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Abstract 
Predicting the thermal sensations of building occupants is challenging, but useful for indoor 
environment conditioning. In this study, a data-driven thermal sensation prediction model was 
developed using three quality-controlled thermal comfort databases. Different machine-learning 
algorithms were compared in terms of prediction accuracy and rationality. The model was further 
improved by adding categorical inputs, and building submodels and general models for different 
contexts. A comprehensive data-driven thermal sensation prediction model was established. The 
results indicate that the multilayer perceptron (MLP) algorithm achieves higher prediction accuracy 
and more rational results than the other four algorithms in this specific case. Labeling AC and NV 
scenarios, climate zones, and cooling and heating seasons can improve model performance. 
Establishing submodels for specific scenarios can result in better thermal sensation vote (TSV) 
predictions than using general models with or without labels. With 11 submodels corresponding 
to 11 scenarios, and three general models without labels, the final TSV prediction model achieved 
higher prediction accuracy, with 64.7%–90.7% fewer prediction errors (reducing SSE by 3.2–4.9) 
than the predicted mean vote (PMV). Possible applications of the new model are discussed. The 
findings of this study can help in development of simple, accurate, and rational thermal sensation 
prediction tools.   
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1 Introduction 

With continuous improvement in living standards, the thermal 
comfort of building occupants has received increased 
attention, especially in the field of indoor environment 
conditioning. Methods and tools to predict and improve 
thermal comfort can help increase energy-efficiency in indoor 
environments (O’Brien et al. 2020; Zhang et al. 2022), with 
a greater satisfaction rate (Wagner et al. 2007; Frontczak  
en al. 2012) and working performance (Elnaklah et al. 2020; 
Tang et al. 2021).  

It is known that the thermal comfort of building occupants 
is affected by many factors (Fanger 1970) aside from air 
temperature (Ta), radiant temperature (Tr) (Zhou et al. 
2019), air speed (Va) (Zhu et al. 2015), relative humidity 
(RH), metabolic rate (Met) (Luo et al. 2018b), and clothing 
insulation (Clo), including age, thermal experiences (Lin  

et al. 2021), and outdoor climate conditions (Nicol and 
Humphreys 1973; De Dear and Schiller Brager 2001). Many 
models have been developed to quantify how different factors 
affect thermal sensation and thermal comfort. Many indexes 
can be found in the Berkeley comfort tool (Schiavon et al. 
2014), the “Pythermalcomfort” package in Python (Tartarini 
and Schiavon 2020), and the “COMF” package in R 
programming (Schweiker 2016). The predicted mean vote 
(PMV) and adaptive comfort model are two classic indexes 
that have been incorporated in standards such as the ASHRAE 
standard 55 (ASHRAE 2017) and EN 15251 (Nicol and 
Humphreys 2010). 

However, conventional thermal sensation vote (TSV) and 
thermal comfort prediction approaches have shortcomings. 
The prediction accuracy of the PMV model was low in field 
studies, particularly in NV buildings. Cheung et al. (2019) 
reported that the accuracy of PMV in predicting thermal  
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Nomenclature 

Algorithm abbreviations  

GPR  Gaussian process regression 
KNN  K nearest neighbors 
ML  machine learning 
MLP  multilayer perception 
PI  permutation importance 
RF  random forest 
SVM  support vector machine 

Thermal comfort-related abbreviations 

AC  air-conditioned  
Clo  clothing insulation (clo) 
HVAC heating, ventilation, and air-conditioning 
Met   metabolic rate (met) 

NV  naturally ventilated  
PMV  predicted mean vote 
RH   relative humidity (%) 
TSV  thermal sensation vote 
Ta  indoor air temperature (°C) 
Tout  outdoor air temperature (°C) 
Tr  mean radiant temperature (°C) 
Va   air speed (m/s) 

Other symbols 

RMSE root mean squared error 
MAE  mean absolute error 
R2  correlation coefficients (r) squared 
SSE   sum of squares for residuals 

  
 

sensation was only 34%. The PMV and adaptive models lack 
self-learning capacity (Zhou et al. 2020), and are unable to 
adapt themselves to new contexts. To increase adaptability 
to new contexts, researchers have proposed correction 
coefficients such as the ePMV model (Fanger and Toftum 
2002), aPMV model (Yao et al. 2009), and demand factor 
(Luo et al. 2018a). These coefficients can extend the scope 
of model application to some extent; however, once the 
coefficients are determined, the model is only suitable in 
certain contexts. 

