, VS-BI 
obtains relatively high in-situ sensor calibration accuracy if the data quality is relatively high. 
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1 Introduction 

1.1 Background 

In buildings, heating, ventilation and air-conditioning (HVAC) 
system is important to maintain the indoor thermal comfort 
and air quality (Yoon 2020; Gao et al. 2022; Liu et al. 2022). 
Sensors are essential to achieve the online monitoring and 
control of HVACs, which can make the systems operate 
reliably and safely (Yoon et al. 2019; Zhang et al. 2021;   
Li et al. 2022b). If there exist some sensor faults (i.e., sensor 
biases), reliability and precision of the sensor measured  

data cannot be guaranteed. The HVAC system operation 
and control strategies depend heavily on the affected by the 
quality (reliability and precision) of the sensor measured 
data (Li and Hu 2018). The system may deviate from the 
normal working conditions by faulty sensors, which further 
results in energy penalty and indoor thermal comfort 
degradation (Choi and Yoon 2020; Yan 2021; Zhang et al. 
2022). Hence, it is very necessary to detect, diagnose and 
in-situ calibrate faulty sensors (Li and Hu 2019; Luo and 
Fong 2020; Zhou et al. 2021) and ensure HVAC operation 
(Du and Jin 2007; Sun et al. 2010; Yang et al. 2014), which 
is very important for maintaining indoor thermal comfort  
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List of symbols 

b offset vectors 
c storage unit 
c  updated storage unit 
Cw specific heat capacity of water 
d humidity ratio 
D(x) distance function 
E power consumption of chiller 
EC energy conservation 
e residual of the polynomial 
F forget gate 
FA sensor bias fault amplitudes 
G Gaussian probability density function 
g correction function 
h enthalpy 
I input gate 
J mean square error function 
kt−1 previous layer output in LSTM 
M mass flow rate 
ME calibration results (mean of posterior distribution) 
O output gate 
P posterior distribution function 
P(x|Y) posterior distribution 
P(Y) normalizing constant 
P(Y|x) likelihood function 
Qen results of the heat transfer capacity of the cooling 
 water minus the power consumption of chiller 
Qchw,cap cooling capacity from the chilled water at the  
 chiller side 
Qcw,cap heat transfer capacity of the cooling water at the  
 cooling tower side 
sig sigmoid activation functions  
T temperature 
tanh hyperbolic tangent activation function 
U unknown variables, target variables, dependent  
 variables 
Vrin input variable involved in the VS model  
 construction process 
W weight matrix 
x pre-assumed calibration result 
y actual value of the target variable  
ŷ   prediction value of constructed VS models 
y  average of target variable actual value 
ˆ̂y  average of VS prediction value 
Yca corrected value of target sensor 
Yme measuring system model value 
Yse benchmark of sensor model 
Ysy reliable system model value 
Z0 initial parameter in MCMC 

jZ *  sampling candidate parameter in iteration j 

z  random value 
ΔZj  random variable in MCMC 
ΔE  energy exchange in the heat transfer process 
α  acceptance rate 
ε(Vvir)  evaluation index for VS construction accuracy 
ε(EC)  deviation between the actual measured value and 
  the reliable system reference value 
η  learning rate in MLR-GD 
θ0  intercept of regression model in MLR 
θi  coefficient of input variables in MLR 
θold  iteration coefficient result of the previous layer 
θnew  iteration coefficient result of the present layer 
π(x)  prior distribution 
σ  standard deviation of prior distribution 
ξca  calibration accuracy 

Subscripts 

a  air side (cooling coil air) 
chw  chilled water side 
cw  cooling water side 
in  input variable 
i  the i-th variable of MLR input variables; the i-th  
  sample of testing data  
j  the j-th iteration in MCMC 
l  the l-th system model in distance function 
m  the m-th sensor in distance function 
mix  cooling coil inlet 
n  total number of MLR input variables; total  
  number of testing data sample 
N  normal values 
r  number of unknown variables 
ret  return water including chiller water return and  
  cooling water return 
sup  outlet including cooling coil outlet, cooling tower 
  outlet, and evaporator outlet 
t  timestamp 
vir  virtual sensor variables 
w  water side (cooling coil water) 

Abbreviations 

AHU  air handling unit 
BI  Bayesian inference 
CAV  constant-speed air volume terminal 
CHS  chilled water supply temperature 
CWR  cooling water return temperature 
HVAC  heating, ventilation and air-conditioning 
LSTM  long short term memory 
MCMC  Markov chain Monte Carlo 
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MLR   multiple linear regression 
MLR-LS   MLR-least squares 
MLR-GD   MLR-gradient descent 
SAT   air supply temperature 
SCO   sensitivity coefficient optimization method 
VIC   virtual in-situ calibration 
VRF   variable refrigerant flow 
VS   virtual sensor 

VS-BI    virtual sensor-assisted Bayesian inference 
VSCHS    virtual chilled water supply temperature sensor
VSd_mix  virtual humidity ratio sensor on coil inlet 
VSd_sup   virtual humidity ratio sensor on coil outlet 
VSh_mix  virtual air enthalpy sensor on coil inlet 
VSh_sup   virtual air enthalpy sensor on coil outlet 
VSSAT    virtual air supply temperature sensor 

  
 
and building energy efficiency (Papadopoulos and Azar 2016; 
Guo et al. 2017; Li et al. 2021a; Li et al. 2021b).  

1.2 Summary of sensor fault calibration studies in building 
HVAC systems 

Generally, there are two main types of sensor faults 
(Papadopoulos et al. 2022): hard fault and soft fault. The 
former refers to completely invalid sensors after irreversible 
damages. The latter is mainly caused by improper installation, 
changeable and harsh environments. Soft sensor faults 
include bias, offset, drift and precision degradation which 
can be addressed effectively by in-situ sensor calibration. 
For building HVAC systems, as surveyed by previous studies 
(Pan et al. 2007; Coakley et al. 2011; Li and Huang 2013), 
the traditional manual sensor calibration strategies are 
time-consuming and laborious.  

