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Abstract 
The availability of the building’s operation data and occupancy information has been crucial to 
support the evaluation of existing models and development of new data-driven approaches. This 
paper describes a comprehensive dataset consisting of indoor environmental conditions, Wi-Fi 
connected devices, energy consumption of end uses (i.e., HVAC, lighting, plug loads and fans), 
HVAC operations, and outdoor weather conditions collected through various heterogeneous 
sensors together with the ground truth occupant presence and count information for five rooms 
located in a university environment. The five rooms include two different-sized lecture rooms, an 
office space for administrative staff, an office space for researchers, and a library space accessible 
to all students. A total of 181 days of data was collected from all five rooms at a sampling 
resolution of 5 minutes. This dataset can be used for benchmarking and supporting data-driven 
approaches in the field of occupancy prediction and occupant behaviour modelling, building 
simulation and control, energy forecasting and various building analytics. 
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1 Introduction 

The building sector is currently responsible for more than 
one-third of the global energy consumption and approximately 
40% of the total direct and indirect CO2 emissions in the 
world (IEA 2020). As energy demand from the building 
sector continues to rise due to rapid urbanisation around 
the globe, significant efforts have been dedicated to improving 
building energy efficiency while maintaining reliable building 
operations and high indoor environmental quality for the 
occupants. 

To achieve this goal, researchers have relied on various 
modelling approaches and simulation tools to help model 
and quantify building energy use based on different factors, 
such as climatic regions (Orouji et al. 2021), architectural 
design (Ataman and Dino 2021), environmental conditions 
(Aydin and Jakubiec 2018), occupancy and occupant 
interactions with building systems (Tekler et al. 2019a; 
Peng et al. 2019; Ouf et al. 2021). These models often require 
the systematic collection and analysis of various real-world 
inputs such as the buildings’ operational data, energy use 
and occupancy information to derive meaningful insights 
and develop effective strategies for reducing building 
energy use (Tang et al. 2021; Ding et al. 2022). For instance, 

the availability of various building data is necessary for 
physics-based energy models to define model assumptions 
and inform model calibration (Chong et al. 2021). At the 
same time, data-driven or machine learning-based models 
require a sufficient amount of training data to produce 
reliable prediction results (Peng et al. 2018). 

However, the collection of such real-world datasets is 
often challenging in reality. Firstly, it requires the installation 
of different sensors within each room in the building, which 
can incur a considerable cost depending on the number of 
rooms and the size of the target building. After the sensors 
have been deployed, another significant cost comes from 
the regular maintenance of these sensors to ensure they 
stay operational, and the data storage services procured to 
safely store and manage the data collected. Secondly, the 
integration of the sensor data collected can also create 
additional hurdles due to the issues related to intermittent 
sensor failure and nonstandard sampling frequencies used 
by different sensor manufacturers. Lastly, the collection of 
occupancy data, which is often performed in person or 
through surveillance cameras, is labour intensive and may 
also encounter resistance from the building occupants due 
to privacy concerns (Tekler et al. 2020a). Despite these 
challenges, there has been a sustained effort within the  

BUILD SIMUL (2022) 15: 2127–2137 
https://doi.org/10.1007/s12273-022-0925-9 

 



Tekler et al. / Building Simulation / Vol. 15, No. 12 

 

2128 

building science community to encourage the release of 
public building datasets to facilitate collaborative and 
reproducible research. Some examples of these public 
datasets include: the Building Data Genome Project 2 (Miller 
et al. 2020) which contains the energy metering data for 
1,636 non-residential buildings; BLOND (Kriechbaumer 
and Jacobsen 2018) an energy consumption dataset for 
appliances in an office building; flEECe (Paige et al. 2019) 
an energy use and occupant behaviour dataset for residential 
buildings; CU-BEMS (Pipattanasomporn et al. 2020), which 
contains the electrical consumption and indoor environmental 
sensor data for a smart office building; as well as other 
commercial and residential datasets containing energy 
consumption data, building operation data, occupancy  
data, indoor environmental quality data or different 
combinations of these data categories (Schwee et al. 2019; 
Tekler et al. 2020b; Li et al. 2021). Finally, the latest release 
of the ASHRAE Global Occupant Behaviour database 
provides a large compilation of different survey-based and 
in-situ-based datasets collected from multiple countries and 
covering various building types both in the commercial 
and residential sectors (Dong et al. 2022). 