With advances in data-driven methods in recent years, 
many researchers have attempted to apply machine-learning 
(ML) algorithms in the field of thermal comfort to handle 
complex problems. The ML approach can achieve 5.3%–42% 
higher accuracy in thermal sensation prediction than 
conventional PMV and adaptive models (Kim et al. 2018; 
Wu et al. 2018; Cosma and Simha 2019; Li et al. 2019; Wu 
et al. 2021). Many studies (Lu et al. 2019; Luo et al. 2020; 
Zhou et al. 2020) have presented ML algorithms for TSV 
prediction using ASHRAE thermal comfort databases, with 
high prediction accuracy. More information on these studies 
can be found in a recent review article (Xie et al. 2020). 
Although data-driven thermal comfort prediction seems 
promising, there remain issues that require further investigation. 
First, with the limited number of data samples, the scope of 
model application is limited. Second, current data-driven 
thermal comfort studies focus mainly on improvement of 
model prediction accuracy without considering the rationality 
of the model. ML algorithms may be able to achieve high 
accuracy, but the output results may violate thermal comfort 
principles. Third, simple thermal sensation prediction tools 

have not been developed.  
Inspired by previous research, a comprehensive thermal 

sensation prediction model with high accuracy, reasonable 
output, and wide applicability was developed in this study. 
Model development details are presented in Sections 2, 3, 
and 4. The model performance and application are presented 
in Section 5.  

2 Methodology 

2.1 Dataset 

Three thermal comfort databases including 131,698 data 
samples collected from field studies in 89 cities and 23 
countries worldwide were used in this study. The ASHRAE 
RP-884 database (De Dear 1998) provided 25,369 samples; 
the ASHRAE thermal comfort database II (Földváry Ličina 
et al. 2018) provided 81,965 samples, and the Chinese thermal 
comfort database developed with the support of the China 
National Key R&D Program from 2015–2020 provided 
24,364 samples. The Chinese thermal comfort database is not 
publicly available, but will be published once the project is 
completed. These databases are the most quality-controlled 
and wide-ranging thermal comfort databases, allowing 
development of data-driven thermal sensation prediction 
models. The databases include information such as subjective 
thermal sensation and thermal comfort votes, measured 
thermal environment parameters, time and geographic 
information, personal factors such as clothing and activity 
level, and HVAC (heating, ventilation, and air-conditioning) 
operation modes. 
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2.2 Inputs and output 

To select the proper input variables, six parameters in the 
PMV model were considered, including Ta, Tr, Met, Clo, 
Va, and RH. Three labels indicating the HVAC operation 
modes, climate zones, and HVAC operation season were 
selected to distinguish between indoor scenarios. HVAC 
operation mode was used to distinguish between AC and 
NV modes. Five climate labels (A/B/C/D/E) were used to 
distinguish between outdoor climate conditions based on 
the Koppen climate classification (Peel et al. 2007). The 
HVAC operation season label was used to distinguish 
between cooling and heating seasons in the AC scenario. The 
daily average outdoor temperature (Tout) was also selected 
as an input variable to consider the impact of the outdoor 
environment. The output variable of the machine-learning 
model was a continuous thermal sensation voting scale 
ranging from −3 to 3. Table 1 presents the input and output 
variables. 

2.3 Algorithms 

Weka (Waikato Environment for Knowledge Analysis, 
version 3.8.3) (Witten et al. 2000), an open-source 
machine-learning and data-mining platform based on Java 
programming, was used to develop the machine-learning 
model. Based on the findings of our previous study (Zhou 
et al. 2020), the following five algorithms were selected and 
compared. 

Table 1 Descriptions of inputs and output 

Parameter Unit Range/category Type Note 

Ta °C 8–38 

Tr °C 4–40 

Met met 0.7–3 

Clo clo 0–2.0 

Va m/s 0–2.0 

RH % 0–100 

Tout °C 3.9–38.5 

Suitable for 
both AC and 
NV scenarios

HVAC 
operation 

mode 
 AC/NV  

Climate zone  

A (tropical) 
B (dry) 

C (humid subtropical) 
D (temperate continental) 

E (polar) 

E was not 
included in the 

database 

HVAC 
operation 

season 
 Cooling/heating 

Input 

Suitable for AC 
scenarios 

TSV  Scale from −3 to 3 Output  

A random forest (RF) is an ensemble algorithm that 
makes a mean prediction based on decision trees. The 
“RandomForest” package in Weka was used. The number 
of trees was set to 1000, and the size of each bag was set to 
20% of the training set size. 

