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Abstract 
There is a growing need for accurate and interpretable machine learning models of thermal 
comfort in buildings. Physics-informed machine learning could address this need by adding 

physical consistency to such models. This paper presents metamodeling of thermal comfort in 
non-air-conditioned buildings using physics-informed machine learning. The studied metamodel 
incorporated knowledge of both quasi-steady-state heat transfer and dynamic simulation results. 

Adaptive thermal comfort in an office located in cold and hot European climates was studied with 
the number of overheating hours as index. A one-at-a-time method was used to gain knowledge 
from dynamic simulation with TRNSYS software. This knowledge was used to filter the training 

data and to choose probability distributions for metamodel forms alternative to polynomial.   
The response of the dynamic model was positively skewed; and thus, the symmetric logistic and 
hyperbolic secant distributions were inappropriate and outperformed by positively skewed 

distributions. Incorporating physical knowledge into the metamodel was much more effective 
than doubling the size of the training sample. The highly flexible Kumaraswamy distribution 
provided the best performance with R2 equal to 0.9994 for the cold climate and 0.9975 for the hot 

climate. Physics-informed machine learning could combine the strength of both physics and 
machine learning models, and could therefore support building design with flexible, accurate 
and interpretable metamodels.  
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1 Introduction 

Thermal comfort in non-air-conditioned buildings is a major 
concern, growing with climate change. These buildings are 
in free-running mode, and therefore indoor temperatures 
are highly dependent on internal heat gains and outdoor 
conditions. Thermal comfort in non-air-conditioned buildings 
could be assessed using adaptive thermal comfort models, 
based on field studies (de Dear and Brager 1998; Nicol and 
Humphreys 2002; Li et al. 2014). These models have been 
adopted in energy standards, such as the European EN 
16798-1 standard (CEN 2019), to define the range of acceptable 
indoor conditions according to outdoor temperatures.  

Dynamic simulations, based on transient heat transfer 
models, are used to predict thermal comfort in buildings. 
Since building design implies studying a very large number 
of configurations, the computational intensiveness of dynamic 

simulations becomes an issue for studies such as optimization 
or uncertainty quantification. 

Steady-state energy balance methods offer an alternative 
with rapid calculation times, but numerous field studies have 
revealed that they are unreliable for non-air-conditioned 
buildings, considerably underestimating the overheating risk 
(Fletcher et al. 2017; Lomas and Porritt 2017; Morgan et al. 
2017). Therefore, rapid and reliable methods for assessing 
thermal comfort are needed to support the design of 
non-air-conditioned buildings.  

Machine learning offers great opportunities to address 
such a need by building mathematical models to data. 
However, despite their success in various fields of engineering 
and science, conventional machine learning approaches 
lack interpretability and physical consistency. This has led 
to the emergence of the new modeling paradigm of physics- 
informed machine learning, also referred as knowledge-guided  
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machine learning, in which prior knowledge of physical 
principles is explicitly incorporated into models (von Rueden 
et al. 2019; Karniadakis et al. 2021).  

Knowledge could be represented in machine learning 
in several ways, such as algebraic and differential equations, 
logic rules, and simulations results (von Rueden et al. 2019). 
Physics-informed machine learning is a rapidly emerging 
field that has already shown great promise in various areas; 
for instance, in solving heat transfer partial differential 
equations using neural networks (Zobeiry and Humfeld 2021), 
in climate modeling by enforcing conservation of energy 
in neural networks (Beucler et al., 2019), by incorporating 
physical principles and constraints for predicting streamflow 
from weather variables (Khandelwal et al. 2020). 

Physics-informed machine learning models for building 
energy performance have been recently presented. A physics- 
constrained recurrent neural network (RNN) model was 
developed to study the thermal dynamics of buildings 
(Drgoňa et al. 2021). Its predictions were found to be 
significantly better compared to unconstrained RNN models. 
A physics-informed ARMAX model was developed for 
model predictive control (Bünning et al. 2022). The model 
had lower computational requirements and better accuracy 
compared to random forests and input convex neural 
networks models.  

Metamodels, also referred to as surrogate models, are 
machine learning models that approximate simulation 
models. By approximating building dynamic models, 
metamodels could be used for building design with very 
low computational requirements. Polynomial regressions 
provide transparent metamodels, that are computationally 
cheaper and easier to interpret than other machine learning 
techniques such as artificial neuronal networks, support 
vector machines and kriging (Simpson et al. 2001; Li et al. 
2010). 

Several metamodels have been proposed to approximate 
dynamic models in studying thermal comfort in non-air- 
conditioned buildings. The number of overheating hours 
was metamodeled using polynomial regression, multivariate 
adaptive regression splines (MARS), kriging, radial basis 
function networks and artificial neural networks (ANN) 
(van Gelder et al. 2014). The same index was also metamodeled 
using artificial neural networks and radial basis functions 
(Symonds et al. 2015). Metamodels were used to study the 
proportion of time with overheating through support vector 
regression (Rackes et al. 2016), along with the proportion 
of time with acceptable thermal comfort using linear 
regression and MARS metamodels (Chen et al. 2017). 
Weighted temperature excess hours were also studied through 
linear regression metamodels (Breesch and Janssens 2010). 
Furthermore, degree-hours of thermal discomfort were 

studied using linear regression metamodels (Rossi et al. 
2019).  

Building optimization, which is usually a very time- 
intensive process, could be significantly more efficient when 
based on metamodels. An optimization of thermal comfort 
and energy consumption of a residential house, which 
would have not been feasible without metamodeling, was 
achieved with a drastic time reduction using an artificial 
neural network metamodel and a multiobjective genetic 
algorithm (NSGA-II) (Magnier and Haghighat 2010). Support 
vector machine metamodels provided results equivalent to 
those of dynamic simulation with lower computational 
efforts when thermal comfort and energy consumption of a 
building was optimized using various cost functions and 
optimization algorithms (Eisenhower et al. 2012).  

Thus, many studies have been conducted to metamodel 
thermal comfort in non-air-conditioned buildings, highlighting 
the important role of metamodels for building design and 
optimization. The proposed metamodels, however, were 
based on generic metamodeling techniques (polynomial 
regression, support vector regression, artificial neural 
networks, etc.), without incorporating knowledge of building 
physics. This highlights the need to develop metamodels 
based on physics-informed machine learning with better 
physical consistency, interpretability and generalizability. 
Finally, the reliability of such metamodels for non-air- 
conditioned buildings, which have high indoor temperature 
variations, is still an issue. 

Based on the knowledge of quasi-steady-state heat transfer 
in buildings, a physics-informed polynomial metamodel for 
assessing thermal comfort in non-air-conditioned buildings 
was presented by Jaffal et al. (2020). Incorporating this 
knowledge of heat transfer provided a flexible and transparent 
polynomial metamodel with low computational cost.  

The accuracy of this metamodel, however, was dependent 
on the thermal comfort index. It had good fit with thermal 
comfort indices that are consistently sensitive to factors 
influencing thermal comfort, e.g. with maximum indoor 
temperature. Conversely, it was not reliable when the 
sensitivity was not consistent, notably with the number of 
overheating hours, in particular for cold climates where 
overheating is low. To overcome this problem, an interpolation 
method was developed in the same study.  