1.2.1 Studies on virtual in-situ calibration (VIC) and 
Bayesian inference (BI) in building HVACs 

For building HVAC systems, online calibration of sensors is 
effective to address the soft faults using data reconstruction 
methods based on the correlations between erroneous 
readings and other data. Yu and Li (2015) firstly proposed a 
virtual in-situ calibration (VIC) method which is capable of 
calibrate faulty sensors by obtaining the sensor benchmark 
based on physical models or statistical methods. Both 
Bayesian inference (BI) (Yoon and Yu 2017b) and genetic 
algorithm (GA) (Ramos Ruiz et al. 2016; Baba et al. 2022) 
can be used for online sensor calibration in building HVAC 
systems. Furthermore, Yoon and Yu (2017a; 2017c) compared 
the performance of GA and BI in sensor calibration for 
building energy systems, and results indicated that estimating 
a proper searching space for the variables in a deterministic 
method as GA is difficult. Owing to its advantages of 
convenient calculation and fewer parameters, BI has been 
widely used to solve various calibration problems in complex 
building energy systems (Li et al. 2015; Yuan et al. 2017; 
Liu et al. 2021). Chong and Menberg (2018) used BI to 
calibrate building energy models. Hou et al. (2021) elaborated 

the development status of BI in building energy model 
calibration. Mokhtari et al. (2020) used BI to calibrate the 
wind speed sensor of cooling tower in a thermal power 
plant. Sun et al. (2022) quantified the flow uncertainty of a 
central cooling system with multiple water-cooled chillers 
using BI. However, BI with only sensor measurement item 
requires a lot of time to calibrate each sensor individually 
in building HVAC systems with a complex sense network. 
Moreover, it could be very hard to evaluate whether the 
target sensor is affected by the associated sensors using BI 
without the system model item. To extend the calibration 
coverage for multiple sensors, Yoon and Yu (2017b) proposed 
an improved BI-based VIC by considering both the system 
model item and sensor measurement item for model 
extension. To solve the problem of low sensor redundancy 
in actual systems, Choi and Yoon (2020) further proposed 
an enhanced VIC method by combining the virtual sensor 
(VS) with BI to effectively solve the problem of insufficient 
sensor information when establishing the system model item.  

1.2.2 Studies on influencing factors for Bayesian inference 
(BI) in-situ calibration in building HVACs 

The performance of BI in-situ sensor calibration is affected 
by various influencing factors. Many studies have been 
conducted to reduce or remove the impacts of these 
influencing factors. Yoon and Yu (2018a, 2018b, 2018c) 
summarized the negative factors and put forward effective 
strategies to address them. Wang et al. (2019) used a sensitivity 
coefficient optimization (SCO) method to realize the reviving 
calibration strategy in VIC. Yoon and Yu (2017a, 2017c) 
compared the performance of GA and BI on in-situ sensor 
calibration, and quantitatively discussed their differences. 
Li et al. (2020) divided the AHU system into various partitions 
and discussed the accuracy of different calibration models 
(whole calibration, local calibration, component calibration) 
under these partitions. Wang et al. (2021) calibrated various 
physical sensors in an AHU system under different faulty 
working conditions. Yoon et al. (2022) used BI to optimize 
the energy balance calculation in integrated air conditioner 
and improve the performance. 
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1.3 Challenges 

The combinations between the sizes of bias and random 
errors were discussed in the previous study (Yoon and Yu 
2017c). The random errors were considered the standard 
deviations of priors. According to the relative sizes of mean 
and standard deviation in the prior distribution, there are 
two prior types including the proportional and disproportional 
priors. In this study, the impacts of the standard deviation 
were studied as the prior effect. Besides, some variables 
used in BI-based in-situ sensor calibration are difficult to 
measure directly due to the data limitations in practical 
building HVAC systems, but they can be obtained by 
constructing virtual sensors. Moreover, the energy conservation 
equation is also used as an item in the distance function for 
BI-based modelling process. In practice, the building HVAC 
systems measured data may not always satisfy the energy 
conservation equation well owing to the low data quality 
result from system operational dynamics, the introduced 
sensor bias fault amplitudes and the service control response. 
This may lead to certain errors in the BI-based in-situ 
sensor calibration model based on the energy conservation 
law. With concerns on the aforementioned issues, it is still 
challenging to apply the virtual sensor-assisted Bayesian 
inference based in-situ sensor calibration method in the 
following aspects.  
(1) There is a lack of proper way to guidance how to  

select the proper priori distribution standard deviation 
value if no enough prior information can be found in 
information-poor buildings. 

(2) The influence of different VS construction methods  
to assist the BI calculation on the construction accuracy 
still remains uncertain and requires performance 
evaluation.  

(3) The way to investigate influences of data quality on in-situ 
sensor calibration performance also remains uncertain 
and needs further exploration. 

(4) There is also a lack of comprehensive validation of 
the VS-BI in-situ sensor calibration method for a wide 
application range of various types of sensors and sensor 
faults. 

1.4 Research contents of this study 

Hence, to address these issues, this study systematically 
investigated the virtual sensor-assisted Bayesian inference 
(VS-BI)-based in-situ sensor calibration strategy and validated 
it in a chiller-AHU air conditioning system with typical 
sensor bias faults.  

The research contents are as follows:  
(1) Validation of the VS-BI strategy for various types of 

sensors (SAT and CHS sensors within-feedback-control- 

loop and CWR sensor out-of-feedback-control-loop) 
and sensor faults amplitudes (bias faults of [−2 °C, +2 °C] 
with a 0.5 °C interval). 

(2) Performance evaluation and comparison of VS model 
constructed by different data-driven methods (i.e., long 
short term memory (LSTM), multiple linear regression 
(MLR) based least square optimization method, and MLR 
based on gradient descent optimization method). 

(3) Evaluation on the influence of prior standard deviations 
on in-situ sensor calibration accuracy for various sensor 
faults with different amplitudes. 

(4) Evaluation on the influence of data quality on in-situ 
sensor calibration accuracy from the perspective of energy 
conservation and changing data volumes.  

2 Methodology 

For building HVAC systems, the VS-BI in-situ sensor 
calibration strategy has two main parts as described in 
Sections 2.1 and 2.2. 

2.1 Principle of virtual sensor (VS) 

Virtual sensor (VS) is a functional model, which is developed 
based on other cheap or easy-to-install physical sensors to 
obtain the variables which are difficult to measure or the 
phenomena which are difficult to observe in the systems 
(Kim et al. 2021). In building energy systems, to make up 
the system missing information, VSs have been applied to 
building energy prediction (Sendra-Arranz and Gutiérrez 
2020; Markovic et al. 2021), fault detection and diagnosis 
(Liu et al. 2017; Li et al. 2018; Kim and Lee 2021), construction 
of VS system (Hong et al. 2021), VIC calibration of sensors 
(Choi and Yoon 2020), etc. Generally, VSs are used for sensor 
replacement, backup of existing sensors, and observation of 
variables or phenomena that are difficult to measure (Kim 
et al. 2021). For the chiller-AHU air conditioning system 
concerned in this study, there are some hard-to-obtain 
measurements, such as the enthalpy, humidity ratio at the 
inlet and outlet of the coil, the heat exchange rate and heat 
exchange efficiency in heating systems, etc.  

In this study, VS is used to construct such hard-to-obtain 
measured variables that are required in model development 
and sensor calibration process of the BI calibration strategy 
for HVACs. Figure 1 shows the basic structure of VSs, they 
are constructed by three different data-driven methods, 
LSTM, Least squares and Gradient descent.  