A support vector machine (SVM) is a supervised learning 
method based on the principle of the Vapnik–Chervonenkis 
theory and structural risk minimization of statistical learning 
theory. The “LibSVM” package in Weka was used. 
Epsilon–SVR (regression) and “RBF” (Gaussian) kernels 
were used. The “gamma” and “cost” were tuned from 0–32 
and 0–4, respectively. 

Multilayer perception (MLP) is a backpropagation neural 
network method. The “MultilayerPerception” package in 
Weka was used. The “hidden layers”, “learningRate”, and 
“momentum” were tuned from 2–32, 0–1, and 0–1, 
respectively. 

The K-nearest neighbors (KNN) algorithm is based on 
the distance theory and searches for nearest neighbors. The 
“IBk” package in Weka was used. The “KNN” algorithm was 
tuned from 1–64. 

Gaussian process regression (GPR) is a method that does 
not require hyperparameter tuning and is based on probability 
theory and stochastic processes. The “GaussianProcesses” 
package in Weka was used. The “RBF” kernel was used; the 
“gamma” was tuned from 0–32. 

2.4 Model performance evaluation 

The root mean squared error (RMSE) and mean absolute 
error (MAE) were used to evaluate the model performance. 
Smaller RMSE and MAE values indicate better model 
performance. These indices are defined in Eqs. (1) and (2). 

( ) ( )2 2
1 1RMSE n np a p a

n
- + + -

=


              (1) 

1 1MAE n np a p a
n

- + + -
=

                     (2) 

with     1 1
0 0,n na a p pa p

n n
+¼+ +¼+

= =   

where ai is the target value, and pi is the predicted value.  
The ten-folds cross-validation method was used for 

model evaluation. The dataset was randomly split into ten 
folds by average, with nine folds for training, and one fold 
for testing. The averages of ten training and testing sessions 
were considered as the final results.  

2.5 Overall model development process 

Figure 1 shows a flowchart of the model development. Five 
machine-learning algorithms were compared in terms of 
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prediction accuracy and result analysis. The model was 
improved by considering the importance of each numeric 
input, the necessity of each label input, and the submodels 
and general model for different indoor scenarios. A 
comprehensive framework was established from input 
feature selection, algorithm determination, and application 
scenario options. Model development details are presented 
in the following sections.  

3 Algorithm selection 

Selecting an appropriate machine-learning algorithm for 
development of the final model is critical. Five algorithms 
were compared in terms of model prediction accuracy, 

predicted TSV in different temperature bins, and output 
analysis.  

3.1 Model prediction accuracy  

Figure 2 shows the MAE and RMSE for TSV prediction 
with different algorithms and the PMV model. In Figure 2(a), 
for naturally ventilated scenarios, the MAE and RMSE of the 
five algorithms decreased by 35.9% and 31.3%, respectively, 
compared with the PMV model. In Figure 2(b), for 
air-conditioned scenarios in the cooling season, the MAE 
and RMSE of the five algorithms decreased by 22.5% and 
21.2%, respectively, compared with the PMV model. In 
Figure 2(c), for air-conditioned scenarios in the heating 

 
Fig. 1 Overall model development procedure 

 
Fig. 2 Comparison of model prediction accuracy: (a) NV scenarios; (b) AC scenarios in cooling season; (c) AC scenarios in heating
season 
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season, the MAE and RMSE of the five algorithms decreased 
by 30.7% and 29.4%, respectively, compared with the PMV 
model. For all three indoor scenarios shown in Figure 2, the 
five algorithms produced much smaller MAE and RMSE 
values than the PMV model. The difference between the five 
algorithms was 10.5% for the MAE and 9.8% for the RMSE. 

Figure 3 compares the actual TSV, predicted TSV, and 
PMV for different air temperature bins. The sum of squares 
of residuals (SSE) and R2 were used to describe the 
approximation degree between actual and predicted TSVs. 
The SSE indicates the accumulated squared error between 
predicted values and target values; R2 describes the fitting 
degree from 0 to 1. Generally, a smaller SSE and an R2 closer 
to 1 indicate a better model. SSE and R2 are defined in Eqs. 
(3) and (4), where y is the target value (actual TSV), and yʹ 
is the corresponding predicted value (predicted TSV). 

( )2SSE y y ¢= -å                               (3) 

( )
2

2
SSE1

i

R
y y

= -
-å

                            (4) 

where 1 2 ny y yy n
+ +¼+

=  

In Figure 3, as the air temperature increases, the predicted 
TSVs are consistent with the actual TSV; the PMV is 
significantly different from the actual TSV. Comparing the 
bars in Figure 3, the five algorithms produced much smaller 
SSE and larger R2 values than the PMV model, a 93.2% 
decrease in SSE and a 29.7% increase in R2 on average for 
NV scenarios, a 90.7% decrease in SSE and a 150.3% increase 
in R2 on average for AC scenarios in the cooling season, 
and a 66.3% decrease in SSE and a 49.1% increase in R2 on 
average for AC scenarios in the heating season. Thus,   
the machine-learning algorithms demonstrated better TSV 
prediction performance than the PMV model.  