In this paper, we release ROBOD, a Room-level 
Occupancy and Building Operation Dataset. To the best  
of our knowledge, this is the most comprehensive dataset 
that contains room-level occupant presence and count 
information integrated with building operation data from 
different room types in a university environment. The dataset 
consists of a wide range of data categories, including indoor 
environmental conditions, Wi-Fi connected devices, building 
energy end-uses (i.e., HVAC, lighting, plug loads, and fans), 
HVAC operations, and local outdoor weather conditions 
collected through various heterogeneous sensors together 
with the ground truth occupant presence and count 
information for five different rooms. This dataset complements 
the existing ASHRAE Global Occupant Behaviour database 
by providing a more comprehensive set of data categories 
for different space types when compared to existing datasets 
and provide researchers with a rare and unique view into 
the operations of a net-zero energy building. Through the 
use of this dataset, researchers from different fields can 
benefit from various applications, including but not limited 
to occupancy prediction and occupant behaviour modelling, 
building simulation and control, energy forecasting, and 
building analytics. 

2 Methods 

2.1 Building and room characteristics 

The building considered in this dataset is the School of 
Design and Environment 4 (SDE4) building located at the 

National University of Singapore (NUS). SDE4 is a 6-story 
academic building spanning 8,588 square meters and is 
accessible 24 hours every day. It is the first newly built 
net-zero energy building in Singapore and the first building 
in South Asia that obtained a Zero Energy Certification. 
This certification awarded by the International Living 
Future Institute (ILFI) recognises green buildings that are 
able to satisfy 100% of its annual energy needs via on-site 
renewable energy sources. The room occupancy and building 
operation data for five rooms was collected as part of this 
study and the rooms are located at different building levels, 
as visualized in Figure 1. The five rooms include two 
different-sized lecture rooms (Room 1 and Room 2), an 
office space for administrative staff (Room 3), an office 
space for researchers (Room 4), and a library space for 
students (Room 5). Specific rooms such as Room 1, Room 
2 and Room 5 are open for all university students and staff, 
and are not limited to those situated in the SDE4 building. 
On the other hand, Room 3 and Room 4 are only accessible 
by dedicated administrative staff and researchers that have 
an assigned seating in these rooms as an access card is 
required for entry. 

The detailed description of each room is provided in 
Table 1. 

2.2 Data categories overview and collection 

A building management system (BMS) is currently deployed 
in the building to help monitor and manage the building’s 
mechanical and electrical systems. As part of BMS, various 
sensors are installed throughout the study building to collect 
information about the building’s energy consumption, 
HVAC conditions and outdoor weather conditions. The 
BACnet Protocol is used to retrieve these sensor measurement 
data to be stored in the PI Data Archive, which is a feature  

 
Fig. 1 Study building (top) and room layouts corresponding to 
the building levels (bottom) 
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within the OSISoft PI system. The PI Data Archive serves 
as an industry-standard data management system for 
storing time-series data and allows users to perform remote 
data extraction using various RESTful API services. On top 
of that, we have installed standalone indoor environmental 
quality (IEQ) sensors to measure the indoor environmental 
conditions within each room. Apart from these data 
categories, we have also tapped into the surveillance cameras 
and Wi-Fi access points within the study building to obtain 
room-level occupancy information and the number of 
Wi-Fi-connected devices, respectively. All data measurements 
from different sensors were queried with a sampling 
frequency of 5 minutes before they are integrated to form 
ROBOD. A 5-minute sampling interval was chosen to strike 
a good balance between data representativeness and data 
collection cost. 

The following section describes the details of each data 
category found within the dataset. More detailed information 
about the data units, sensor types, sensor range and accuracy 
specifications from the manufacturers are provided in 
Table 2. 

2.2.1 Indoor environmental quality data 

The indoor environmental data represent the measure-
ments for indoor environmental quality, which include 
VOC (volatile organic compound), sound pressure level, 
relative humidity, indoor air temperature, illuminance, 
PM2.5 (particulate matter), and CO2 concentration levels. 
A dedicated IEQ monitoring unit is installed in each room 
and its location within the room is provided in Table 3 with 
their corresponding layouts. 