To improve the reliability of the mentioned metamodel 
while maintaining its transparency and computational 
efficiency, metamodeling of thermal comfort was here 
based on knowledge from dynamic simulation, along with 
quasi-steady-state heat transfer. The considered thermal 
comfort index was the number of overheating hours NHo, 
for which the metamodel form was polynomial or cumulative 
distribution functions (CDF) of probability distributions. 
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Based on the information obtained from dynamic simulations, 
the data used to train the metamodel were filtered and 
probability distributions chosen for the metamodel form. 
The metamodel was then trained and its accuracy with 
various forms studied.  

2 Methods 

2.1 Metamodeling 

This study uses physics-informed machine learning to 
metamodel thermal comfort in non-air-conditioned buildings. 
The basic metamodel form is a polynomial that explicitly 
incorporates knowledge of heat transfer under quasi- 
steady-state conditions (Jaffal et al. 2020).   

With the number of overheating hours NHo as a response 
variable, this metamodel is given by 

1
2

o 0
1 1 1 1

n n n n

i i ii i ij i j
i i i j i

NH a a x a x a x x
-

= = = = +

= + + +å å åå           (1) 

where xi and xj are the metamodel features, and a0, ai, aii 
and aij are the coefficients to be determined from dynamic 
simulations. A feature xi is related to quasi-steady-state heat 
transfer. It is equal to a coefficient of heat transfer Hi (W K−1) 
for heat transfer by transmission or ventilation and to a 
seasonal heat quantity Qi (kWh) for internal or solar heat 
gains.  

This polynomial metamodel was tested on an office for 
the cold climate of Helsinki and the hot climate of Athens 
with five thermal comfort indices (Jaffal et al. 2020). It was 
trained with a low computational cost (57 runs) using a 
Box-Behnken design. Good fit was obtained when an index 
was consistently sensitive to the influencing factors, e.g. with 
maximum indoor temperature (R2 > 0.99). However, the 
metamodel was not reliable when the sensitivity was not 
consistent, notably with the number of overheating hours NHo, 
and particularly for Helsinki with a heavy thermal mass.  

To address this issue, additional physical knowledge 
obtained from dynamic simulation, based on dynamic heat 
transfer modeling, was here incorporated in the metamodel 
with the aim of improving the its fit, while maintaining  
its transparency and computational efficiency. Based on 
information obtained from dynamic simulations, training 
data were filtered and alternative metamodel forms were 
proposed based on a CDF of probability distributions. This 
avoided adding higher-order polynomial terms or using 
alternative machine learning models, which could be hard 
to interpret and decrease computational efficiency.  

The response variable NHo is bounded between a lower 
(no overheating) and an upper limit (overheating throughout 
the occupation period). It is more convenient to work with 

the proportion of time with overheating PTo, equal to the 
ratio between NHo and the total number of occupation 
hours NT, since it is bounded between 0 and 1. Therefore, 
the metamodel of PTo could have the form of a CDF of a 
probability distribution. 

For the polynomial form, the right side of Eq. (1) can 
be replaced by a scalar z. For CDF forms, PTo could be 
expressed as 

( )oPT F z=                                     (2) 

where F(z) is a CDF of a given probability distribution. The 
choice of appropriate distributions for the metamodel was 
informed by dynamic simulations results. 

The inverse of F(z), F−1(z), is expressed as 

( )
1

1 2
0

1 1 1 1

n n n n

i i ii i ij i j
i i i j i

F z z a a x a x a x x
-

-

= = = = +

= = + + +å å åå     (3) 

F−1(z) is a monotonic function called the link function. It 
leads to an ordinary second-order polynomial metamodel 
with a transformed response variable. The coefficients of this 
metamodel could be determined from dynamic simulations 
in a similar manner to those of Eq. (1).  

For example, using the CDF of the commonly used 
logistic distribution, the metamodel is given by 

( )o
1

1 e zPT F z -= =
+

                            (4) 

The corresponding link function F−1(z) is the logit link 
function (the inverse CDF of the logistic distribution) which 
is given by 

( ) ( )1 o
o

o
logit ln

1
PTF z PT

PT
- = =

-( )                  (5) 

To train the metamodel, values of PTo are first obtained 
from dynamic simulation planned according to predetermined 
sampling. The coefficients of the polynomial metamodel 
of Eq. (3) are then determined with logit(PTo) as response. 
Finally, the metamodel of the number of overheating hours 
NHo is given by the product of the trained metamodel of 
PTo (Eq. (4)) and the total number of occupation hours NT 
as follows: 

o o 1 e z
NTNH NT PT -= ⋅ =
+

                        (6) 

2.2 Case study 

For comparison purposes, metamodeling was performed 
for adaptive thermal comfort in the same office studied 
in Jaffal et al. (2020) (Figure 1). The studied features were  
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Fig. 1 View of the office studied 

related to the office facade and internal heat gains, while 
interior walls were assumed to be adiabatic. The office was 
occupied from Monday to Friday from 8:00 to 18:00 from 
the beginning of June until the end of September. The 
corresponding total number of occupation hours NT was 
equal to 860 h.  

Two typical European climates were studied: the cold 
climate of Helsinki, Finland, and the hot climate of Athens, 
Greece. Typical meteorological year (TMY2) data were 
used to obtain the climatic conditions. The corresponding 
mean outdoor air temperatures during the studied period 
were 14.1 °C and 25.3 °C, respectively. The number of 
overheating hours during the office occupation NHo was 
assessed with a heavy thermal mass (a concrete structure 
insulated from the outside) for which the metamodel of  
Eq. (1), trained using a Box-Behnken design, gave unreliable 
results for Helsinki in the mentioned study. 

An adaptive model was used to assess the thermal comfort 
in the office as suggested in the European EN 16798-1 
standard (CEN 2019). Thus, the optimal comfort temperature 

in the office θcomf was linearly correlated to the outdoor air 
temperatures. Category II of thermal comfort (normal level 
of expectation), used for new buildings and renovations, 
was considered. Consequently, overheating occurred 
when the indoor operative temperature was higher than 
θcomf + 3 K.  

Considering the office design, seven features were studied 
(Table 1). Each freature corresponded to a heat transfer in 
the office. To train the metamodel, these features were varied 
by varying corresponding parameters of Table 1 between 
lower and upper levels presented in Table 2. Coded values 
of these parameters (varying from −1 to 1) were used for 
the metamodeling. The metamodel was trained using least 
squares regression from dynamic simulations performed 
with TRNSYS software (Klein et al. 2004). 

Two training samples were obtained using Latin 
hypercube sampling. In the first sample, LHS200, with 200 
dynamic simulations performed, the range of the coded 
values of each parameter varied was divided into 200 intervals 
of length 0.01 and equal probability. To study the effect of 
sample size, a second sample, LHS400, was considered, 
with 400 dynamic simulations performed. Finally, the test 
sample was obtained from an additional sample of 200 runs 
with a random combination of the parameters of Table 2. 