2.1.1 LSTM 

As a deep recurrent neural network, LSTM can analyze 
time series (Bedi and Toshniwal 2019). Although LSTM, it 
was also used for the developing VS model (Mercante and  
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Fig. 1 Construction process of VSs (U represents the unknown 
variable; V represents the input variable; UVS represent the VS-based 
output variables) 

Netto 2022). LSTM is mainly composed of three gates and 
a unit. The former three gates are input gate It, forgetting 
gate Ft, output gate Ot, as denoted in Eqs. (1)–(3). The latter 
storage unit ct reflects the internal structure state as denoted 
in Eqs. (4)–(5). The output of current moment layer is kt as 
denoted in Eq. (6).  

The structure of LSTM is shown in Figure 2. The 
forgetting gate uses Vrin and previous layer output kt−1 as 
inputs in this layer to determine the information that should 
be abandoned. The input gate uses Vrin and kt−1 as inputs to 
determine which parts of tc should be updated to the 
information of storage unit ct. The output gate adjusts the 
output of the LSTM unit based on the superposition of 
sigmoid and tanh functions. The output result kt is used as 
the input of the next layer LSTM structure.  

[ ]( )F 1 in, Fsig ,t t tF k Vr-⋅= +W b                       (1) 

[ ]( )I 1 in, Isig ,t t tI k Vr-⋅= +W b                       (2) 

[ ]( )O 1 in, Osig ,t t tO k Vr-⋅= +W b                      (3) 

[ ]( )c 1 in, ctanh ,t t tk Vrc - +⋅= W b                     (4) 

1t t t t tcc F c I- + *= *                               (5) 

( )tanht t tk O c*=                               (6) 

where, sig and tanh are sigmoid and the hyperbolic tangent  

 
Fig. 2 Illustration of basic structure of LSTM unit 

activation functions, respectively. Vrin,t are the input 
variables of the current time series. WF, WI, WO, Wc are the 
corresponding weight matrixes, respectively. bF, bI, bO, bc 
are the corresponding offset vectors, respectively. 

2.1.2 MLR 

Multiple linear regression (MLR) can be used to develop 
predictive model by correlated two or more independent 
variables to fit a target variable (Yuan et al. 2018). Its basic 
form can be described as shown in Eq. (7).  

0 in,
1

n

r i i
i

U θ θ Vr e
=

= + +å                           (7) 

where Ur indicates the unknown variable in the system 
model and it is also the target variable of virtual sensor 
construction. Vrin,i indicates the input variable involved  
in the construction process. θ0 indicates the intercept of  
the fitting polynomial. n indicates the number of input 
variables. i indicates the serial number of input variables.  
θi (i = 1, 2, ..., n) indicates the coefficient of the i-th input 
variable and e indicates the residual of the polynomial. 

Both least squares (LS) (Arsie et al. 2017) and gradient 
descent (GD) (Chen and Miao 2020) methods can be used 
to obtain the near-optimal MLR predictive model. In this 
study, both the MLR-LS and MLR-GD are considered to 
develop the candidate VS models. 

MLR-LS: The LS method can find the optimal MLR 
model by minimizing the sum of squared residuals (Carey 
and Richardson 2006). Equation (8) is the objective function 
of LR–mean square error function. Based on Eq. (9), the 
coefficients and residuals of the MLR model can be directly 
calculated to complete the modeling of VSs. 

( )
2

0 in,1
1

( )
n

n
i r i ii

i
J θ U θ θ Vr

=
=

= - +å å( )                (8) 

0
i

J
θ
¶

=
¶

                                       (9) 

MLR-GD: The GD method has been widely used to 
optimize machine learning models (Vijayalakshmi et al. 2022) 
like MLR. GD uses the same objective function as that of 
LS to minimize the sum of the squared differences between 
the actual values and the regression values as shown in Eq. (8). 
Equation (10) shows the regression coefficient solution 
equation of GD: 

( )new old
old

iθ θ η J θθ
¶

= - ⋅
¶

                        (10) 

where J is mean square error function, η is the learning  
rate, θnew is the iteration coefficient result of current epoch 
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layer, and θold is the iteration coefficient result of the previous 
epoch layer. 

2.2 Principle of Bayesian inference-based in-situ 
calibration method 

BI is a data inference method that modifies the prior 
probability with the help of new information and converts 
it into a posterior probability. BI can be used to statistically 
derive the results in order to minimize the distance function 
of the calibration problem. After BI-based calibration, the 
mean value of the posterior distribution should be used to 
replace the fault amplitude, which is the calibration result. 

According to BI, D(x) in Eq. (13) is the distance function 
(Yoon and Yu 2017b; Choi and Yoon 2020), and the 
posterior distribution P(x|Y) is the probability density 
function that minimizes the distance function D(x) under 
the condition of prior distribution. The specific structure  
of the distance function (Yoon and Yu 2017b) is shown  
in Eqs. (14)–(17). Equation (14) includes system model 
calibration item and sensor calibration item, wherein the 
system model calibration item represents the difference 
between the measured value Yme of the actual system and 
the benchmark Ysy of the reliable system, the sensor calibration 
item represents the difference between calibration value Yca 
calculated by Eq. (17) and sensor benchmark Yse obtained 
by sensor model. Equation (15) is the calculation function 
of the reliable system model and Eq. (16) is the calculation 
function of the sensor model. Both f1 and f2 need to 
calibrate the relevant variables Yre,n and unknown variables 
Un through the correction function g(x). 

( )
( ) ( )

( )
|

|
P Y x π x

P x Y P Y
´

=                        (11) 

( ) ( ) ( )| dP Y P Y x π x x= ò                        (12) 

( ) ( )2
1

1 1| exp
22π

T

t
P Y x D x

σσ=

é ù
= -ê ú

ê úë û
                (13) 

( ) ( ) ( )2 2
sy , me, se, ca,

System model calibration item Sensor calibration item

L M

l l m m
l m

D x Y Y Y Y= - + -å å
 

       (14) 

( )sy 1 re,1 re,2 re, 1 2, , , , , , ,n rY f Y Y Y U U U= ¼ ¼              (15) 

( )se 2 re,1 re,2 re, 1 2, , , , , , ,n rY f Y Y Y U U U= ¼ ¼              (16) 

( )ca ,Y g O x=                                  (17) 

( )
2

221 e
2π

x
σπ x

σ
-

=                              (18) 

where, x is the preset calibration result. π(x) is the prior 
distribution of x, usually choose zero-mean Gaussian 

distribution as shown in Eq. (18), σ is the standard 
deviation of prior distribution determines the form of the 
prior distribution. P(x|Y) is the posterior distribution, P(Y) 
is the normalization constant, D(x) is the distance function, 
Ysy is the benchmark of reliable system model, l is the number 
of system models, Yse is the benchmark of sensor model,  
m is the number of sensors, Yme is the measured value of 
system model, Yre is the corrected value of model related 
variables, Ur is the corrected value of unknown variables in 
the model, Yca is the calibrated value of the target sensor 
through the preset calibration result x, and O is the original 
measured value of the target sensor. 