2.2.2 Wi-Fi data 

The Wi-Fi data represents the number of Wi-Fi-enabled 
devices connected to the routers installed in each room. 
Some examples of these devices include mobile devices (i.e., 
smartphones and laptops), which connect to the nearest 
routers depending on their users’ movement patterns and 
location, and stationary devices whose location remains 
fixed mainly within the room (i.e., printers and desktops). 
Based on this, the number of Wi-Fi connected devices are 

generally higher than the number of occupants in the room 
as the data recorded does not differentiate between mobile 
and stationary devices. To use the number of Wi-Fi connected 
devices to estimate the number of occupants in the room, 
several filtering steps could be introduced to differentiate 
between the stationary and mobile devices, before inferring 
the occupant count based on the number of mobile devices 
indirectly. These filtering steps could be performed in   
the case where surveillance cameras are not available to 
determine the number of occupants in the room. The raw 
Wi-Fi dataset contains the logs for every device that connects 
to different access points across the campus and is stored in 
a Hive SQL database. By querying the relevant logs through 
the Open Database Connectivity (ODBC) API, the raw 
Wi-Fi logs are processed to extract the number of connected 
devices by counting the number of unique MAC addresses 
recorded during a 5-minute interval for each room. 

2.2.3 Energy data 

The energy data represents the energy consumption values 
of the building’s electrical end uses such as HVAC, lighting, 
plug loads, and ceiling fans. For HVAC energy consumption,  
 Room 1 and Room 2 are conditioned by Fan Coil Units 

(FCU), with the chilled water supplied by a district chiller 
plant and the supply airflow rate controlled by variable 
speed fans.  

 Room 3, Room 4, and Room 5 are conditioned by Air 
Handling Units (AHU), which are connected to multiple 
rooms in the building. 

The energy consumption data of lighting, plug loads, 
and ceiling fans are collected through electrical meters and 
the number of each end use (i.e., lighting, plug loads and 
ceiling fans) found in each room is listed in Table 4. In this 
case, the number of lighting units refers to the number of 
luminaries in each room. Similarly, plug load units are 
represented as the number of inbuilt 13A double electrical 
sockets available in each room. All lighting and plug load 
units are manually controlled by occupants. It is also worth 
highlighting that each room may contain different types of 
plug loads depending on its space function. For instance, 
Room 1 and Room 2 contain mostly laptops and projectors,  

Table 1 Room descriptions 

Room Space function Occupant type Level 
Floor area 

[m2] 
Floor to ceiling 

height [m] 
Room 

volume [m3]
Seating capacity 

[person] 
Maximum occupant 
density [m2/person]

Room 1 Lecture room Students 4 118.6 4.1 486.2 40 3.0 

Room 2 Lecture room Students 4 53.7 4.1 220.2 40 1.3 

Room 3 Office space Administrative staff 5 98.4 4.2 413.2 15 6.6 

Room 4 Office space Researchers 3 141.9 4.1 581.7 25 5.6 

Room 5 Library space Students 2 182.8 7.5 1363.3 36 5.0 
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Table 2 Data categories and sensor specifications 

Data category Measured variable Data unit Sensor type (Brand) Sensor range Sensor accuracy

VOC ppb 0–60000 ±10% 

Sound pressure dB(A) Unspecified Unspecified 

Relative humidity %RH 0–100 ±2%RH 

Air temperature °C −40 to 125 ±0.2 °C 

Illuminance lux 0–64000 Unspecified 

PM2.5 μg/m3 0–1000 ±15 μg/m3 

Indoor 
environmental 

quality 

CO2 ppm 

IAQ unit (Awair Omni) 

400–5000 ±75 ppm 

Wi-Fi Wi-Fi connected devices Number Wi-Fi router (Cisco) NAa NAa 

Ceiling fan energy 

Lighting energy 

Plug load energy 

Energy meter (Schneider Electric 
Acti9 iEM3000) 

±1% 

Chilled water energy 
BTU meter (Integra Metering 

CALEC ST II) 
± 2% 

Energy 

AHU/FCU fan energy 

kWh 

Energy meter (Schneider Electric 
PM5300) 