Prior knowledge was integrated into the metamodel, 
with a quasi-steady-state assumption of heat transfer in the 
metamodel features (Eq. (1) and Table 1), and by choosing 
the metamodel form and filtering the training data using 
information from TRNSYS dynamic simulations. Information 
was obtained from dynamic simulations using a one-at-a-time 
method in which in each parameters of Table 2 varied  

Table 1 Metamodel features and corresponding parameters varied to train the metamodel 

No. Feature Parameter varied 

1 Heat transfer coefficient for transmission through opaque walls Htr,ow Opaque wall U-value Uow (W m−2 K−1) 

2 Heat transfer coefficient for transmission through windows Htr,w Window U-value Uw (W m−2 K−1) 

3 Heat transfer coefficient for ventilation Hvent Ventilation rate qv,vent (m3 h−1) 

4 Heat transfer coefficient for night ventilation Hnvent Night ventilation rate qv,nvent (ACH) 

5 Quantity of heat due to internal gains Qig 
Internal heat gains during occupation pig,o (W m−2) with 0.1 pig,o 
during inoccupation 

6 Solar heat gain through the south window Qso,ws Solar heat gain coefficient (SHGC) of the south window SHGCws 

7 Solar heat gain through the west window Qso,ww SHGC of the west window SHGCww 

Table 2 Lower and upper levels of the parameters varied for training the metamodel 

No. 1 2 3 4 5 6 7 

Parameter varied Uow (W m−2 K−1) Uw (W m−2 K−1) qv,vent (m3 h−1) qv,nvent (ACH) pig,o (W m−2) SHGCws SHGCww 

Lower level 0.1 0.7 100 0 15 0.4 0.4 

Upper level 0.5 2.7 250 5 40 0.7 0.7 
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independently while all others were kept constant  
(Section 2.3).  

2.3 Information from dynamic simulations 

To obtain information from dynamic simulations, the 
response variable of the dynamic model, i.e. the number  
of overheating hours NHo given by dynamic simulation, 
was studied using a one-at-a-time method in which each 
parameter of Table 2 varied independently. The results 
obtained are presented in Figure 2 for Helsinki and Figure 3 
for Athens, with coded values of the studied parameters 
(varying from −1 to 1). The central point corresponded to 
all the parameters at their mean values (coded values equal 
to zero). Eight additional simulations were conducted for 
each parameter varying from its lower to its upper level. 
Furthermore, a second-order polynomial was fitted for 
each parameter when at least three of the corresponding 
values of NHo were non-zero. Information obtained from 
the analysis of these results was used to support the 
metamodel. 

For Helsinki, it is obvious that the dynamic model was 
not consistently sensitive to the studied parameters (Figure 2). 
No overheating occurred for any of the values of Uow; when 
Uw ≥ −0.25, qv,vent ≥ 0 and qv,nvent ≥ −0.75; and when pig,o ≤ 0, 
SHGCws ≤ 0.5 and SHGCww ≤ 0.75. Therefore, the polynomial 

assumption of Eq. (1) could not be valid for the levels of the 
parameters in Table 2, even according to a single feature. 
This could explain why the metamodel was not reliable with 
NHo for the same case study using a Box-Behnken design 
(Jaffal et al. 2020).  

Thus, to achieve good accuracy, the polynomial 
metamodel must be trained considering only the sensitive 
range of the dynamic model, i.e. when NHo is not equal to 
zero or the total number of occupation hours NT = 860 h. 
Thus, the training data of samples LHS200 and LHS400 
should be filtered by excluding data with NHo equal to 
these comfort limits. Figure 2 also reveals that, when the 
dynamic model was sensitive, second-order polynomials 
could accurately associate NHo with each studied parameter 
with R2 > 0.989.  

Furthermore, the dynamic model had low sensitivity 
when NHo was low. For instance, when pig,o varied from 0.25 
to 0.5, ΔNHo/Δpig,o = 164 h; from 0.5 to 0.75, ΔNHo/Δpig,o = 
648 h; and from 0.75 to 1, ΔNHo/Δpig,o = 1064 h. This 
illustrates the highly nonlinear variation of thermal con-
ditions in a non-air-conditioned building; and thus, linear 
metamodels were not considered in this study. Moreover, 
for qv,vent = −0.5 and pig,o = 0.5, when overheating was 
low, the values of NHo obtained were below the fitted 
polynomial curves. This suggested that the dynamic model 
had distinct behavior close to zero. 

 
Fig. 2 Number of overheating hours according to the parameters varied to train the metamodel for Helsinki: (a) U-values Uow and Uw, 
and airflow rates qv,vent and qv,nvent; and (b) internal heat gains pig,o, and solar hat gain coefficients SHGCws and SHGCww 

 
Fig. 3 Number of overheating hours according to the parameters varied to train the metamodel for Athens: (a) U-values Uow and Uw, and 
airflow rates qv,vent and qv,nvent; and (b) internal heat gains pig,o, and Solar Hat Gain Coefficients SHGCws and SHGCww 
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For Athens, the dynamic model was consistently sensitive 
to the parameters studied with significant overheating 
observed. Overheating occurred throughout the occupation 
period for qv,nvent = −1 and pig,o = 1. Thus, the training data 
should be filtered by excluding data with NHo = NT. The 
fitted curves show that NHo could be accurately associated 
with each parameter using second-order polynomials with 
R2 > 0.992. However, NHo reached NT slowly, in particular 
when qv,nvent was close to −1 and pig,o close to 1. For instance, 
when pig,o varied from 0.25 to 0.5, ΔNHo/Δpig,o = 140 h; 
from 0.5 to 0.75, ΔNHo/Δpig,o = 52 h; and from 0.75 to 1, 
ΔNHo/Δpig,o = 36 h. Therefore, the dynamic model had also 
distinct behavior close to NT. 

The results also show that NHo was monotonic, increasing 
according to U-values and airflow rates and decreasing 
with heat gains. Moreover, NHo increased more rapidly 
at low levels (in Helsinki) than when approaching NT (in 
Athens). This suggests that the dynamic model response 
could be positively skewed. Thus, symmetric probability 
distributions may not be appropriate for the metamodel 
form; and positively skewed distributions may be more 
fitting. This is not conclusive, however, because a building’s 
thermal behavior differs from one climate to another. Several 
probability distributions that may be appropriate are 
presented in Section 2.5. 

2.4 Training data filtering 

Based on the information obtained from dynamic simulations, 
the training data of both the LHS200 and LHS400 samples 
were filtered to consider only the sensitive range of the 
dynamic model in the training, i.e. by excluding data with 
response NHo equal to the comfort limits (NHo = 0 or NHo = 
NT = 860 h). Moreover, to consider the distinct behavior of 
the dynamic model close to these comfort limits, additional 
training data filtering was conducted by excluding data 
with NHo close to these latter.  

Thus, several data were used to train the metamodel,  
in each a data point was considered when NHo, given by 
dynamic simulation, was in the following range: 

( ) ( )
o

100% 100%
2 2

NT DP NT DPNH- +
< <          (7) 

where NT is the total number of occupation hours (NT = 
860 h) and DP is the domain percentage considered for the 
training data (%). 