It is usually difficult to calculate the integral in Eq. (12) 
directly. Therefore, the prior distribution is defined as 
normal distribution according to the central limit theorem 
(Dudley 1978), and then the Markov chain Monte Carlo 
(MCMC) method is used to solve the normalization 
constant P(Y) (Gilks et al. 1996; Sinha 2009). Metropolis 
Hastings algorithm is a widely used MCMC sampling 
method (Hastings 1970; Huang et al. 2016). It is used for  
BI sampling to generate posterior distribution samples of 
preset calibration results x, so as to obtain the statistical 
characteristics of posterior distribution (mean, standard 
deviation, etc.). The basic steps of Metropolis Hastings 
algorithm are as follows.  

Step 1: The initial parameter Z0 of Markov chain should 
be preset from a prior distribution. For example, Z0 can be 
defined as the mean of a prior distribution. If a zero-mean 
Gaussian distribution is used, then Z0 should be 0 in the 
beginning of the entire iteration process. 

Step 2: After Step 1, a Gaussian probability density 
function 1( | )j jG Z Z -

*  can be preset. The center of Gaussian 
probability density curve should be sampling parameter 
Zj−1 in the previous (j−1)-th iteration. For the j-th iteration, 
the sampling candidate parameter jZ*  could be determined 
using the preset probability density function, which is 
obtained by adding a random variable ΔZj to the previous 
sampling parameter Zj−1 as denoted in Eq. (19). 

[ ]1 Δ , Δ ,j j j jZ Z Z Z z z-= + Î -*                   (19) 

where z is a random value. 
Step 3: An acceptance rate of candidate parameters α 

should be calculated based on Eq. (20).  

1

1 1

( | ) ( | )
min 1,

( | ) ( | )
j j j

j j j

P Z Y G Z Z
α

P Z Y G Z Z
-

- -

ì üï ïï ï= í ýï ïï ïî þ

* *

*
                (20) 

where ( | )jP Z Y*  is the posterior distribution function of 
candidate parameter jZ* , 1( | )jP Z Y-  is the posterior 
distribution function of the previous parameter Zj−1, 

1( | )j jG Z Z-
*  represents the Gaussian probability density 
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function with the center of jZ* , 1( | )j jG Z Z -
*  represents 

the Gaussian probability density function with the center 
of Zj−1. 

Step 4: This step is to judge whether the candidate 
parameters should be received or not by comparing the 
acceptance rate α with another random number θ which is 
randomly generated in the range of [0, 1] as described in 
Eq. (21). 

1

j
j

j

Z α θ
Z

Z α θ-

ì ³ïï= íï <ïî

*

                              (21) 

Step 5: Steps 2 to 4 should be repeated until the set 
maximum sampling value is reached. After the repeat process, 
both the samples of posterior distribution and probability 
density function curve can be obtained. Finally, the calibrated 
sensor bias x can be determined using the posterior 
distribution and the density function. 

In this study, the BI calibration and Metropolis Hastings 
algorithm are implemented in pycharm2019 Version 3.3, 
using the pymc3 module. Section 4.2.1 presents an example 
illustration of the calibration steps for the SAT sensor fault 
sample with −2 °C bias (10:30 a.m., Aug. 1).  

3 Research framework 

Figure 3 shows the research framework of this study 
consisting of three main parts.  

(1) Strategy validation 

The VS-BI in-situ sensor calibration strategy is validated 
using a chiller-AHU system with three target faulty sensors. 
For each faulty sensor, eight different fault amplitudes of 
biases are used. The validation process and the validation 
results are present in Sections 4.2 and 5.2, respectively. 

(2) Construction of VSs 

VS models of water/air temperatures and humidity ratios 
are constructed by three different data-driven methods. 
Performance evaluation and the hyper-parameters optimization 
are conducted so as to prepare proper VS models for the 
BI-based in-situ sensor calibration process. 

(3) Discussion of calibration parameter and data quality 

The influence of prior standard deviation on VS-BI-based 
in-situ sensor calibration results is evaluated by setting 
different standard deviations. The influence of data quality 
on VS-BI-based in-situ sensor calibration results is evaluated 
from the perspective of energy conservation (EC) equation 
and data volumes. Deviation degrees of the EC equation 
can be simulated by changing the data volumes of the 
selected data set. Hence the influences of data quality on 
the calibration results can be investigated. 

4 Case study 

Figure 4 shows the target Chiller-AHU system in the case 
study. The system contains a constant-speed air volume 
(CAV) system, including reheat coil, cooling coil, fan, etc. 
For the cooling condition, the outdoor air is mixed with the 
indoor return air, then the mixed air flows into the cooling 
coils that are cooled by the chilled water. The cooled air is 
afterward supplied to each air-conditioned area. The air 
flowrate is controlled by the fan. The control unit regulates 
the coil water flow so that air supply temperature (SAT) 
maintains around its setpoint. In summer, the indoor air 
temperature setpoint is 24 °C and the SAT setpoint is 14 °C. 
As shown in Figure 4, the Chiller-AHU system services 
for a five-zone water-cooled office building located in 
Chicago (annual average temperature is 9.99 °C, annual 

 
Fig. 3 Research framework of this study 
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average humidity is 70.34%) which is an official example in 
EnergyPlus example files (EnergyPlus 2010). The building 
is a single-story rectangular building (30.48 m × 2.44 m), 
which is composed of four external areas and one internal 
area. A 0.6 m high return air chamber is set above each area 
to ensure indoor air circulation, and each outer wall was 
equipped with windows. Details of building envelope are 
shown in Table 1. 

Refer to Choi and Yoon’s study (Choi and Yoon 2020), 
the data collected in July of the typical summer cooling 
season are used to develop VSs and the data collected in the 
first 15 days of August are used to test the developed VSs. 
As shown in Table 2 and Figure 5, all data were collected 
from 10:30 a.m. to 17:30 p.m. in weekdays with an interval 
of half an hour. Both the data collected from the system 

Table 1 Description of building envelope 

Enclosure 
structure Material 

Thermal 
conductivity
(W/(m·K)) 

Outside: polyurethane extruded board 
(100 mm) 0.245 

Roof 
Inside: reinforced concrete (150 mm) 1.95 

Outside: polyurethane extruded board 
(75 mm) 0.245 

Exterior wall 
Inside: reinforced concrete (150 mm) 1.95 

Outside: polyurethane extruded board 
(30 mm) 0.245 

Floor 
Inside: reinforced concrete (150 mm) 1.95 

Interior wall Aerated concrete block (200 mm) 0.26 

Ordinary glass (3 mm) × two 0.9 
Window 

Air layer / 

Door Grey glass (3 mm) 0.9  

shutdown state and the dynamical data collected at the 
beginning of startup should be preliminarily eliminated. In 
this study, we used the same testing data set for VS model 
performance evaluation. As shown in Figure 4, the three 
target sensors concerned include SAT and chilled water 
supply temperature (CHS) involved in the system feedback 
control loop, and the cooling water return temperature 
sensor (CWR) that is not involved in the system feedback 
control loop. 