3.2 Model rationality analysis  

To further analyze the rationality of the model, the effects 
on the model output (the predicted TSV) were analyzed with 
changes in the six classic inputs. Figure 4 shows how the 
model output varies with the input parameters. Figure 4(a)  

 
Fig. 3 Comparison of actual TSV, predicted TSV, and PMV as air temperature increases: (a) NV scenarios; (b) AC scenarios in cooling 
season; (c) AC scenarios in heating season  



Zhou et al. / Building Simulation / Vol. 15, No. 12 

 

2116 

compares the predicted TSV with different algorithms 
with an increase in air temperature and the other five 
parameters (Tr, Met, Clo, Va, RH) set as constants. For 
models using the MLP, SVM, and GPR algorithms, the 
predicted TSV increased gradually with an increase in air 
temperature. However, for models using the RF or KNN 
algorithms, the predicted TSV exhibited a flat trend or a 
negative trend (see marked boxes) with an increase in 
air temperature, which was not consistent with higher air 
temperatures leading to warmer thermal sensations. In 
Figure 4(b), with an increase in mean radiant temperature, 
the predicted TSVs from machine-learning algorithms 

were compared, with the other five parameters (Ta, Met, 
Clo, Va, RH) set as constants. The RF and KNN algorithms 
produced some irrational results, indicated in the boxes; 
the predicted TSV exhibited negative growth with an increase 
in the mean radiant temperature. Similar analyses were 
conducted for Met, Clo, Va, and RH. More information 
is presented in Appendix A, Figure A1, which is available   
in the Electronic Supplementary Material (ESM) from the 
online version of this paper.  

From the rationality analysis, we found that not   
all machine-learning algorithms produce rational TSV 
predictions. The circled areas in Figure 4 and in figures in 

 
Fig. 4 Model output analysis: (a) varying Ta; (b) varying Tr (Note: the red brackets indicate areas with unreasonable results. Similar analysis
for other parameters can be found in Appendix A in the ESM of the online version of this paper)  
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the Appendix indicate that some ML model outputs violate 
basic principles of thermal comfort. For example, it is 
widely known that a higher Ta and Tr, produce a warmer 
thermal sensation, assuming other parameters are the same. 
The circled areas in Figure 4 do not follow this knowledge. 
The irrational output may be caused by the data distribution 
and learning strategies of the algorithms. As the data 
samples were collected from field studies, the environmental 
parameters could not be controlled, unlike studies conducted 
in a climate chamber; the data distribution may be non- 
uniform. In addition, different algorithms use different 
learning strategies; some algorithms cannot adapt to 
discontinuities in the data distribution.  

Our analysis showed that MLP outputs were consistent 
with thermal comfort principles; the RF, SVM, GPR, and 
KNN algorithms all produced an unreasonable output in 
some cases. MLP exhibits powerful learning for nonlinear 
regression, and the outputs are continuous with matching 
linear output layers. The learning strategy of MLP can 
better adapt to a discontinuous data distribution of thermal 
comfort data samples. Thus, we chose the MLP algorithm 
for the final model. 

4 Modeling improvement 

Some modeling improvements were made to the MLP 
algorithm. First, the importance of each numerical input 
parameter was calculated and ranked. Second, the necessity 
of each label input was investigated. Third, the differences 
between the submodels (one model for each scenario) and 
general models (a single model for multiple scenarios) 
were compared. A comprehensive modeling framework 
was established. 

4.1 Importance of numeric inputs 

The PI (permutation importance) method was used to 
evaluate the importance of each numeric input. The process  

is described as follows. First, we prepared two identical test 
datasets (set X and set Y). The target parameter sequence 
was randomly sorted in set Y; the other parameters were 
left unsorted. We tested the model with sets X and Y and 
compared the errors of the two test sets. The PI value for a 
specific parameter can be regarded as a decrease in the 
model error from adding the parameter to the input feature 
combination. A larger PI value indicates greater parameter 
importance. Ranking the importance of each parameter 
can help future users efficiently collect thermal comfort 
data.  