For training the polynomial metamodel, six domain 
percentages DP were studied for each climate and each 
sample, ranging from 90% to 100%, in increments of 2%. 
These are presented in Table 3 with the corresponding 
domains of NHo considered for the training. For simplicity, 

Table 3 Domain percentages DP and corresponding domains of 
NHo considered for the training of the polynomial metamodel 

Domain percentage DP Training domain (h) 

90% ]43.0, 817.0[ 

92% ]34.4, 825.6[ 

94% ]25.8, 834.2[ 

96% ]17.2, 842.8[ 

98% ]8.6, 851.4[ 

100% ]0, 860[ 

 
training of the metamodel with probability distribution 
forms was conducted with only three values of DP: 90%, 
95% and 100%. 

2.5 Probability distributions studied 

An abundance of probability distributions is available in 
the literature. In particular, a probability distribution could 
be a member of the exponential family (normal, logistic, 
gamma, etc.). The choice of distributions studied was here 
informed by dynamic simulation results with the aim of 
making the metamodel response consistent with that of the 
dynamic model. To preserve metamodel simplicity and 
computational efficiency, simple and well-known distributions 
were selected. 

Both symmetric and asymmetric distributions were 
studied and the premise that the response variable NHo 
is positively skewed was tested. The CDFs of the studied 
distributions are presented with their link functions in 
Table 4, and CDF curves are illustrated in Figure 4.  

The symmetric logistic distribution (Eq. (4) and 
Figure 4(a)) plays an important role in the statistical 
literature  and it  is  the most  common in regression when 

Table 4 Cumulative distribution functions (CDF) of the probability 
distributions studied with their corresponding link functions 
(inverse CDF) 

Distribution CDF Link function 

Logistic o
1

1 e zPT -=
+  

( ) o
o

o
logit ln 1

PTz PT PT= =
-( )

Hyperbolic 
secant 

2
o

2 arctan eπ
πzPT = ( ) o

2 2ln tanπ πz PT= ( )( )  

Gumbel e
o e zPT --=  ( )oln( ln )z PT=- -  

Complementary 
Gumbel 

e
o 1 e zPT -= -  ( )oln( ln 1 )z PT= - -  

Skew logistic ( )
o

1
1 e z αPT

-
=

+
 

1/
o

1/
o

ln
1

α

α

PT
z

PT
=

-( )  

Fréchet o e αzPT --=  ( )1/
oln αz PT=- -  

Kumaraswamy ( )o 1 1 βαPT z= - -  ( )
11

o1 1 αβz PT= - -( )  
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the response is bounded between lower and upper limits. 
Its CDF is comparable to that of the standard normal 
distribution, but it is generally preferable because of its 
simplicity and more readily interpretable results. It has 
been extensively used when studying building energy 
performance, notably thermal comfort such as in Haldi and 
Robinson (2008), and in Takasu et al. (2017). 

The hyperbolic secant distribution (Figure 4(a)) is an 
alternative to the logistic distribution, although it is much 
less known. It is also symmetric, but it is more leptokurtic, 
i.e. it has heavier tails and a higher peak at the mean. Its 
CDF is given by 

( )
π
22 arctan e

π
zF z = ( )                              (8) 

Considering that the response NHo of the dynamic model 
appeared to be positively skewed, logistic and hyperbolic 
secant distributions may not guarantee good fit, and positively 
skewed distributions would provide better fit. This was 
first tested with the metamodel having forms of asymmetric 
Gumbel distribution together with its complementary 
(Figure 4(a)). The Gumbel distribution is a special case   
of the generalized extreme value distribution. Its CDF is 
expressed as follows:  

( ) ee zF z --=                                     (9) 

and that of its complementary as follows: 

( ) e1 e zF z -¢ = -                                (10) 

The Gumbel distribution is positively skewed. It has 
light lower tail and upper tail similar to that of the logistic 
distribution. Its complementary is consequently negatively 
skewed with a light upper tail. The Gumbel distribution is 
widely used in various areas of engineering, notably to study 
earthquakes, flood frequency, rainfall and wind speed (Kotz 
and Nadarajah 2000). 

However, the Gumbel distribution and its complementary 
have constant positive and negative skewness, respectively, 
and metamodeling would be better with flexible distributions. 
A simple flexible distribution is the skew logistic (generalized 
logistic type I) which is a generalization of the logistic 
distribution (Nagler 1994). Its CDF is given by 

( )
( )

1
1 e z αF z

-
=

+
                             (11) 

where α > 0 is the shape (skewness) parameter. 
This distribution can have different shapes with negative 

skewness (α < 1) or positive skewness (α > 1); and corresponds 
to the standard logistic distribution for α = 1 (Figure 4(b)).  

The Fréchet distribution (Fréchet 1928) was also 
considered. Like the Gumbel distribution, it is a special 

 
Fig. 4 Cumulative distribution functions (CDF) of the probability distributions: (a) symmetric (logistic and hyperbolic secant) and constant
asymmetry (Gumbel and its complementary), (b) skew logistic, (c) Fréchet, and (d) Kumaraswamy 
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case of the generalized extreme value distribution. It is also 
positively skewed, but it is characterized by a heavy upper 
tail (Figure 4(c)). Its CDF is given by 

( ) ,e 0αzF x z--= >                            (12) 

where α > 0 is the shape parameter.  
The Fréchet distribution has many applications including 

earthquakes, rainfall and wind speed (Kotz and Nadarajah 
2000; Harlow 2002).  

Finally, the two-parameter Kumaraswamy distribution 
was studied (Kumaraswamy 1980). This is a double-bounded 
distribution defined on the finite interval [0, 1]. Its CDF is 
expressed as  

( ) ( )1 1 , 0 1βαF z z z= - - < <                   (13) 

where α > 0 and β > 0 are the parameters that govern the 
shape of the CDF as exemplified in Figure 4(d).  

This distribution was created by Kumaraswamy (1980) 
for applications in hydrology. It is very flexible; depending 
on the values and α and β, its probability density function 
can be unimodal, uniantimodal, increasing, decreasing or 
constant, in the same way as the beta distribution (Jones 
2009), but it is considerably simpler. The Kumaraswamy 
distribution has received considerable interest in hydrology. 

Despite its numerous advantages however, it has been little 
explored in the literature, as pointed out by Jones (2009). 

3 Results and discussion 

3.1 Dynamic simulation results 

Two Latin hypercube samples, LHS200 and LHS400, were 
used to train the metamodel. The cumulative frequencies of 
the number of overheating hours NHo, as given by the results 
of the corresponding dynamic simulations, are illustrated 
in Figure 5. The simulation numbers used to train the 
polynomial metamodel versus the domain percentage DP 
are illustrated in Figure 6.  