0–999999 

± 0.5% 

Supply airflowb
 CMH 0–3375 ±15% 

Damper positionb % 
VAV box (Johnson Controls) 

0–100 NAa 

Temperature setpoint °C NAa NAa NAa 

Cooling coil valve positionb 

Cooling coil valve commandb 
% Valve (Johnson Controls) 0–100 NAa 

AHU/FCU fan speed Hz Variable speed drive (ABB) 0–50 ±0.2% 

Offcoil air temperatureb °C NTC thermistor (Greystone TSDC) −40 to 60 ±0.2°C 

Offcoil temperature setpointb °C NAa NAa NAa 

Supply air humidityb %RH Capacitive (Greystone HSDT) 0–100 ±2%RH 

Pressure across filterb 

Supply air pressure 
Pa Capacitive (Setra 264) Unspecified ±1% 

HVAC  
operations 

Supply air temperature °C NTC thermistor (Greystone TSAP) −40 to 60 ±0.2°C 

Barometric pressure hPa Piezoresistive 600–1100 ±0.5hPa 

Dry bulb temperature °C Pt100 −40 to 60 ±15 °C 

Global horizontal solar radiation W/m2 Thermophile 0–2000 
2nd class 

pyranometer 

Wind direction Degree 0–360 ±15 RMSE 

Wind speed m/s 
Ultrasonic 

0–60 ±0.2 m/s 

CO2 ppm Non-dispersive infrared 0–2000 ±5 ppm + 2% 

Outdoor  
weatherc 

Relative humidity %RH Capacitive 0–100 ±1.5%RH 

Occupant presence Binary (1/0) 
Occupancy 

Occupant count Number 
Surveillance camera (Xeron Vision) NAa NAa 

 
a NA refers to “Not Applicable”. 
b Indicated measurements are not applicable for Room 1 and Room 2. 
c All the outdoor weather data were collected by a weather station (Delta OHM HD52.3D). 
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Table 4 Number of end uses in each room 

Room 
No. of ceiling 

fans 
No. of 

luminaries 
No. of 13A 

double sockets

Room 1 6 20 26 

Room 2 4 12 14 

Room 3 4 14 9 

Room 4 6 32 20 

Room 5 6 11 12 

 
Room 3 and Room 4 contain different number of monitors, 
laptops, desktops, and printers; while Room 5 contains 
mostly laptops and printers. 

2.2.4 HVAC operations data 

The HVAC operations data represent the different 
parameters and settings that the building’s HVAC system 
operates within. Some of these measurements include supply 
airflow, damper position, temperature setpoint, cooling coil 
valve position and cooling coil valve command, AHU/FCU 
fan speed, offcoil air temperature, offcoil temperature 
setpoint, supply air humidity, pressure across filter, supply 
air static pressure and supply air temperature. It should be 
noted that the building uses a dedicated outdoor air system 
for air supply, so the CO2 level of incoming air is identical 
to the outdoor CO2 level. Furthermore, there is no operable 
shading or windows in the study rooms, except for the 
operable windows in Room 4 which are rarely open based 
on our observations. Therefore, the state of the windows 
and shades’ impact on HVAC operations is not considered 
in the dataset. 

The temperate setpoint in all rooms is conditioned by 
Proportional Integral Derivative (PID) control against the 
thermostat temperature setpoint set by the room occupants. 
As Room 1 and Room 2 are conditioned by FCUs, they  
do not contain data measurements related to VAV. The 
availability of the HVAC operations is also indicated in 
Table 2 as a footnote. 
 Room 1 and Room 2 have dedicated FCUs supplying 

airflow rate at 3,375 and 2,025 cubic meter per hour 
(CMH), respectively. Variable speed drive (VSD) fans 
are also used to regulate supply airflow in the rooms to 
maintain room temperature. The HVAC operating hours 
for these rooms are set at 07:30 to 21:40. 

 Room 3 has dedicated VAV to supplying airflow rate  
at 900 CMH to maintain room the temperature. It is 
air-conditioned by an AHU with a supply airflow rate of 
1,3470 CMH, serving five other rooms in the building. 
The HVAC operating hours for this room are set at 08:30 
to 18:40. 