In this study, the RMSE was used to measure the model 
error, and the PI value was determined using Eq. (5). To 
ensure the reliability and stability of the results, the data 
for each parameter were randomly sorted five times. The 
average PI value was considered as the final permutation 
importance of the target parameter. 

disturbed test set undisturbed test setPI RMSE RMSE= -            (5) 

Figure 5 shows the permutation importance of each 
numeric input. For the AC scenarios, the importance ranks 
in order from greatest to least are Ta, Tr, Clo, RH, Va, and 
Met, as shown in Figure 5(a). For the NV scenarios, the 
ranks from greatest to least are Ta, Tout, Tr, Clo, RH, Va, 
and Met, as shown in Figure 5(b). Tout was the second 
most important parameter in the NV scenarios. The 
parameter importance determined using current databases 
may change with addition of data samples.  

The prediction accuracy for different input combinations 
was explored based on the importance of the inputs. Table 2 
presents different input combinations for AC and NV 
scenarios. For the AC scenarios, the inputs included com-
bination a (Ta) to combination f (Ta, Tr, Clo, RH, Va, Met). 
For the NV scenarios, the inputs included combination a (Ta) 
to combination g (Ta, Tout, Tr, Clo, RH, Va, Met). 

Figure 6 shows the decrease in the MAE and RMSE of 
the TSV prediction with added numeric input parameters.  

 
Fig. 5 Numeric input importance ranking: (a) AC scenarios; (b) NV scenarios  
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Table 2 Numeric input combinations for AC scenarios 

Scenario Sequence number Input combinations 

a Ta 

b Ta, Tr 

c Ta, Tr, Clo 

d Ta, Tr, Clo, RH 

e Ta, Tr, Clo, RH, Va 

AC  

f Ta, Tr, Clo, RH, Va, Met 

a Ta 

b Ta, Tout 

c Ta, Tout, Tr 

d Ta, Tout, Tr, Clo 

e Ta, Tout, Tr, Clo, RH 

f Ta, Tout, Tr, Clo, RH, Va 

NV 

g Ta, Tout, Tr, Clo, RH, Va, Met 

 
Both the MAE and RMSE decreased gradually with addition 
of input parameters; the decreases did not exceed 6.38%. 
Adding input parameters can improve model accuracy; 
parameters with a higher importance rank contribute more 
to accuracy improvement. 

4.2 Necessity of categorical inputs  

In addition to numeric inputs, three categorical inputs 
(HVAC operation mode, HVAC operation season, and 
climate zone) were added to distinguish different indoor 
scenarios. To examine the necessity of these label inputs, 
the following tests were conducted. 

4.2.1 Labeling AC and NV scenarios 

To test model applicability in different scenarios, we used 
the NV model with NV data to predict AC scenarios, and 
then used the AC model with AC data to predict NV 
scenarios. Figure 7(a) shows the cross-testing process. The  

AC-A and NV-A models were derived from the AC-A 
scenario (air-conditioned, climate zone A, cooling season) 
and NV-A scenario (naturally ventilated, climate zone A), 
respectively. These models were tested using AC-A and 
NV-A data. 

Figures 7(b) and 7(c) compare the AC-A and NV-A 
model performance in different scenarios. The predicted 
TSVs were compared with the actual TSV in each temperature 
bin. For the AC-A scenario, the AC-A model produced a 
much smaller SSE and much larger R2 than the NV-A model, 
as shown in Figure 7(b). For the NV-A scenario, the NV-A 
model produced a much smaller SSE and much larger R2 
than the AC-A model, as shown in Figure 7(c).  

Cross-tests between the AC and NV models were  
also conducted for climate zones B, C, and D. Table 3 
summarizes the SSE and R2 results. In predicting the TSV 
for AC scenarios, the AC models produced a much smaller 
SSE and a much larger R2. A similar phenomenon was 
observed for TSV prediction in NV scenarios, indicating 
that labeling AC and NV scenarios is necessary in TSV 
prediction models. 

4.2.2 Labeling climate zones 

Cross-tests between different climate zones were conducted 
to evaluate the necessity of labeling them. For NV scenarios, 
NV-A, NV-B, NV-C, and NV-D models were developed 
using data samples from the NV-A, NV-B, NV-C, and 
NV-D scenarios, respectively. For AC scenarios, the cooling-A, 
cooling-B, cooling-C, cooling-D, heating-B, heating-C, and 
heating-D models were built using data from cooling-A 
(AC scenarios in climate zone A in cooling season), cooling-B, 
cooling-C, cooling-D, heating-B, heating-C, and heating-D 
scenarios, respectively.  