Table 2 Data information 

Building energy system  
working timetable Data set information 

Jul. 1– 
Jul. 31 

Training set: 490 samples for 3 VS 
construction methods and the 
BI-based sensor calibration method 

Aug. 1–
Aug. 15 

Working days: only 
weekdays; 
System working 
hours: 10:30–17:30;
Sampling interval: 
30 minutes 

Testing set: 165 samples for 3 VS 
construction methods and the 
BI-based sensor calibration method 

 
Fig. 5 Illustration of working days of the HVAC system 

4.1 Setup of the target sensor bias faults 

This study validates the VS-BI in-situ sensor calibration 
strategy in two aspects: different types of sensors and different 
fault amplitudes of sensor bias faults. Table 3 shows the  

 
Fig. 4 Illustration of the target building and the chiller-AHU system with target sensors 
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Table 3 Settings of sensor faults in this study 

 
Target sensor 

Fault amplitudes 
(°C) 

Interval  
(°C) 

 
Fault type 

SAT −2 to +2 0.5 Single sensor fault 

CHS −2 to +2 0.5 Single sensor fault 

CWR −2 to +2 0.5 Single sensor fault 

 
setups of the three target faulty sensors. The sensor bias 
faults are from −2 °C to +2 °C with an interval of 0.5 °C, both 
positive and negative biases are considered. 

4.2 Calibration process of target sensors 

In the calibration process, for system within-control-loop 
sensors like SAT and CHS, it is necessary to construct  
both the system model item and the sensor measurement 
calibration item. For the system out-of-control-loop CWR 
sensor, only the sensor measurement calibration item is 
required. 

4.2.1 Calibration process of SAT 

SAT is located at the outlet side of the cooling coil. The 
system model is constructed according to the cooling coil 
energy conservation, as shown in Eqs. (22)–(26). Equation 
(22) represents the heat exchange at the air side, which can 
be obtained based on the actual measurements. Equation 
(23) represents the heat exchange at the water side, which 
is the benchmark of the system. Their difference is defined 
as the distance function of the system model calibration 

item. Meanwhile, the distance function of the sensor 
calibration item is constructed based on the correction 
function proposed in Section 2, as shown by Eq. (24). The 
sum of the two items is the final distance function, as 
shown in Eq. (25). The enthalpy h in Eq. (22) and the 
humidity in Eq. (26) cannot be directly obtained, so the 
data-driven method is used to calculate the dvir (including 
the humidity ratio of the coil air supply outlet dsup,vir and 
the humidity ratio of the coil air inlet dmix,vir) and further 
the enthalpy h by Eq. (26). Figure 6 shows an example 
illustration of the calibration steps for the SAT sensor fault 
sample with −2 °C bias (10:30 a.m., Aug. 1). This study set 
the sampling value as 16000. 

( )a a,sup a,mix aΔE h h M= - ´                         (22) 

( )w w,ret w,sup w wΔE T T M C= - ´ ´                    (23) 

a,sup,ca a,sup a,supT T x= +                             (24) 

( ) ( ) ( )22
a,sup a w a,sup,vir a,sup,ca

System model calibration item Sensor calibration item

Δ ΔD x E E T T= - + -      (25) 

( )vir1.01 2501 1.85h T d T= ´ + ´ + ´               (26) 

where ΔEa represents the heat exchange at the air side. ΔEw 
represents the heat exchange at the water side. ha,sup and 
ha,mix represent the enthalpy of the supply and mixed air, 
respectively. Ma and Mw represent the air and chilled water 
mass flowrate, respectively. Tw,sup and Tw,ret represent the 
chilled water inlet and outlet temperatures, respectively. Cw is 
the specific heat capacity of water (i.e., 4.186 kJ/(kg·°C)). 

Fig. 6 An example illustration of the VS-BI-based in-situ sensor calibration steps 
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Ta,sup,ca and Ta,sup represent the calibrated and measured  
air supply temperature, respectively. xa,sup represents the 
pre-assumed SAT calibration value which is converted to 
the mean value of a posterior distribution. Ta,sup,vir represents 
the SAT constructed by virtual sensor. 

Both data-driven and grey-box methods are used to 
construct the VS models for ha,sup, ha,mix, dsup,vir, dmix,vir, Ta,sup,vir. 
Details of the VS models (i.e., VSH_sup, VSh_mix, VSd_sup, 
VSd_mix, and VSSAT) are shown in Table 4.  

4.2.2 Calibration process of CHS 

CHS is located at the outlet of the evaporator. For a chiller 
and cooling tower system, the chiller cooling capacity 
should be equal to the heat exchange of the cooling tower 
minus the chiller power consumption. Qen is the result of the 
heat exchange of cooling tower minus the power consumption 
of chiller, and take Qen as the benchmark of the reliable 
system, as shown in Eq. (27). Equation (28) is the refrigerating 
capacity of chilled water defined as Qchw,cap, which is the 
measured value of the actual system. Equation (29) is the heat 
exchange of cooling water defined as Qcw,cap. The difference 
between Qchw,cap and Qen is defined as the system model 
calibration item. The sensor calibration item is constructed 
according to the correction function, as shown in Eq. (30). 
The sum of these two items is the final distance function, as 
shown in Eq. (31). 

en cw,capQ Q E= -                                 (27) 

( )chw,cap chw,ret chw,sup chw wQ T T M C= - ´ ´               (28) 

( )cw,cap cw,ret cw,sup cw wQ T T M C= - ´ ´                 (29) 

chw,sup,ca chw,sup chw,supT T x= +                        (30) 

( ) ( ) ( )2 2
chw,sup chw,cap en chw,sup,vir chw,sup,ca

System model calibration item Sensor calibration item

D x Q Q T T= - + -        

(31) 

where Tchw,ret and Tchw,sup represent the return and supply 
water temperatures of chilled water, respectivley. Mchw 
represents the chilled water flow. Cw is the specific heat 
capacity of water (4.186 kJ/(kg·°C)). Tcw,ret and Tcw,sup represent  

Table 4 Detailed information of the virtual sensor models 

 
Target VS 

 
Input variables 

Output 
variable

 
Method 

VSd_sup φsup, Ta,sup dsup,vir Data driven

VSd_mix φmix, Ta,mix dmix,vir Data driven

VSh_sup dsup,vir, Ta,sup ha,sup Grey-box 

VSh_mix dmix,vir, Ta,mix ha,mix Grey-box 

VSSAT Ma, Ta,mix, Mw, Tw,sup, Tw,ret Ta,sup,vir Data driven

VSCHS E, Mchw, Tchw,ret, Mcw, Tcw,ret, Tcw,sup Tchw,sup,vir Data driven

the measured return and supply water temperatures of 
cooling water, respectivley. Mcw represents the cooling water 
flow. Tchw,sup,ca represents the calibrated chilled water supply 
temperature. xchw,sup represents the pre-assumed chilled water 
supply temperature calibration value which is converted  
to the mean value of a posterior distribution. Tchw,sup,vir 
represents the CHS constructed by the VSCHS model as 
shown in Table 4. 