 Room 4 and Room 5 have dedicated VAV supplying 
airflow rate at 3,192 CMH and 1,944 CMH to maintain 
the room temperature. Both rooms are air-conditioned 
by the same AHU with a supply airflow rate of 14,560 
CMH, supplying chilled air to eleven other rooms in the 
building. The HVAC operating hours for these rooms 
are set at 08:30 to 18:40. 

2.2.5 Outdoor weather data 

The outdoor weather data is measured by a local weather 
station installed on the roof of the study building. 
Measurements include barometric pressure, dry bulb  

Table 3 Locations of retrofitted sensors (i.e., surveillance camera and IEQ units) with corresponding layouts 

Room Surveillance camera IEQ unit Layout 

Room 1 
Two surveillance cameras outside  

of two doors 
Mounted vertically to an east side 

column of the wall 

Room 2 
One surveillance camera outside  

of the door 
Mounted vertically to an east side 

column of the wall  

Room 3 
One surveillance camera inside  

the room 
Mounted vertically to an east side 

column of the wall 

 

Room 4 
One surveillance camera inside  

the room 
Mounted vertically to a west side 

column of the wall 

 

Room 5 
Three surveillance cameras inside  

the room 
Mounted vertically to an east side 

column of the wall 
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temperature, global horizontal solar radiation, wind direction 
and speed, outdoor CO2 and relative humidity. The angle 
definition for wind direction is set in the clockwise direction, 
where “0°” indicates the north direction. It should be noted 
that all rooms use the same local weather station and therefore 
the corresponding measurements for weather data are 
identical for all rooms. 

2.2.6 Occupancy data 

The occupancy data contains both the occupant presence 
and number of occupants present in each room. This 
information was collected by monitoring the occupants’ 
movement through surveillance camera footage and manually 
counting the number of occupants. Due to the use of a 
passive monitoring approach to monitor occupancy within 
the study room, the impact of the Hawthorne effect is 
minimised as compared to the adoption of active monitoring 
approaches. These approaches often require occupants to 
carry around wearable sensors or install mobile applications 
on their smartphone devices to track their locations, which 
may cause them to change their behaviours or regular 
routines (Tekler et al. 2019b). At any point in time during 
the data collection process, any identifiers (i.e., names and 
personal details) that reveal occupants’ identity were not 
collected nor stored in this dataset to protect the occupants’ 
privacy. The protocols for the data collection has been 
approved by the host university’s Institutional Review 
Board (NUS-IRB-2021-31). 

2.3 Data pre-processing 

This section details the data pre-processing steps performed 
when merging the data categories described above to form 
ROBOD. These steps involve formatting the timestamp 
information for each data category to follow the same  
ISO 8601 date-time format (i.e., YYYY-MM-DD HH:MM 
+-HH:MM), starting with the year information, followed 
by the month, day, hour, minute, and time zone offset from 
UTC. Each data measurement follows a 5-minute sampling 
interval, starting with the 0th minute, followed by the 5th 
minute, the 10th minute, and so on till the 55th minute during 
each hour. After these standardisation steps are performed, 
the six categories are merged within the same timestep 
using their timestamp information as the primary key. 

3 Data records 

ROBOD consists of five comma-separated value (CSV) 
files. Each file contains the combined data for each room 
for all six data categories described in Table 2. Each data 
measurement also contains the timestamp information  

corresponding to the time when the data measurement was 
recorded and followed the date-time format: YYYY- 
MM-DD HH:MM +08:00. The last component (i.e., +08:00) 
indicates a UTC offset of +8 hours as the data collection 
was conducted in the tropical island of Singapore. Given 
that the data measurements followed a sampling interval of 
5 minutes, this corresponds to 288 data points recorded per 
day. The data collection period spanned between 7 September 
and 23 December 2021, where the sensor data collected 
during the weekends were excluded. Several notable holiday 
periods that occurred during the data collection period 
includes a public holiday on 4 November 2021 as well as 
the university’s semester break, which occurred between 5 
December and 23 December. The chosen period allowed us 
to capture the changes in occupancy patterns and the 
building’s operation both during the regular semester and 
the semester break. Furthermore, there were also specific 
days during the data collection period when several of the 
sensors were not working correctly for certain rooms, 
leading to the data collected during these periods being 
dropped from the final dataset. In the end, a total of 181 
days of data was collected from the five rooms, where 
Room 1, Room 2 and Room 3 contributed 29 days of data 
separately while Room 4 and Room 5 contributed 47 days 
of data each. Apart from the timestamp information that is 
stored in the string format, the occupancy count and 
presence information is stored as integers, while the rest of 
the data fields are represented as floating numbers. 