Figure 8 compares the TSV prediction performance in 
NV scenarios and four climate zones. The NV-A model 
produced a smaller SSE and larger R2 than the other three  

 
Fig. 6 Improving model by adding numeric inputs: (a) AC scenarios; (b) NV scenarios 



Zhou et al. / Building Simulation / Vol. 15, No. 12 

 

2119

models for climate zone A, as shown in Figure 8(a). The 
NV-B model produced a smaller SSE and larger R2 than the 
other three models for climate zone B, as shown in Figure 8(b). 
Similar results are observed in Figure 8(c) and Figure 8(d). 
Thus, labeling climate zones can improve TSV prediction 
performance for NV scenarios. Table 4 summarizes the SSE 
and R2 results from cross-tests between climate zones during 
the cooling and heating seasons for AC scenarios. For each 
climate zone, the corresponding model produced a smaller 
SSE and a larger R2 than the other models, suggesting that 
labeling climate zones is also necessary for AC scenarios. 

4.2.3 Labeling cooling and heating season 

Cross-tests were conducted to compare differences between 

the cooling and heating seasons. Cooling-B, cooling-C, 
cooling-D, heating-B, heating-C, and heating-D models were 
built using the corresponding data samples. Only a cooling 
model was built for climate A because it represents a 
tropical climate (Table 1) and only includes cooling season 
data. The cooling season models were used to predict the 
heating season, and the heating season models were used 
to predict the cooling season. The prediction errors were 
compared and evaluated. 

Figure 9 compares the TSV performance of the cooling-C 
and heating-C models in predicting cooling-C and heating-C 
scenarios. For the cooling-C scenario, the TSV predicted by 
the cooling-C model was more consistent with the actual 
TSV than the TSV predicted by the heating-C model, as  

 
Fig. 7 Cross-testing on AC and NV labels: (a) cross-testing process; (b) TSV prediction performance in AC-A scenario; (c) TSV 
prediction performance in NV-A scenario  

Table 3 SSE and R2 for cross-tests between AC and NV models 

Testing scenario AC-A AC-B AC-C AC-D 

Model AC-A NV-A AC-B NV-B AC-B NV-B AC-D NV-D 

SSE 0.189 3.252 0.272 7.583 0.259 6.069 0.354 4.103 

R2 0.989 0.811 0.991 0.738 0.989 0.752 0.976 0.725 

Testing scenario NV-A NV-B NV-C NV-D 

Model AC-A NV-A AC-B NV-B AC-C NV-C AC-D NV-D 

SSE 2.567 0.118 17.93 0.478 13.381 0.427 5.935 0.760 

R2 0.410 0.973 0.273 0.966 0.469 0.953 0.779 0.972 
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shown in Figure 9(a). The SSE of the cooling-C model was 
96.5% smaller than that of the heating-C model. The R2 of 
the cooling-C model reached 0.98, much larger than that of 
the heating-C model (0.70). For the heating-C scenario, the 
heating-C model also produced a much smaller SSE and 
larger R2 than the cooling-C model, as shown in Figure 9(b), 

suggesting much better performance of the cooling-C 
model than the heating-C model in TSV prediction of the 
cooling-C scenario, and much better performance of the 
heating-C model than the cooling-C model in TSV prediction 
of the heating-C scenario. Similar results were also observed 
in climate zones B and D (Table 5).  

 
Fig. 8 Cross-testing of A, B, C, and D climate zones for NV scenarios: (a) predicting NV-A scenario; (b) predicting NV-B scenario; 
(c) predicting NV-C scenario; (d) predicting NV-A scenario 

Table 4 Climate zone cross-tests in cooling and heating seasons 

 Index SSE R2 SSE R2 SSE R2 SSE R2 

 Testing scenario Cooling-A scenario Cooling-B scenario Cooling-C scenario Cooling-D scenario 

Cooling A model 0.189 0.989 0.517 0.982 1.957 0.920 0.531 0.961 

Cooling B model 0.644 0.962 0.272 0.992 1.824 0.925 0.585 0.957 

Cooling C model 0.343 0.980 0.504 0.983 0.259 0.989 0.645 0.952 
Cooling season 

Cooling D model 0.557 0.966 0.936 0.968 2.076 0.915 0.187 0.986 

 Testing scenario — Heating-B scenario Heating-C scenario Heating-D scenario 

Heating-B model 0.091 0.950 3.720 0.682 2.514 0.841 

Heating-C model 1.313 0.279 0.142 0.988 0.527 0.967 Heating season 

Heating-D model 

— 

0.856 0.530 0.343 0.971 0.281 0.982 
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4.2.4 Ranking necessity of different categories  

Through the cross-tests, we found that labeling AC and NV 
scenarios, different climate zones, and cooling and heating 
seasons can help improve the TSV prediction performance 
of the model. To address their relative importance, the 
absolute difference in SSE for each cross-test was compared 
between categories. For example, in Figure 7(b), the absolute 
difference between the SSE of the AC-A model and that  
of the NV-A model represents the difference between the 
AC-A and NV-A scenarios. In Figure 8(a), the absolute 
difference between the SSE of the NV-A model and the SSE 
of the other three NV models represents the difference 

between the different climate zones. 
Figure 10 compares the differences between categories. 

