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Abstract 

Short-term building energy predictions serve as one of the fundamental tasks in building operation 

management. While large numbers of studies have explored the value of various supervised 

machine learning techniques in energy predictions, few studies have addressed the potential data 

shortage problem in developing data-driven models. One promising solution is data augmentation, 

which aims to enrich existing building data resources for reliable predictive modeling. This study 

proposes a deep generative modeling-based data augmentation strategy for improving short-term 

building energy predictions. Two types of conditional variational autoencoders have been designed 

for synthetic energy data generation using fully connected and one-dimensional convolutional 

layers respectively. Data experiments have been designed to evaluate the value of data augmentation 

using actual measurements from 52 buildings. The results indicate that conditional variational 

autoencoders are capable of generating high-quality synthetic data samples, which in turns helps 

to enhance the accuracy in short-term building energy predictions. The average performance 

enhancement ratios in terms of CV-RMSE range between 12% and 18%. Practical guidelines have 

been obtained to ensure the validity and quality of synthetic building energy data. The research 

outcomes are valuable for enhancing the robustness and reliability of data-driven models for 

smart building operation management. 
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1 Introduction 

The building industry is embracing the era of big data with 
the wide adoption of information technologies. To cope with 
the global trend of smart and sustainable cities, it has become 
increasingly promising to develop data-driven solutions for 
accurate and automated controls over building services systems 
(Wei et al. 2018). Short-term building energy predictions 
serve as one of the fundamental tasks in building operation 
management (Amasyali and El-Gohary 2018; Zhao et al. 
2020). Previous studies have utilized various supervised 
machine learning algorithms for short-term building energy 
predictions (Fan et al. 2021a). A large number of single 
model-based methods have been developed for regression 
and classification problems (Yu et al. 2010; Shao et al. 2020). 

To further enhance the prediction performance, ensemble 
models, which are typically developed using bootstrap 
aggregating (Gong et al. 2020; Zhou et al. 2020), boosting 
(Walker et al. 2020; Chen et al. 2021) and stacking (Wang 
et al. 2020) techniques, have been proposed for building 
energy predictions. Compared with models of relatively 
shallow architectures (Seyedzadeh et al. 2019), the recent 
development in deep learning has encouraged researchers 
to utilize deep learning models for various data analytic tasks, 
such as unsupervised feature engineering, supervised energy 
predictions and semi-supervised fault detection (Fan et al. 
2017; Fan et al. 2019a; Fan et al. 2021b&c). Encouraging 
results have been obtained in terms of prediction accuracies, 
data compatibilities and flexibilities (Wang and Srinivasan 
2017). Nevertheless, existing studies mainly assumed that  
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List of symbols 

CVAE  conditional variational autoencoder 
CV-RMSE coefficient of variation of root mean  
  squared error 
GAN  generative adversarial network 
LSTM  long short-term memory 
M1, M2, …, M12 month from January to December 

P(A,B)  joint probability of A and B 
P(A|B)  conditional probability of A given B 
PER  performance enhancement ratio 
RMSE  root mean squared error 
T1, T2, …, Tn time steps from 1 to n 
VAE  variational autoencoder 

  
 

individual buildings have sufficient high-quality data, while 
in practice the data resource may not be satisfactory to 
ensure the reliability and robustness of complicated data- 
driven models. For instance, given the absence of advanced 
building automation systems or power metering systems, 
existing buildings may only rely on manual labors for 
data collection, resulting in limited data with irregular and 
relatively large collection intervals. Another data shortage 
example is for new buildings which only operate for a few 
weeks or months. As a result, the building operational data 
amounts are rather limited due to the lack of data accumulation 
time. In addition, the quality of building operational data 
may not be satisfactory considering the wide existence   
of malfunctions in sensor, data transmission and storage 
systems (Sun et al. 2020; Fan et al. 2021d). In such a case, 
the potential of advanced machine learning algorithms 
cannot be fully realized as complicated data-driven models 
may not generalize well due to the overfitting and non- 
convergence problems (Hastie et al. 2016).  

There are two promising strategies to tackle the data 
shortage challenge, i.e., transfer learning-based and data 
augmentation-based strategies. The main idea of transfer 
learning is to utilize existing data resources from well- 
measured buildings to facilitate data-driven model development 
in poor-measured buildings (Weiss et al. 2016). Researchers 
have investigated the potential of transfer learning for 
short-term building energy predictions using neural networks, 
resulting in significant model improvement in various data 
shortage scenarios (Fan et al. 2020; Li et al. 2021). Grubinger 
et al. (2017) developed a transfer learning-based framework 
for indoor environment predictions in residential buildings. 
Ribeiro et al. (2018) utilized transfer learning to achieve 
reliable energy predictions across various building types 
(Ribeiro et al. 2018). Previous studies have validated the 
potential of transfer learning in integrating and utilizing 
existing building data resources. However, it is non-trivial 
to develop customized solutions for individual buildings 
considering the physical, environmental and social differences 
between source and target buildings.  