4.2.3 Calibration process of CWR 

Since CWR is not involved in the system feedback control 
loop, only the sensor measurement calibration item is 
required. Equations (32) and (33) present the distance 
function and the correction function, respectively. 

( ) ( )2
cw,ret cw,ret,N cw,ret,ca

Sensor calibration item

D x T T= -                    (32) 

cw,ret,ca cw,ret cw,retT T x= +                            (33) 

where xcw,ret represents the calibration constant of the CWR 
sensor. Tcw,ret,N, Tcw,ret,ca, and Tcw,ret, represent the normal, 
calibrated and measured CWR temperatures, respectively. 

5 Results and discussion 

5.1 Virtual sensor results 

5.1.1 Comparative results of three virtual sensor methods  

In this section, three methods (i.e., MLR-LS, MLR-GD, 
LSTM) are used to construct virtual sensors. The VS model 
performance is evaluated by evaluation index R2 in Eq. (34).  

( )( )
( ) ( )

2

vir , vir ,12

vir, vir ,1 1

ˆ̂

ˆ

ˆ

ˆˆ

n
i i i ii

n n
i i i ii i

y y y
R

y y y
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y
=

= =

é ù- -ê úë û=
- -

å
å å

             (34) 

where yi and vir ,ˆ iy  represent the actual value of the target 
variable and the virtual sensor construction value, respectively. 

iy  and vir ,
ˆ̂

iy  represent the average actual value and average 
construction value of the target variable, respectively. n 
represents the total number of samples of the virtual sensor 
construction testing set and i represents the i-th sample  
of testing set. R2 closer to 1 means higher construction 
accuracy.  

Figure 7 shows that all three methods have R2 around 
0.95. Comparative results indicates that LSTM shows slightly 
higher average construction accuracy in terms of R2. For 
the MLR-LS model, this study used the “statsmodels.api” 
(Schleich et al. 2016) in Python. Figures 8(a)–(d) show the 
distributions of residuals for the four VS models respectively. 
The sum squared residuals of four VS models are 1.37×10−5, 
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3.01×10−7, 4.2×10−3 and 13.8, respectively. For the MLR-GD 
model, this study used “gradientDescentMulti” (Kasai 2018) 
from the Matlab R2018 as the main function for predictive 
modeling. The learning rate for gradient descent is 0.1, the 
number of iterations is 1000. 

5.1.2 Hyper-parameter optimization results of the selected 
LSTM-based VS models 

From Section 5.1.1, LSTM should be selected as the VS 
construction method. Hyper-parameters optimization is 
conducted in two main steps (Fan et al. 2017; Wang et al. 
2020; Li et al. 2022a) using another performance evaluation 
index mean relative error ε(Vvir) by Eq. (35).  

( )

vir ,
1

vir

ˆn i i
i

i

y y
yε V n

=

-

=
å

                        (35) 

where, yi and vir ,ˆ iy  represent the actual and the VS-based 
predictive values of the target variable, respectively. n 
represents the total number of samples of the testing set 
and i represents the i-th sample of testing set. Smaller  
ε(Vvir) means higher VS construction accuracy of the target 
variable. 
Step 1: Conduct the grid search on the LSTM-based VS 

model. A combination of various hyper-parameters 
is prepared for grid search with given candidate 
values in a relatively wide range. For the structure 
of the LSTM model, this study considers the 
number of LSTM layer, the activation function and 
the optimizer. Four hyper-parameters are selected 
for optimization including Learning rate, Batch size, 
number of neurons in the hidden layer (Units) and 
number of iterations (Epoch). 

 
Fig. 7 Performance evaluations of four VS models developed by three methods 

 
Fig. 8 Distributions of residuals for four MLR-LS VS models: (a) dmix,vir , (b) dsup,vir, (c) Ta,sup,vir, and (d) Tchw,sup,vir 
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Step 2: The grid search process aims to obtain the VS 
predictive performance in terms of the evaluation 
index ε(Vvir).  

Table 5 shows the hyper-parameters tuning results after 
a comprehensive grid search on 81 combinations of four 
hyper-parameters for all four data-driven VS models.  

Radar plot in Figure 9 shows an example of the 
optimization results for the VS dsup,vir of nine combinations 
of hyper-parameters (9 from 81). After predictive performance 
comparison in terms of ε(Vvir), the optimal combination of 
hyper-parameters for the LSTM-based VSd_sup is determined 
with red color. The optimal LSTM model has parameters 
as follows: the number of LSTM layer is 1, the activation 
function is ReLU and the optimizer is Adam; learning rate 
is 0.01, Batch size is 32, number of neurons in the hidden 
layer (Units) is 19 and number of iterations (Epoch) is 150. 

5.2 In-situ sensor calibration strategy validation results 

Figures 10–12 show the calibration results of three target 

sensors under different fault amplitudes. The mean value of 
samples in the posterior distribution should be the calibration 
result. Standard deviation of the posterior distribution 
indicates the stability of calibration results. Height of the 
posterior distribution represents the probability of calibration 
results. Here, a calibration accuracy ξca is defined to determine 
the accuracy of the calibration results, as in Eq. (36).  

( )ca 1 FA ME 100%ξ = - + ´                     (36) 

where FA represents different fault amplitudes and ME 
represents calibration results. 

The average calibration accuracy of all three sensors are 
around 72%. For calibration results of SAT in Figure 10, 
the calibration accuracy increases as the absolute fault 
amplitude decreases. The maximum probability density is 
over 12.5 and standard deviation is around 0.06. For a 
normal posterior distribution, more concentrated distribution 
means higher reliability of calibration results. For calibration 
results of CHS, Figure 11 shows that the posterior distribution 
is much more concentrated. For CRW sensor that does not 

Table 5 Results of LSTM hyper-parameters optimization 

Hyper-parameters combination Target 
variable of the 

VS model 
Layer of LSTM 

[1, 2, 3] 
Activation function 

[ReLU, sigmoid, tanh] 
Optimizer [Adam, 

RMSprop, Adamax]
Learning rate 

[0.001, 0.005, 0.01]
BatchSize

[32, 64, 96]
Unit 

[6, 19, 32] 
Epoch 

[50, 100, 150] ε(Vvir)

dsup,vir 1 ReLU Adam 0.01 32 19 150 0.22%

dmix,vir 1 ReLU Adam 0.01 64 32 150 0.34%

Ta,sup,vir 1 ReLU Adam 0.01 32 6 150 0.08%

Tchw,sup,vir 1 ReLU Adam 0.01 96 32 150 0.37%

 
Fig. 9 An example of the optimization results for dsup,vir 
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involve in system feedback control loop, the average calibration 
accuracy is 99.3% as shown in Figure 12.  