The mean difference between AC and NV scenarios was 
0.45, between the cooling season and heating season was 
0.83, and between different climate zones was 0.08 and 
0.11 for AC and NV scenarios, respectively. The difference 
between climate zones was larger for the NV scenarios than 
for the AC scenarios. 

4.3 Submodels and general models 

Labeling HVAC operation modes and climate zones can 
improve TSV prediction performance. There are usually  

 
Fig. 9 Cross-testing of cooling and heating seasons for AC scenarios in climate zone C: (a) predicting cooling-C; (b) predicting 
heating-C 

Table 5 SSE and R2 for climate zone cross-tests in cooling season 

Testing scenario Cooling-B scenario Heating-B scenario Cooling-D scenario Heating-D scenario 

Index SSE R2 SSE R2 SSE R2 SSE R2 

Cooling-B model 0.272 0.991 11.509 0.323 

Heating-B model 18.526 0.359 0.091 0.950 
— 

Cooling-D model 0.187 0.986 5.041 0.682 

Heating-D model 
— 

5.733 0.575 0.281 0.982 

 

 
Fig. 10 Differences between categories 
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two approaches for establishing a comprehensive model. 
One is to build a general model containing all categories; 
the other is to build submodels for each scenario based on 
the corresponding data samples. To determine the best 
approach, the TSV prediction performance was analyzed 
for the submodels and the general model.  

Figure 11 shows a comparison between the cooling-A 
model and the general model for the cooling-A scenario. 
Figure 11(a) shows the comparison process. The cooling-A 
model is based on the cooling-A scenario data; the general 
AC model with labels is based on all AC scenario data plus 
two categorical parameters (climate zone and HVAC 
operation season). An general AC model without labels was 
also developed for comparison.  

Figure 11(b) shows a comparison of the TSV prediction 
performance of the cooling-A model and the two general 
AC models. The cooling-A model produces a smaller SSE 
and larger R2 than the two general AC models. The general 
AC model with labels produces a smaller SSE and larger R2 
than the general model without labels. Similar comparisons 

were conducted for the other scenarios; the results are 
summarized in Tables 6 and 7. 

For TSV prediction in AC scenarios, the SSE produced 
by submodels were 28.8%–79.2% lower than that of the 
general AC model with labels, and 82.9–96.4% lower than that 
of the general AC model without labels. For TSV prediction 
in NV scenarios, the SSE produced by submodels were 
11.6%–53.9% lower than that of the general NV model with 
labels, and 39.1–63.9% lower than that of the general NV 
model without labels. These results suggest that submodels 
for specific scenarios achieve better TSV prediction 
performance than the general models.  

4.4 Modeling framework 

From the analysis, a comprehensive data-driven TSV 
prediction framework was established considering AC and 
NV scenarios, different climate zones, and cooling and 
heating seasons. Figure 12 shows the modeling framework 
with a series of submodels.  

  
Fig. 11 Comparing submodels and general models: (a) comparison process; (b) TSV prediction performance for cooling-A scenario  

Table 6 Comparison of SSE for AC sub-models and general AC models  
AC submodel Cooling-A Cooling-B Cooling-C Cooling-D Heating-B Heating-C Heating-D 

Testing scenario Cooling-A Cooling-B Cooling-C Cooling-D Heating-B Heating-C Heating-D 

Relative improvement 
compared with general AC 

model with labels 
43.0↓ 28.8%↓ 79.2%↓ 48.6%↓ 56.1%↓ 69.4%↓ 78.1%↓ 

Relative improvement 
compared with mixed AC 

model without labels 
84.0%↓ 93.1%↓ 91.1%↓ 86.4%↓ 96.4%↓ 82.9%↓ 91.8%↓ 

Table 7 Comparison of SSE for NV submodels and general NV models 
NV submodel NV-A NV-B NV-C NV-D 

Testing scenario NV-A NV-B NV-C NV-D 

Relative improvement compared with general NV model with labels 53.9%↓ 11.6%↓ 15.2%↓ 21.5%↓ 

Relative improvement compared with general NV model without labels 63.9%↓ 44.9%↓ 39.1%↓ 59.6%↓ 
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Fig. 12 TSV modeling framework for different sub-scenarios 