For Helsinki, with both samples, more than the half the 
data points had NHo outside the domains considered; and 
were thus excluded from the training data. For instance, 
with the LHS200 sample, 64% of the 200 data points had 
NHo ≤ 43 h and were thus excluded for DP = 90%; and 57% 
of them had NHo = 0 and were excluded for DP = 100%. 
The maximum value of NHo in the same sample was 846 h 
with only one data point excluded for DP ≤ 98%. Thus, out of 
200 simulations, training was performed with a minimum 
of 71 for DP = 90% and a maximum of 86 for DP = 100%.  

For Athens, NHo was higher than 277 h for the LHS200 

 
Fig. 5 Cumulative frequencies of the number of overheating hours NHo as given by the results of LHS200 an LHS400 samples: (a) Helsinki
and (b) Athens  

 
Fig. 6 Number of simulations used to train the polynomial metamodel for Helsinki and Athens: (a) LHS200 sample and (b) LHS400 
sample 
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sample, and higher than 200 h for the LHS400 sample; and 
thus none of the data points were excluded for having NHo 
below the domain considered for training. Conversely, 
many data points were excluded for having NHo above this 
domain. For instance, with the LHS200 sample, 37% of the 
200 dynamic simulations had NHo ≥ 817 h and were thus 
excluded for DP = 90%; and 19% of them had NHo = NT = 
860 h and were excluded for DP = 100%. The corresponding 
numbers of dynamic simulations included in the training 
were, respectively, 127 and 163. Finally, comparable percentages 
of data points excluded were obtained of the LHS400 sample 
for both climates. 

For the metamodel forms based on probability 
distributions, the metamodel was trained with the same 
data as the polynomial metamodel (LHS200 and LHS400 
samples), without performing any additional dynamic 
simulation. Three domain percentages DP were studied, 90%, 
95% and 100%. For DP = 95%, training with the LHS200 
sample was performed with 76 data points for Helsinki, and 
140 for Athens; and training with the LHS400 sample with, 
respectively, 143 and 290 data points. 

Figure 6(a) suggests that, for Helsinki, both samples had 
wide ranges of NHo: 0 ≤ NHo ≤ 846 h for the LHS200 sample, 
and 0 ≤ NHo ≤ 825 h for the LHS400 sample. Thus, all the 
studied probability distributions may be suitable for this 
cold climate. However, for Athens, with 277 h ≤ NHo ≤ 860 h 
for the LHS200 sample, and 200 h ≤ NHo ≤ 860 h for the 

LHS400 sample, the results did not cover a large part of the 
domain of NHo (the lowest 32% for the LHS200 sample and 
23% for LHS400 sample). Thus, probability distributions with 
left tails were not considered for this hot climate, and only 
the very flexible Kumaraswamy distribution was studied. 

3.2 Polynomial form 

The results of polynomial metamodel of Eq. (1) were 
compared with those of dynamic simulation using a test 
sample of 200 runs. The corresponding mean and maximum 
absolute errors, RMSE and coefficient of determination R2 
according to the domain percentage DP are illustrated in 
Figure 7 for Helsinki and Figure 8 for Athens. 

The results revealed that the domain percentage DP 
had a more significant impact on accuracy than the sample 
size. For Helsinki with DP = 100%, increasing the number of 
simulations performed from 200 to 400 simulations decreased 
the mean absolute error, RMSE and maximum absolute 
error by 6%, 10% and 30% respectively, and increased R2 
from 0.9912 to 0.9927. Reducing the DP from 100% to 96% 
with the LHS200 sample, reduced these errors by 45%, 47% 
and 49%, respectively, and increased R2 to 0.9974, although 
the size of the corresponding training sample was also reduced 
from 86 to 77. A comparable improvement of accuracy was 
obtained for the LHS400 sample, which gave the best accuracy 
for Helsinki with DP = 96%.  

 
Fig. 7 Errors and coefficients of determination R2 of the polynomial metamodel for Helsinki according to the domain percentage:
(a) mean absolute error, (b) RMSE, (c) maximum absolute errors and (d) coefficient of determination R2 
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A dramatic improvement of accuracy was obtained for 
the same climate due to filtering the data. For the LHS200 
sample, when training with DP = 96% instead of using   
all the 200 results, the mean absolute errors, RMSE and 
maximum absolute errors were reduced by 88%, 84% and 
78%, respectively, and R2 increased from 0.9074 to 0.9974. 
For the LHS400 sample, when training with DP = 96% 
instead of using all the 400 results, the corresponding error 
reductions, were 88%, 84% and 86%, respectively, and R2 
increased from 0.9219 to 0.9978.  

Furthermore, the present method performed much 
better than the interpolation method used for the same 
case study (Jaffal et al. 2020), while being simpler. With the 
LHS400 sample and DP = 96%, the RMSE was reduced   
by 55% and the maximum absolute error by 46%, while R2 
increased from 0.9892 to 0.9978. 

For Athens with DP = 100%, increasing the number of 
simulations conducted from 200 to 400 decreased mean 
absolute error, RMSE and maximum absolute error by 24%, 
24% and 37%, respectively, and increased R2 from 0.9920 to 
0.9952. Reducing DP from 100% to 92% with the LHS200 
sample reduced these errors by 43%, 44% and 49%, 
respectively, and increased R2 to 0.9975. The best accuracy 
was with domain percentages of 90% and 92%, between 
which the variation of the errors and R2 was not significant; 
and for which sample size had low impact. 

Filtering the data also had a dramatic impact on accuracy 
for Athens. For the LHS200 sample, when training with 

DP = 92% instead of using all 200 results, the mean absolute 
errors, RMSE and maximum absolute errors were reduced 
by 67%, 65% and 66%, respectively, and R2 increased from 
0.9803 to 0.9975. For the LHS400 sample, the corresponding 
error reductions were 62%, 59% and 56%, respectively, while 
R2 increased from 0.9853 to 0.9975.  

3.3 Logistic and hyperbolic secant forms 

The metamodel with probability distribution forms was 
trained for Helsinki using the same dynamic simulation 
results obtained for the polynomial metamodel, considering 
three domain percentages DP: 90%, 95% and 100%. The 
results are presented for the LHS400 sample (400 runs) that 
gave more accurate results than the LHS200 sample (200 
runs). For comparison, the results of the LHS200 sample 
are presented in each section for configurations considered 
to be the best, with the R2 coefficient used for the choice. 
For the logistic and hyperbolic secant forms (Eq. (4) and 
Eq. (8), respectively), errors and R2 coefficients obtained 
with the LHS400 sample are presented in Table 5. 

The logistic distribution showed better accuracy than 
the more leptokurtic hyperbolic secant distribution. Its best 
fit was for a domain percentage DP = 90% with R2 = 0.9960, 
but the difference with the fit for DP = 95% (R2 = 0.9953) 
was low as compared to the difference with that for DP = 
95% and DP = 100% (R2 = 0.9778).  

The accuracy obtained with these symmetric probability  

 
Fig. 8 Errors and coefficients of determination R2 of the polynomial metamodel for Athens according to the domain percentage:
(a) mean absolute error, (b) RMSE, (c) maximum absolute errors and (d) coefficient of determination R2 
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distributions, however, was no better than that achieved with 
the polynomial form, and as such they were not appropriate 
alternatives. The mentioned best accuracy of these forms 
had mean absolute error, RMSE and maximum absolute 
error higher by, respectively, 75%, 40% and 69% than those 
of the polynomial form with DP = 96% (R2 = 0.9978). 