5.3 Discussion on influencing factors  

5.3.1 Calibration parameter—prior standard deviation σ 

The prior distribution standard deviation is a major parameter 
affecting the in-situ sensor calibration results. This section  

mainly discusses the effect of different prior standard 
deviation on the calibration results. Table 6 lists the candidate 
prior standard deviations in the range of 0.2, 0.4, 0.8, 1 and 
1.5. For different prior standard deviations, Figures 13 and 
14 show the in-situ sensor calibration results of SAT and 
CWR, respectively. Different fault amplitudes correspond 
to different colors. The influence of different prior standard 
deviations is expressed in the form of color gradation 
changes. For each fault amplitude, darker color means  

 
Fig. 10 Posterior probability distribution and calibration results of SAT (Note: for example, for the SAT sensor fault with −2 °C bias, its 
BI-based calibration results are presented in normal distribution which is a type of Gaussian function with the red area under the 
Gaussian curve. The red color is only used to separate the −2 °C bias from the other biases. The BI-based calibration results are presented 
not only in the form of a Gaussian curve but also providing its Gaussian distribution characteristics with mean = 1.80 °C and standard 
deviation = ±0.063 °C) 

 
Fig. 11 Posterior probability distribution and calibration results of CHS 
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Table 6 Calibration results for different prior standard deviations 

Different values of σ 

Sensor 
Fault  

amplitude (°C) 0.2 0.4 0.8 1 1.5 

+2 −1.512 −1.621 −1.655 −1.664 −1.659

+1.5 −1.156 −1.244 −1.265 −1.269 −1.270

+1 −0.765 −0.820 −0.835 −0.837 −0.840

+0.5 −0.364 −0.391 −0.397 −0.396 −0.402

−0.5 0.409 0.439 0.445 0.452 0.447

−1 0.810 0.869 0.888 0.885 0.891

−1.5 1.225 1.316 1.339 1.345 1.346

SAT 

−2 1.640 1.765 1.797 1.800 1.806

+2 −2.236 −2.236 −2.236 −2.236 −2.236

+1.5 −1.799 −1.799 −1.799 −1.799 −1.799

+1 −1.260 −1.260 −1.260 −1.260 −1.260

+0.5 −0.771 −0.771 −0.771 −0.771 −0.771

−0.5 0.217 0.217 0.217 0.217 0.217

−1 0.710 0.710 0.710 0.710 0.710

−1.5 1.204 1.204 1.204 1.204 1.204

CHS 

−2 1.695 1.695 1.695 1.695 1.695

+2 −1.736 −1.928 −1.979 −1.989 −1.993

+1.5 −1.302 −1.444 −1.486 −1.493 −1.494

+1 −0.867 −0.962 −0.990 −0.996 −0.995

+0.5 −0.434 −0.483 −0.497 −0.498 −0.499

−0.5 0.435 0.482 0.497 0.497 0.501

−1 0.868 0.961 0.991 0.993 0.997

−1.5 1.300 1.444 1.488 1.487 1.493

CRW 

−2 1.737 1.929 1.983 1.991 1.994

Average calibration 
accuracy 76.33% 82.74% 84.55% 84.80% 84.94%

 

higher calibration accuracy. When prior standard deviation 
σ = 0.2, the average calibration accuracy is only 76.33%. As 
prior standard deviation σ increases, the calibration accuracy 
can be improved to a certain extent. But the potential of 
using σ to optimize the calibration accuracy is scant. When σ 
increases to a certain extent, it is not obvious to improve the 
calibration accuracy. Table 6 shows the detailed calibration 
result of three target sensors for different standard deviations. 
It seems that the prior standard deviation has almost no 
effect on the calibration results of CHS sensor. 

The standard deviation of the prior distribution generally 
depends on the prior knowledge (Yoon and Yu 2018a). 
But for most cases, the standard deviation of the prior 
distribution σ can hardly be calculated directly using the 
given data information from the building systems. Many 
researchers (Yoon and Yu 2017c, 2018a, 2018c) have explored 
the impact of prior distributions on the in-situ sensor 
calibration performance. In these studies, random error is 
regarded as the standard deviation of the prior distribution. 
However, the aforementioned studies did not provide 
enough details on how to select a proper value of the prior 
standard deviation. In practice, there are two main situations. 
The first is that the prior information cannot be determined 
by the information-poor building system. The second is that 
information-rich building system can easily calculate the 
standard deviation of the prior distribution. For practical 
applications of the first situation, if there is no additional 
prior information, the standard normal distribution usually 
can be used as the pre-assumed prior distribution (Wang  
et al. 2020), which means that σ = 1 is recommended.    
In this study, as shown in Figures 13 and 14, high calibration  

 
Fig. 12 Posterior probability distribution and calibration results of CWR 
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Fig. 13 Calibration results of SAT sensor for different prior standard 
deviations  

 
Fig. 14 Calibration results of CWR sensor for different prior 
standard deviations 

accuracy can be achieved when σ = 1. But for the case of 
σ > 1, results show no more enhanced calibration accuracy. 
Further if σ < 1, it can be found that the calibration accuracy 
decreases as the calibration parameter σ drops. Especially 
for the case of calibration parameter σ = 0.2, results show 
that the lowest calibration accuracies were obtained which 
indicates that calibration parameter σ should not be too 
small. But for practical applications of the second situation, 
prior information of the building system is clearly presented, 
the standard deviation of the prior distribution σ can be 
calculated (Sun et al. 2010; Yoon and Yu 2018a). In such 
case, the calculated σ can be used as prior standard 
deviation. For example, the calibration parameter σ was set 
as 0.3 in Yoon and Yu’s study (Yoon and Yu 2018a) while the 
calibration parameter σ was set as 10 in Sun et al.’s study 
(Sun et al. 2010) which is much larger than 1. 

5.3.2 Energy conservation factor - energy conservation 
deviation degree ε(EC) 

In practical building HVAC systems, the system measured 

data may not always satisfy the energy conservation equation 
well owing to the system operational dynamics, the 
introduced sensor bias fault amplitudes and the service 
control response. This may lead to certain errors in the 
calibration model based on the energy conservation law. 
This error is defined as the energy conservation factor ε(EC) 
which represents the deviation degree between the actual 
measured value and the reliable system reference value as 
shown in Eq. (37).  

( )

me, sy,

1
sy ,EC

n i i
i
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Y
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n

=

-

=
å

                       (37) 

where Yme,i and Ysy,i represent the measured value of the 
system model and the benchmark of the reliable system 
model, respectively. n represents the total number of samples 
in the testing set. i represents the i-th of sample of the 
testing set. A small ε(EC) means the measured data mostly 
obeys the energy conservation equation, which means a 
high-level data quality. 