For AC scenarios, the numeric input options included 
Ta, Tr, Met, Clo, Va, and RH. For NV scenarios, the numeric 
input options included Ta, Tr, Met, Clo, Va, RH, and Tout. 
Three options corresponding to the three label inputs (AC 
and NV scenarios, climate zones (A, B, C, or D), and the 
heating and cooling seasons) were also included. Given the 
relatively low importance of labeling climate zones (Figure 10), 
an option without climate labels was set as an alternative 
for cases with unknown climate zones. For AC scenarios, 
climate zone A only includes a cooling season; zones B, C, 
and D include both cooling and heating seasons. For NV 
scenarios, no cooling or heating season labels were used.  

Eleven submodels corresponding to 11 scenarios, and 
three general models without climate zone labels were 
packaged to form the final comprehensive data-driven TSV 
prediction model. The final model can output a continuous 
TSV ranging from −3 to 3, and can adapt to different 
sub-scenarios. The comprehensive model has a 64.7%–90.7% 
lower prediction error than the conventional PMV model 
(reducing SSE by 3.2–4.9). The model in Figure 12 had an 
11.6%–63.9% lower prediction error than the conventional 
data-driven model using all numeric and label inputs 
(reducing SSE by 0.58–3.2). 

5 Model application 

The data-driven TSV prediction model can be useful for 
evaluating thermal comfort in a building environment. One 
such application is to determine indoor thermal comfort 
zones for different climates to guide the design and operation 
of building environment conditioning systems.  

For NV scenarios, the acceptable thermal temperature 
range with different outdoor air temperatures can be 
determined by the model without climate labels (Figure 12), 
with target TSV [−1, +1]. Considering Shanghai as an example,  

assuming that the other five parameters are fixed (Tr = Ta, 
RH = 60%, Met = 1.1met, Clo, and Va are related to Ta), 
the thermally neutral indoor temperature (TSV = 0) can be 
obtained (white line in Figure 13). Similarly, the upper 
and lower indoor temperature limits can be obtained (red 
and blue lines in Figure 13). With the monthly mean 
outdoor air temperatures for April, July, and October, the 
corresponding temperature limits can be obtained (dots in 
Figure 13). The indoor temperature limits for NV buildings 
can be determined in other cities in different climate zones 
using the same procedure (Table 8).  

Based on the model framework in Figure 12, a prototype 
online tool was developed and will be continuously updated. 
To use the tool, it is not necessary to provide all numeric 
and input features shown in Figure 12. The tool outputs 
thermal sensation predictions based on whatever parameters 
are provided by the user (within the scope of inputs shown 
in Figure 12). 

To test if the data-driven TSV model is extendible and 
generalized enough to predict partially unseen situations, 
we tried to develop models with international datasets while 
testing the model with the Chinese dataset. The results 
were shown in Figure A2 in the Appendix, which is in the 
ESM of the online version. For AC-cooling scenario, the 
model developed with two international datasets worked 
well on the Chinese dataset prediction. For NV scenario, 
models developed with international datasets showed large 
discrepancy when predicting the Chinese dataset. Adding 
half Chinese data into the training data could largely 
reduce the discrepancy. These might because the Chinese 
dataset has different climate classification criteria with the 
two international datasets. More analysis can be conducted 
to investigate this issue.  

 
Fig. 13 Acceptable indoor temperature range in NV scenario for 
Shanghai 
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6 Conclusions 

In this study, a comprehensive data-driven thermal sensation 
prediction model was established using an MLP algorithm 
and three quality-controlled thermal comfort databases. 
The following observations were made during model 
development, improvement, and application. 

With higher TSV prediction accuracy and more 
reasonable output results, the MLP algorithm was more 
suitable for TSV prediction than the other four tested 
algorithms (RF, SVM, KNN, GPR) in this specific case. 

Labeling AC and NV scenarios, climate zones, and cooling 
and heating seasons can improve model performance. 
Submodels for specific scenarios can produce higher TSV 
prediction accuracy than general models with or without 
labels.  

A data-driven TSV modeling framework was established 
using 11 submodels corresponding to 11 sub-scenarios, and 
three general models without climate zone labels. The new 
model can distinguish AC and NV scenarios, climate zones, 
and cooling and heating seasons, and reduce prediction errors 
by 64.7%–90.7% (reducing SSE by 3.2–4.9) compared with 
the conventional PMV model. 

 
Electronic Supplementary Material (ESM): The Appendix 
of this paper is available in the online version at 
https://doi.org/10.1007/s12273-022-0911-2. 
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