With the LHS200 sample, the best fit was obtained for 
the logistic form with DP = 90%, with mean absolute error, 
RMSE and maximum absolute error equal to 9.1 h, 16.5 h 
and 74.7 h, respectively, and R2 = 0.9929. Thus, although the 
accuracy improvement between the LHS200 and LHS400 
was significant, it was again less effective than considering, 
for the LHS400 sample, a domain percentage of DP = 95% 
instead of DP = 100%. 

3.4 Gumbel and complementary Gumbel forms 

The positively skewed Gumbel distribution (Eq. (9)) provided 
very good results in contrast to its complementary (Eq. (10)) 
which is negatively skewed and was inappropriate (Table 6). 
This is in accordance with the results of Figures 2 and 3 in 
which the dynamic model response appeared to be positively 
skewed.  

The domain percentages also had a significant impact 
on accuracy. For the Gumbel form, with DP = 95%, mean 
absolute error, RMSE and maximum absolute error were 
reduced by 13%, 21% and 16%, respectively, compared to 
those with DP = 100%. However, between the results for 
DP = 90% and DP = 95%, the difference was significant 
only in terms of maximum absolute error (38.7 h and 33.0 h, 
respectively). 

The metamodel with the Gumbel form and DP = 95% 
had lower mean absolute error and RMSE than those of 
with the polynomial form and DP = 96%, by 18% and 24%, 
respectively. Its maximum absolute error, however, was not 
lower (33.0 h for the former and 32.5 h for the latter).  

Moreover, the Gumbel form showed dramatically better 
accuracy when compared to the logistic form. The mean 
absolute error, RMSE and maximum absolute error of the 
former with DP = 95%, were lower by more than 40% than 
those of the latter with DP = 90%. The best accuracy of the 
LHS200 sample was with the Gumbel form and DP = 90%, 
with a mean absolute error, RMSE and maximum absolute 
error equal to 4.1 h, 9.1 h and 45.8 h, respectively, and 
R2 = 0.9977. Thus, the error reduction using the LHS400 
sample was significant with mean absolute error, RMSE and 
maximum absolute error reduced by 15%, 26% and 28%, 
respectively, with DP = 95%.  

The asymmetry in the dynamic model results, however, 
could be higher or lower than that provided by the Gumbel 
distribution. Flexible asymmetric distributions, trained with 
the same samples, were studied and are presented below. 

3.5 Skew logistic form 

The first flexible distribution studied for the metamodel 
form was the skew logistic (Eq. (11)). This distribution 
could be negatively skewed (0 < α < 1) or positively skewed 
(α > 1). As expected, only positively skewed shapes were 
appropriate (Figure 9). 

The best fit was with DP = 95% and ln(α) = 5 with a 
mean absolute error, RMSE and maximum absolute error 

Table 5 Errors and coefficients of determination R2 of the metamodel with the logistic and hyperbolic secant forms trained with the 
LHS400 sample 

 
Metamodel form Logistic Hyperbolic secant 

Domain percentage DP 90% 95% 100% 90% 95% 100% 

Mean absolute error (h) 7.5 7.4 13.7 9.2 9.1 16.9 

RMSE (h) 12.4 13.2 30.9 14.8 15.9 38.7 

Maximum absolute error (h) 54.8 59.3 140.4 60.0 74.6 175.2 

R2 0.9960 0.9953 0.9778 0.9945 0.9934 0.9667 

 

Table 6 Errors and coefficients of determination R2 of the metamodel with Gumbel and Complementary Gumbel forms trained with the 
LHS400 sample 

 
Metamodel form Gumbel Complementary Gumbel 

Domain percentage DP 90% 95% 100% 90% 95% 100% 

Mean absolute error (h) 3.5 3.5 4.0 9.4 10.0 20.6 

RMSE (h) 6.9 6.8 8.5 17.0 20.3 53.0 

Maximum absolute error (h) 38.7 33.0 39.4 79.9 113.3 324.8 

R2 0.9987 0.9988 0.9981 0.9922 0.9885 0.9354  
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equal to 3.5 h, 6.8 h and 32.4 h, respectively, and R2 = 0.9987. 
Nevertheless, values of these indicators did not vary 
significantly after ln(α) = 3, i.e. α = 20; except for the 
maximum absolute error, which increased with DP = 95% 
from 28.7 h with ln(α) = 3 to 32.4 h with ln(α) = 5.  

With ln(α) = 5, the domain percentage DP = 95% gave 
mean absolute error, RMSE and maximum absolute error 
values lower by respectively 13%, 22% and 19% than those 
obtained with DP = 100%. The difference between the 
results for DP = 90% and DP = 95% was significant only in 
terms of maximum absolute error (38.1 h for DP = 90% 
and 32.4 h for DP = 95%). The best fit of the skew logistic 
form gave results similar to those of the Gumbel form 
(Section 3.4), the only noticeable difference being a slightly 
lower maximum absolute error (32.4 h for the former and 
33 h for the latter). 

With the LHS200 sample, the best obtained accuracy 
was for DP = 90% and ln(α) = 5, with mean absolute error, 
RMSE and maximum absolute error equal to 4.2 h, 9.1 h 
and 46.0 h, respectively, and R2 = 0.9977. Thus, these errors 
were reduced by 15%, 26% and 30%, respectively, using the 
LHS400 sample. 

Finally, it should be noted that, when studying building 
energy performance, where simplifications are very common, 
low sensitivity to shape parameters, such as that obtained 
for α > 20, is an important advantage. In particular, in 

building standards, it is convenient that such parameters do 
not vary significantly from one building to another. 

3.6 Fréchet form 

The second flexible distribution studied was the positively 
skewed Fréchet distribution, which has a heavy upper tail 
(Eq. (12)). Good accuracy was obtained for high values of 
the shape parameter α (Figure 10); i.e. when the upper tail 
of this distribution was not too heavy to approximate the 
number of overheating hours NHo (Figure 2). For each 
domain percentage DP, the best fits were obtained for α at 
its highest value (α = 20). The best one was for DP = 95% 
with mean absolute error, RMSE and maximum absolute 
error equal to 3.7 h, 7.6 h and 55 h, respectively, and R2 
equal to 0.9984. A lower maximum absolute error (42.9 h), 
however, was obtained for DP = 100% with the same value 
of α. The difference between fits with DP = 90% and DP = 
95% was only significant in terms of maximum absolute 
error, with a lowest value of 60.8 h for the former. For the 
LHS200 sample, the best accuracy was for DP = 90% and 
α = 20, with mean absolute error, RMSE and maximum 
absolute error equal to 4.2 h, 9.4 h and 44.9 h, respectively, 
and R2 = 0.9976. 