In this section, the influence of ε(EC) on calibration 
results is discussed by changing the data volume of testing 
set. The sensors discussed are SAT and CHS involved in 
the system feedback control loop. By a random sampling 
manner, volumes of the testing sets are set as 1/3, 2/3 and 
100% of the original testing set separately. It should be 
noticed that each of the three new testing data set should 
cover data information of the original testing data set as 
much as possible. Figures 15 and 16 show ε(EC) and 
calibration accuracy results of SAT and CHS sensors for three 

 
Fig. 15 Influence of different data volumes on ε(EC) and calibration 
accuracy for SAT (Note: left axis—ε(EC) displayed in histogram; 
right axis—calibration accuracy displayed in dotted lines. Horizontal 
axis—fault amplitudes of the sensor bias faults. Different colors in 
the legend represent the testing data sets with three different 
volumes) 
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Fig. 16 Influence of different data volumes on ε(EC) and calibration 
accuracy for CHS 

different testing sets with data volume of 1/3, 2/3 and 100% 
respectively.  

Figure 15 shows that the data volume does not have 
significant impact the calibration accuracy of SAT sensor. 
The average calibration accuracy for three different data 
volumes are 83.1%, 82.02% and 83.89% respectively. For 
each fault amplitude, the ε(EC) could be very close to each 
other for three different data volumes. For SAT sensor, the 
data volume seems to show little influence on the ε(EC). 
The average ε(EC) for three different data volumes are 
5.67%, 5.58% and 5.48% respectively. The fault amplitude 
obviously affects the ε(EC). As the absolute fault amplitude 
increases, ε(EC) of SAT increases to a certain extent. Also, 
ε(EC) of SAT shows a certain effect on the calibration 
accuracy. As the ε(EC) increases, calibration accuracy of 
SAT increases to a certain extent. Figure 16 shows that the 
data volume has a relatively significant impact the calibration 
accuracy of CHS sensor. When the data volume is 2/3 of 
the original testing set, the highest calibration accuracy is 
78.01% on average. When the data volume is 100% of the 
original testing set, the calibration accuracy is relatively 
lower of 72% on average. Unlike the SAT sensor, different 
fault amplitudes have little influence on ε(EC) for the CHS 
sensor. Higher calibration accuracy of the CHS sensor can 
be obtained if there is a relatively lower ε(EC), which is 
consistent with the regular pattern of SAT sensor. 

As shown in Figure 15 and Figure 16, the two sensors 
SAT and CHS show very different relations between the 
ε(EC) and the calibration accuracy for eight sensor bias 
amplitudes. The main reason could be that the SAT air 
temperature data are more frequently fluctuated by time 
than the CHS water temperature data. Specifically, for the 
SAT sensor, its data fluctuation phenomenon aggravates  
as the fault amplitude increases. From Figure 15, it can be 

found that the fault amplitude has a significant effect on 
ε(EC). ε(EC) increases with the growing absolute bias fault 
amplitude for the SAT sensor. But for the CHS sensor with 
relatively less data fluctuation, Figure 16 shows different 
relations between the ε(EC) and the calibration accuracy 
for eight sensor bias amplitudes. If small-size datasets (33%, 
66%) are selected for in-situ sensor calibration, some data 
with relatively poor data quality may be eliminated. As a 
result, a smaller data set with improved data quality can be 
obtained for the further calibration process. This could 
explain why there is a big difference of the ε(EC) as the data 
volume changes in Figure 16. 

6 Conclusions 

In this study, the virtual sensor-assisted Bayesian inference 
(VS-BI) in-situ sensor calibration strategy is adopted to 
calibrate the sensor bias faults in building energy systems 
like HVAC. In a HVAC system including a chiller plant 
with air handle unit terminal, three different sensors (i.e., 
SAT, CHS and CWR) with a wide range of eight different 
levels of bias fault amplitudes are adopted to validate the 
strategy. The in-situ sensor calibration strategy is analyzed by 
considering three main influencing factors: (1) performances 
of virtual sensors constructed by different data-driven 
methods, (2) the influence of prior standard deviations σ 
on in-situ sensor calibration results and (3) the influence of 
data quality on in-situ sensor calibration from the perspective 
of energy conservation and data volumes. Main conclusions 
are as follows. 
(1) Long short term memory (LSTM) is adopted for VS 

construction with an average determination coefficient 
R-squared (R2) of 0.984 since LSTM outperforms slightly 
than MLR-LS and MLR-GD. Parameter optimization  
of LSTM can further improve the accuracy of virtual 
sensor. 

(2) The prior standard deviation σ has a scanty influence 
on the sensor calibration accuracy of SAT and CWR, 
but has almost no effect on the calibration accuracy of 
CHS. The potential of using a prior standard deviation 
σ to improve the calibration accuracy is limited, only 
8.61% on average.  

(3) For SAT and CHS sensors which are involved in system 
feedback control loop, system operational data with 
relatively lower deviation degree ε(EC) means relatively 
higher data quality. VS-BI obtains relatively high in-situ 
sensor calibration accuracy if the data quality is relatively 
high. 
Although the virtual sensor-assisted Bayesian inference 

in-situ sensor calibration strategy adopted in this study is 
validated to be capable of calibrating the sensor bias faults 
in building HVAC systems, there are still some limitations 
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of this study. Only single sensor bias faults were considered 
for performance evaluation. Also, the problem of low data 
quality was only analyzed from the perspective of energy 
conservation and data volumes. Considering the practical 
application issues, the in-situ sensor calibration strategy 
still needs further method validation and performance 
evaluation. In practical, the data quality problem may be 
more significant and simultaneous sensor faults are inevitable. 
Besides, the data limitations, algorithm computational time 
cost and model complexity should also be seriously considered 
for practical building HVAC systems. Future works would 
focus on the three main aspects: 
(1) For practical building HVAC systems, a comprehensive 

strategy validation on the in-situ sensor calibration 
performance should be conducted by analyzing more 
forms of sensor faults including bias, drift, precision 
degradation, single and simultaneous faults, etc.  

(2) Not only the in-situ sensor calibration process, but also 
the entire fault-tolerant process including sensor fault 
detection, diagnosis, reconstruction and tolerant control 
should be validated by simulation and experiment 
investigations. For simulation study, co-simulation 
platform should be prepared. For experiment study, 
both within-control-loop and out-of-control-loop types 
of sensors should be considered. 

(3) Regarding the data limitation issue in practical building 
HVAC systems, it is necessary to develop a pure 
data-driven method to overcome the requirement of 
the system model item based on physical laws. By doing 
this, it could be promising to develop an in-situ sensor 
calibration strategy using only the build-in sensor 
measurements which can be adaptive to the practical 
building system situation in the field. 
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