4 Technical validation 

This section presents the technical validity of our dataset 
starting with a preliminary analysis of missing data and 
various visualisations involving occupant count, outdoor 
environmental condition, room air temperature, room 
temperature setpoint, and energy consumption based on 
the raw dataset. 

4.1 Missing data 

A preliminary analysis of the dataset highlighted a small 
number of missing data points for each room in ROBOD 
due to issues related to intermittent sensor failure. Table 5 
presents a detailed breakdown of the amount of missing 
data found in each column and for each room. The amount 
of missing data is represented in terms of the number of 
rows in the dataset as well as their corresponding percentages 
(%). The temporal relationship of the missing data is also 
presented in Figure 2. It should be reiterated that the 
datasets for Rooms 1 and 2 do not contain columns related 
to VAV (i.e., Supply airflow, Damper position, Cooling coil 
valve position and command, Offcoil temperature setpoint, 
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Offcoil air temperature, Pressure across filter, and Supply 
air humidity) as they are conditioned by FCUs, therefore 
they are not included in the dataset. 

4.2 Occupant count 

Figure 3 presents the average occupant count for each 
room on an average weekday. Based on the occupancy 

fluctuations, it can be observed that the occupant count 
patterns differ slightly among different rooms. More 
specifically, the occupant count for Room 1 and Room 2 
experience heavy fluctuations throughout the day compared 
to other rooms. In particular, we observed three distinct 
peaks in Room 2 that occur at 11 a.m., 1 p.m., and 3 p.m., 
which can be explained by the block lectures that are 
regularly scheduled during these periods. Room 3 presents  

Table 5 A detailed breakdown of the amount of missing data in the relevant columns of each room 

Room Total Missing data Column name 

9 (0.1%) supply_air_pressure and ahu_fan_speed 

10 (0.1%) chilled_water_energy and ahu_fan_energy Room 1 8352 

14 (0.1%) voc, sound_pressure_level, indoor_relative_humidity, illuminance, pm2.5, indoor_co2 

Room 2 8352 30 (0.3%) voc, sound_pressure_level, indoor_relative_humidity, illuminance, pm2.5, indoor_co2 

Room 3 8352 13 (0.1%) voc, sound_pressure_level, indoor_relative_humidity, illuminance, pm2.5, indoor_co2 

Room 4 13536 13 (0.1%) voc, sound_pressure_level, indoor_relative_humidity, illuminance, pm2.5, indoor_co2 

15 (0.1%) voc, sound_pressure_level, indoor_relative_humidity, illuminance, pm2.5, indoor_co2 
Room 5 13536 

2580 (19.0%) supply_air_flow and damper_position 

 
Fig. 2 The amount of missing data in each column and their temporal relationship for each room 
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Fig. 3 Average occupant count for each room on an average day 

a regular office schedule with the office workers arriving at 
work between 8 and 10 a.m. and leaving the office at the 
end of the workday between 6 and 8 p.m. The occupants in 
Room 4 are observed to follow a flexible work schedule 
where the last departure times for some occupants can stretch 
late into the night after midnight. Lastly, we can observe a 
sharp increase in occupancy levels in Room 5 from zero 
at 9 a.m., followed by a sharp drop back to zero at 9 p.m. 
every day, corresponding with the operational hours of the 
library space. 