Finally, the Fréchet form was not a better alternative  
to the Gumbel and skew logistic forms since it offered 

 
Fig. 9 Errors and coefficient of determination R2 for three domain percentages DP according to the logarithm of the shape parameter 
α for the metamodel with the skew logistic form trained with the LHS400 sample: (a) mean absolute error, (b) RMSE, (c) maximum 
absolute error and (d) coefficient of determination R2 
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comparable mean absolute error and RMSE, but a higher 
maximum absolute error.  

3.7 Kumaraswamy form 

The last form considered was that of the Kumaraswamy 
distribution, which has two shape parameters α and β   
(Eq. (13)). Due to its high flexibility, this form was studied 
for Helsinki and also for Athens. The best accuracy was 
obtained with domain percentages DP of 95% For Helsinki 
and 90% for Athens. The corresponding errors and coefficient 
of determination R2 according to the shape parameters are 
presented in Figure 11 for Helsinki and Figure 12 for Athens, 
with α equal to 1.5, 2, 2.5 and 3. 

The results reveal that this distribution had excellent fits 
for both climates when values of α and β were appropriate. 
Moreover, when the value of one parameter (α in Helsinki 
and β in Athens) was appropriate, the sensitivity to the 
second was low; e.g. for α = 1.5 in Helsinki, β had low 
impact on accuracy when it was higher than 3; and for β = 
1.5 in Athens, α had limited impact except for maximum 
absolute error. 

The best fits were obtained for 1.5 < α < 2 and β > 5 in 
Helsinki; and for 1 < α < 2 and 1.5 < β < 2.5 in Athens. For 
each domain percentage DP studied, Table 7 presents the 
errors and R2 for fits which were nearly the best: with 
α = 1.75 and β = 9 for Helsinki, and with α = 1.5 and β = 1.5 

for Athens. For each climate, the difference between fits with 
DP = 90% (best results in Athens) and DP = 95% (best results 
in Helsinki) was only significant in terms of maximum 
absolute error. 

The Kumaraswamy form outperformed all the studied 
forms. For Helsinki, Table 8 presents the error reduction of 
its best fit (DP = 95%, α = 1.75, β = 9) as compared to those 
of the polynomial (DP = 96%), logistic (DP = 90%) and 
Gumbel (DP = 95%) forms. It should be noted that the skew 
logistic form had results similar to those of the Gumbel 
form, while the Fréchet form had comparable mean absolute 
error and RMSE and higher maximum absolute error than 
the latter. 

For Athens, the Kumaraswamy form with DP = 90%, 
gave slightly better results than the polynomial form with 
DP = 92%, with mean absolute error RMSE and maximum 
absolute errors lower by 3%, 3%, and 8%, respectively. This 
low difference was due to the fact that the values of NHo, 
as given by dynamic simulation for the LHS400 sample, 
varied between 200 h and NT = 860 h (Figure 7); thus a 
polynomial could have trained the results without the need 
to approximate the behavior of the dynamic model for NT 
close to zero. Therefore, the best fit of the Kumaraswamy 
form was achieved with low values of the shape parameters 
(α = 1.5 and β = 1.5) close to (α = β = 1) for which this 
form coincides with a second-order polynomial form.  

With the LHS200 sample, the best accuracy for Helsinki  

 
Fig. 10 Errors and coefficient of determination R2 for three domain percentage DP according to the shape parameter α for the 
metamodel with the Fréchet distribution trained with the LHS400 sample: (a) mean absolute error, (b) RMSE, (c) maximum absolute 
error and (d) coefficient of determination R2 
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Fig. 11 Errors and coefficient of determination R2 of the metamodel with the Kumaraswamy form for Helsinki according to the shape
parameters α and β: (a) mean absolute error, (b) RMSE, (c) maximum absolute error and (d) coefficient of determination R2. The results
were obtained with the LHS400 sample and a domain percentage DP of 95% 

 
Fig. 12 Errors and coefficient of determination R2 of the metamodel with the Kumaraswamy form for Athens according to the shape
parameters α and β: (a) mean absolute error, (b) RMSE, (c) maximum absolute error and (d) coefficient of determination R2. The results
were obtained with the LHS400 sample and a domain percentage DP of 90% 
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Table 8 Error reduction for Helsinki with the Kumaraswamy 
form (DP = 95%, α = 1.75, β = 9) as compared to the polynomial 
(DP = 96%), logistic (DP = 90%) and Gumbel (DP = 95%) forms 

Metamodel form Polynomial Logistic Gumbel

Mean absolute error reduction −52% −72% −41% 

RMSE reduction −49% −64% −34% 

Maximum absolute error reduction −42% −65% −42% 

 
was for DP = 95%, α = 1.5 and β = 5; with mean absolute 
error, RMSE and maximum absolute error equal to 2.4 h, 
5.6 h and 23.1 h, respectively, and R2 = 0.9992. The errors 
were thus between 15% and 20% lower with the LHS400 
sample. For Athens, the best accuracy was for DP = 95%,  
α = 1.75 and β = 1.5; with mean absolute error, RMSE and 
maximum absolute error equal to 5.2 h, 7.4 h and 22.7 h, 
respectively, and R2 = 0.9976. Thus, the sample did not 
have a major effect for this hot climate (slightly lower mean 
absolute error and RMSE, and slightly higher maximum 
absolute error with the LDH400 sample). This was also the 
case for the polynomial form with suitable domain percentages 
(Figure 8). 

To illustrate the accuracy of the metamodel with the 
Kumaraswamy form, Figure 13 presents, for Helsinki (DP = 
95%, α = 1.75, β = 9) and Athens (DP = 90%, α = 1.5, β = 1.5),  
a comparison between its results and those of the TRNSYS 
dynamic simulation for the same testing sample of 200 
simulations (corresponding errors and R2 presented in Table 7). 

 
Fig. 13 Number of overheating hours NHo as given by dynamic 
simulation and the metamodel with Kumaraswamy form trained 
with the LHS400 sample for Helsinki (DP = 95%, α = 1.75, β = 9) 
and Athens (DP = 90%, α = 1.5, β = 1.5) 

After determining the coefficients and shape parameters 
of the metamodel, the number of overheating hours NHo 
could be explicitly expressed as a function of the features of 
Table 1; and as such thermal comfort could be assessed very 
rapidly with a small volume of data required. For instance, 
the metamodel with Kumaraswamy form that offered for 
Helsinki the results in Figure 13, gives NHo according to the 
coded values of the features as follows: 
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Table 7 Errors and R2 for the metamodel with the Kumaraswamy form trained with the LHS400 sample for shape parameters α and β 
giving nearly the best fits 

 
Location Helsinki (α = 1.75, β = 9) Athens (α = 1.5, β = 1.5) 

Domain percentage DP 90% 95% 100% 90% 95% 100% 

Mean absolute error (h) 2.1 2.1 2.7 5.1 5.3 6.6 
RMSE (h) 4.5 4.5 6.0 7.0 7.2 9.0 

Maximum absolute error (h) 20.6 19.0 28.8 23.7 28.1 32.2 
R2 0.9994 0.9994 0.9990 0.9975 0.9974 0.9959 

 