4.3 Outdoor environmental condition 

Figure 4 shows the monitored outdoor conditions of 
dry-bulb temperature, global horizontal solar radiation, 
relative humidity, and CO2. As the data was collected 
from the study building located in the tropic, the outdoor 
dry-bulb temperature ranges from 22.6 °C to 35.5 °C, where 
temperatures tend to rise to higher levels in the afternoon 
(i.e., 12 p.m. to 4 p.m.). The global horizontal solar radiation 
can reach over 1000 W/m2 between 11 p.m. and 3 p.m. At 
the same time, the relative humidity ranges from 40% to 
100%, of which over 98% accounts for the primary ratio 
(25%). The cooling systems process dry-bulb temperature 
and relative humidity to deliver the required supply 
airflow to cool down the internal thermal zones within 
the building, while removing thermal energy generated by 
the solar radiation. The outdoor CO2 levels span between 
439 ppm and 510 ppm, which is used as the basis of 
maintaining the indoor CO2 levels at a standard or 
comfortable range. 

 
Fig. 4 Data visualisations for outdoor dry-bulb temperature, 
relative humidity and CO2 levels 

4.4 Room temperature setpoint 

Figure 5 depicts the distributions of temperature setpoints 
for each of the five rooms. As the occupants’ thermal 
sensation is subjective, the temperature setpoints may differ 
among the rooms and during different periods of the day. 
Room 1 and Room 2 show a wide range of temperature 
setpoints, ranging from 22°C to 27.2°C, and from 22°C to 
27.7°C, respectively. Room 4 shifted the setpoints to the 
range of 25.3°C to 28°C. Unlike the other rooms, Room 3 
and Room 5 kept the temperature setpoints consistently at 
25°C and 26°C, respectively. 

 

Fig. 5 Distributions of room temperature setpoints for each room 

4.5 Room air temperature 

Figure 6 shows a heatmap of the average indoor air 
temperature or thermal distribution at different time periods 
during the day for each room. The vertical axis indicates 
each of the five rooms, and the horizontal axis shows the 
time of the day. For example, it can be observed that the air 
temperature in Room 1, Room 2, and Room 3 tends to be  
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Fig. 6 Average room air temperature (°C) for each room 

lower than that in Room 4 and Room 5. Moreover, the air 
temperature in the afternoon is also higher than that in the 
morning for all five rooms. 

4.6 Energy consumption 

Figure 7 summarizes energy consumption of space cooling, 
plug load, and lighting in each room. The cooling energy 
consumption is a combination of the energy consumed by 
chilled water and AHU/FCU fans. Since Room 4 and Room 
5 are air-conditioned by the same AHU, their cooling 
energy consumption is calculated based on the ratio of the 
VAV supply airflow over the AHU’s total supply airflow. 
The difference in the cooling demand among the rooms 
can be explained by the differences in room functions and 
room area. For instance, Room 1 and Room 2 are used as 
lecture spaces with similar indoor areas resulting in identical 
cooling energy consumption and schedules. Similarly, the 
cooling energy and schedules for Room 3 and Room 4 
and Room 5 are similar in terms of its pattern as all three 
rooms function as multi-occupant offices (i.e., Room 3 and 
Room 4). Devices that are connected to electrical sockets  

 
Fig. 7 Average daily energy consumption of space cooling, plug 
load, and lighting for each room. For cooling, it should be noted 
that Room 3, Room 4, and Room 5 are conditioned by AHUs, 
which are connected to multiple rooms 

can be classified into two groups: non-mobile devices located 
in the rooms and portable devices. The former contributes 
24-hour plug load consumption, including the small energy 
consumption when the devices enter into idle modes. The 
latter only needs the electricity from electrical sockets when 
their owners occupy the rooms. For instance, the plug load 
consumption in five rooms is nearly constant before 7 a.m. 
Furthermore, this consumption in Room 1, Room 2, and 
Room 5 increased simultaneously from 9 a.m. Similar to the 
plug load consumption, the energy consumption of lighting 
is closely related to occupants’ room usages. Therefore, the 
lighting demand increases from 9 a.m. in most of the rooms. 

5 Usage notes 

The dataset provided in this paper is in the CSV format for 
all rooms and has a total file size of 20 MB. The CSV data 
format allows the files to be easily imported by most 
spreadsheet programs and databases. It is also easy to work 
with due to its human-readable format and can be readily 
processed and analysed by most popular programming 
languages such as Python, Java, JavaScript, and R. 

Due to the presence of missing data in the dataset, we 
have also included several data post-processing steps as a 
reference for researchers who would like to use the existing 
dataset. These steps involves imputing the dataset’s missing 
or erroneous sensor data by using the missingpy imputation 
library. While different imputation algorithms have been 
utilised in past studies (Low et al. 2020), a Random Forest- 
based imputation algorithm (i.e., MissForest (Stekhoven 
and Buhlmann 2012)) is adopted in this case by performing 
column-wise imputation in an iterative fashion. The 
algorithm begins by imputing the column with the least 
number of missing values (i.e., candidate column) and filling 
the missing values in the remaining columns with an initial 
guess, such as the column’s mean. Following this, a Random 
Forest (RF) model is trained by setting the candidate column 
as the output variable and the remaining columns as the 
model’s input for those rows that do not contain missing 
values in the candidate column. After the RF model has 
been trained, it is used to impute the missing values in the 
candidate column before moving on to the next candidate 
column with the second smallest number of missing values. 
This process is repeated for each column containing missing 
values over multiple iterations until the difference between 
the dataset imputed in the previous round and the newly 
imputed dataset increases for the first time. 

6 Code availability 

All data post-processing steps and visualisations performed 
in this manuscript are implemented using Python 3.6 and 
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public libraries including Numpy and Pandas for data 
manipulation, Matplotlib, Seaborn, and Missingno for data 
visualisation, and Missingpy for data imputation. A step- 
by-step guide has been compiled within a single Juypter 
notebook, which is available in the Electronic Supplementary 
Material (ESM) in the online version of this paper. The 
ROBOD is also provided as a supplementary material, which 
is uploaded in an open data repository (i.e., Figshare). 

7 Concluding remarks 

The availability of the building’s operation data and high- 
resolution occupancy information has been crucial in 
supporting the evaluation of existing models and development 
of new data-driven approaches. To facilitate these research 
efforts, this paper describes a comprehensive dataset (i.e., 
ROBOD) containing multiple data categories together with 
ground truth occupant presence and count information for 
different spaces types collected from a net zero energy 
university building. A total of 181 days of data was collected 
from five rooms at a sampling resolution of 5 minutes and 
comprises of two different-sized lecture rooms, an office 
space for administrative staff, an office space for researchers, 
and a library space accessible to all students. 

Through the conduct of this study, we have experienced 
several challenges along the way and have summarised 
their proposed solutions below to aid future studies in 
overcoming these challenges: 
 Minimising Hawthorne effect: The use of surveillance 

cameras over active monitoring approaches (i.e., wearable 
sensors and smartphone devices) was chosen to passively 
monitor the users’ presence information to minimise the 
study’s impact on the users’ behaviours and regular routines. 

 Protecting user privacy: Personal identifiers were not 
collected from the occupants at any point during the 
data collection process to protect their privacy. 

 Sensor failure: There were specific days during the data 
collection period where several sensors were not working 
correctly for certain rooms. As a result, this led to the 
data collected during these periods being dropped from 
the final dataset. 

 Missing data: Due to the presence of a small number of 
missing data records caused by intermittent sensor failure, 
an imputation algorithm based on the “missingpy” library 
was proposed to impute the missing data values. 

 Merging different data categories: To perform a 
successful merge of the different data categories, several 
data pre-processing steps were taken. These steps involve 
first down-sampling/up-sampling the data records from 
each data category to follow a 5-minute sampling interval 
before standardising the timestamp information for each 
data category to follow the same ISO 8601 date-time format. 

Through the availability of ROBOD, we hope to provide 
researchers with a rare and unique view into the operations 
of a net-zero energy building, and a useful benchmark 
against existing buildings. With the continued advancements 
in construction technology and renewable energy systems, 
net zero energy buildings will become increasingly common 
in the future, thereby allowing this dataset to remain 
relevant. 

Finally, there are also future plans to continue extending 
this data collection effort by increasing the duration of data 
collection period, as well as including more space types and 
data categories to further contribute to current research 
efforts. 

 
Electronic Supplementary Material (ESM): A step-by-step 
guide is available in the online version of this article at 
https://doi.org/10.1007/s12273-022-0925-9. 

Data availability 

The ROBOD is available at  
https://doi.org/10.6084/m9.figshare.19234530.v7 
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