2 2 1 1
tr,ow tr,w vent

2 1 1 2
nvent ig so,ws so,ww

4 2 3 2 2 2
tr,ow tr,w vent

3 2 2 2
nvent ig

8.84 10 6.01 10 1.78 10 2.84 10
8.38 10 3.14 10 1.39 10 7.45 10
6.32 10 2.66 10 2.76 10
1.47 10 6.14 10

z H H H
H Q Q Q
H H H
H Q

- - - -

- - - -

- - -

- -

=- ´ - ´ - ´ - ´

- ´ + ´ + ´ + ´

- ´ + ´ + ´

+ ´ - ´ - 2 2 3 2
so,ws so,ww

3 3 3
tr,ow tr,w tr,ow vent tr,ow nvent

2 3 3
tr,ow ig tr,ow so,ws tr,ow so,ww

2 2
tr,w vent tr,w nven

1.45 10 3.47 10
1.35 10 7.60 10 7.39 10
1.56 10 7.61 10 3.15 10
2.19 10 1.76 10

Q Q
H H H H H H
H Q H Q H Q
H H H H

- -

- - -

- - -

- -

´ - ´

+ ´ + ´ - ´

+ ´ + ´ + ´

+ ´ - ´ 2
t tr,w ig

2 2 2
tr,w so,ws tr,w so,ww vent nvent

2 2 2
vent ig vent so,ws vent so,ww

2 2 3
nvent ig nvent so,ws nvent

4.72 10
2.12 10 1.23 10 2.92 10
6.71 10 2.91 10 1.59 10
4.64 10 1.80 10 8.69 10

H Q
H Q H Q H H
H Q H Q H Q
H Q H Q H Q

-

- - -

- - -

- - -

+ ´

+ ´ + ´ - ´

+ ´ + ´ + ´

+ ´ + ´ + ´ so,ww

2 2 2
ig so,ws ig so,ww so,ws so,ww5.52 10 3.18 10 1.24 10Q Q Q Q Q Q- - -- ´ - ´ - ´

 



Jaffal / Building Simulation / Vol. 16, No. 2 

 

314 

Besides offering accurate predictions and very rapid 
calculation, such machine learning models are easy to use by 
non-expert users with only small building data requirements. 
Unlike many machine learning models such as, neural 
networks and support vector machines, they are easily 
interpretable, contributing to an improved understanding 
of design problems, with insight into the relationships 
between building design and indoor thermal comfort. 

The second order polynomial of Eq. (14) reveals a strong 
association between the quantity of heat due to internal 
gains Qig and the number of overheating hours NHo with  
a corresponding coefficient of 3.14×10−1. Moreover, the 
coefficients of all the heat transfer coefficients Htr,ow, Htr,w, 
Hvent and Hnvent were negative, suggesting that transmission 
and ventilation heat transfer improved thermal comfort. The 
shape parameters of the Kumaraswamy distribution (α = 1.75, 
β = 9) give a knowledge about the positive skewness of the 
dynamic model response (Figures 2 and 14). 

To further illustrate the accuracy of the metamodel, its 
results with the Kumaraswamy form were confronted with 
those of TRNSYS dynamic simulation obtained with the 
one-at-a-time method, as illustrated in Figure 14 for Helsinki 

and Figure 15 for Athens. 
The symbols in these figures represent the same results 

as in Figures 2 and 3 used to obtain information from 
dynamic simulation. The solid lines were obtained with the 
Kumaraswamy form (DP = 95%, α = 1.75, β = 9 for Helsinki; 
and DP = 90%, α = 1.5, β = 1.5 for Athens). Each line 
represents the results of 20 metamodel runs obtained by 
varying the corresponding parameter in Table 2, in addition 
to a run for the central point (all coded values equal to 
zero). This comparison suggests that the metamodel with 
the Kumaraswamy form could accurately approximate the 
dynamic model. In particular, it was able to consider the 
distinct behavior of NHo for low overheating in Helsinki 
and high overheating in Athens. 

Finally, the fit of the metamodel could be further 
improved in future studies by using various available 
statistical techniques: optimized Latin Hypercube sampling, 
weighted least squares regression, etc. Better fit may be 
also achieved with alternative probability distributions. To 
preserve the computational efficiency and interpretability 
of the metamodel, however, it is important to consider 
simple probability distributions such as those studied here. 

 
Fig. 14 Number of overheating hours NHo for Helsinki as given by the metamodel with the Kumaraswamy form (solid lines) and by 
TRNSYS dynamic simulation using a one-at-a-time method (symbols): (a) U-values Uow and Uw, and airflow rates qv,vent and qv,nvent; and 
(b) internal heat gains pig,o, and solar heat gain coefficients SHGCws and SHGCww 

 
Fig. 15 Number of overheating hours NHo for Athens as given by the metamodel with the Kumaraswamy form (solid lines) and by 
TRNSYS dynamic simulation using a one-at-a-time method (symbols): (a) U-values Uow and Uw, and airflow rates qv,vent and qv,nvent; and 
(b) internal heat gains pig,o, and solar heat gain coefficients SHGCws and SHGCww 
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4 Conclusions 

Physics-informed machine learning, using prior knowledge 
of quasi-steady-state heat transfer and dynamic simulation 
results, offered great advantages in metamodeling thermal 
comfort in non-air-conditioned buildings: a flexible and 
transparent metamodel, accurate predictions, better physical 
consistency and generalizability, and low computational 
cost. 

The metamodel in the form of symmetric probability 
distributions failed to give reliable results for studying 
thermal comfort, and generally, symmetry is not common in 
the energy performance of a building. Thus, for metamodeling 
building energy performance, flexible probability distributions 
would provide better accuracy than the widely used logistic 
distribution using the same training samples, and therefore 
without additional computational effort.  

In this study, the Kumaraswamy distribution offered 
the best performance, with an excellent trade-off between 
simplicity, flexibility and accuracy. This distribution should 
play an important role in metamodeling thermal comfort, 
and generally, in studying building energy performance. 

Physics-informed machine leaning of thermal comfort 
in non-air-conditioned buildings is a challenging issue: the 
dynamic model response is highly non-linear and asymmetric, 
thermal comfort could be expressed by a large number of 
indices of different nature, occupant behavior has a significant 
impact on indoor conditions, etc. The metamodeling 
presented in this study could be extended to various thermal 
comfort indices with knowledge related to building physics, 
dynamic simulation results, occupant behavior and thermal 
comfort perception. 

Future machine learning models for building energy 
analysis, should attempt to combine the strength of    
both physics and machine learning models. This could  
be achieved, for instance, by incorporating knowledge of 
thermodynamics, heat and mass transfer together with 
expert knowledge. Moreover, physical consistency should 
become a prime criterion for choosing a machine learning 
model for building energy analysis. A related issue is the 
incorporation of energy regulation requirements into machine 
learning algorithms, together with physical knowledge. 

The advantages offered by physics-based machine 
learning, the diversity of physical phenomena involved in a 
building, and the major role of expert knowledge, suggest 
that physics-based machine learning could soon become  
a mainstream approach in building energy modeling.  
Even the incorporation of basic physical knowledge could 
be more effective than any advanced machine learning 
technique.  
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