The data augmentation-based strategy can be applied as 
a lightweight solution to tackle practical data shortage 

problems in the building field. Data augmentation refers to 
a set of techniques to increase the diversity of existing data 
by generating meaningful yet synthetic data (Goodfellow  
et al. 2016; Um et al. 2017). In the building field, such 
techniques can be applied to generate synthetic data to increase 
data amounts or potentially describe unseen working 
conditions for reliable data-driven model development. Data 
augmentation techniques have been successfully used in 
various fields for enhancing data-driven model performance, 
e.g., image data can be rotated or cropped for computer 
vision tasks while audio data can be distorted and scaled 
for speech recognition tasks (Chollet and Allaire 2018). 
Compared with transfer learning, data augmentation-based 
strategy is easy to implement and adaptable for individual 
buildings. On the one hand, it can be integrated as a data 
preprocessing step to enhance the quality of building data 
analysis results, as improvements are typically expected even 
given sufficient data (Goodfellow et al. 2016). On the other 
hand, it is extremely useful for enriching building operational 
data for specific building energy management tasks. For 
instance, the training data for system fault detection and 
diagnosis model development are typically imbalanced 
with very few faulty measurements. In such a case, data 
augmentation techniques can be applied to create synthetic 
faulty data, which helps to enhance the generalization 
performance of fault classification models (Rashid and 
Louis 2019).  

Despite the presence of promising data augmentation 
algorithms and tools, few studies have been conducted to 
investigate and evaluate their potentials in building data 
analysis. More specifically, few researchers have addressed 
the necessity and value of data augmentation for time 
series regression tasks. Considering that building operational 
data are in essence time series data and typically of 
limited quality, it is essential to develop customized data 
augmentation methods to enhance the practical values of 
data-driven approaches in building energy management. 
To address this research gap, this study proposes a novel 
deep generative modeling-based method for short-term 
building energy predictions. The research outline is 
summarized as below. 
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 The main purpose of this study is to investigate the value 
of conditional variational autoencoders for augmenting 
building operational data for short-term building energy 
predictions.  

 Data experiments, which utilizes both conventional and 
advanced time series augmentation techniques, have been 
conducted using actual energy data from 52 buildings.  

 The paper has the following structure. Section 2 describes 
the theoretical background on data augmentation 
techniques. The research methodology is introduced 
in Section 3. Data experiment results are reported and 
discussed in Section 4. Conclusions are drawn in Section 5.  

2 Theoretical background 

2.1 Conventional data augmentation techniques for time 
series data 

Building operational data are typically collected by automation 
systems with fixed time intervals, making them in essence 
time series data. Taking 24-hour building energy data as 
examples, Figure 1 illustrates classic data augmentation 
techniques for time series data. As shown in Figure 1(a), 
the first is called rotation or flipping, which simply inverts 
data signs while fixing magnitudes (Wen et al. 2020). Such 
methods can be used to simulate different sensor positions 
(Fawaz et al. 2018) or data orientations (Shao et al. 2019). 
The second is to create synthetic sequences by changing 
temporal data orders (Le Guennec et al. 2016). For instance, 
the permutation method is shown in Figure 1(b), where the 
original sequence is divided into three equal-length temporal 
segments with eight-hour time period, based on which 
random perturbation is performed to form a new time series. 
Time-warping is another popular approach for changing 
temporal characteristics. In such a case, synthetic data are 
created by stretching or shortening the original time series 
with different warping ratios. The third is to create synthetic 
data by introducing small changes in data magnitudes. 
Jittering and scaling are two widely used approaches. As 
shown in Figures 1(c) and (d), the former simulates additive 
sensor noises by adding Gaussian noises, while the latter 
changes data scales by multiplying the original data with 
random scalars (i.e., the scaling factor is 0.5 as shown in 
Figure 1(d)). It is not reasonable to introduce large variations 
or change temporal orders for regression problems, as they 
will greatly impact the temporal dependencies for time series 
predictions. By contrast, the jittering method can simulate 
malfunctions in building sensors or data collection systems. 
It is therefore adopted as the classic approach for augmenting 
building energy data in this study. 

The abovementioned data augmentation techniques 
are relatively easy for implementation. Nevertheless, these  

 
Fig. 1 Conventional data augmentation techniques for building 
energy data 

techniques are heavily dependent on prior knowledge 
about the data invariance properties and the data diversity 
gained is rather limited (Um et al. 2017). To overcome this 
drawback, advanced data augmentation techniques based 
on generative models have been proposed. The basics are 
introduced in the following section. 

2.2 Generative modeling-based data augmentation 
techniques 

There are two general machine learning approaches, i.e., 
discriminative and generative learning (Ng and Jordan 2001). 
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Both have been used for regression or classification tasks.  
Discriminative models directly learn the conditional 
probability P(Y|X) from data, where X and Y denote model 
input and output variables respectively. By contrasts, the 
generative models learn the joint probability P(Y|X), based 
on which the Bayes rule can be applied for generating 
predictions. Existing studies have shown that discriminative 
models are more efficient and effective in predictive 
modeling, while the joint probability learned by generative 
models can be valuable for other purposes, e.g., generating 
new samples for data augmentation (Antoniou et al. 2018). 
Compared with typical data augmentation techniques, 
generative models can produce synthetic data with broader 
variations and higher quality and thus, providing more 
useful information to enhance the generalization performance 
of discriminative models (Goodfellow et al. 2016). It should 
be mentioned that such performance enhancement cannot 
be simply achieved by using more powerful or advanced 
discriminative models due to the difference in their learning 
paradigms. 

The rapid development in deep learning has provided 
powerful tools for generative modeling. Two deep learning- 
based generative models, i.e., generative adversarial networks 
(GANs) and variational autoencoders (VAEs), have gained 
great popularity due to their excellence in capturing com-
plicated data distributions (Frid-Adar et al. 2018; Simão  
et al. 2019; Xu et al. 2019). The main intuition of generative 
modeling-based data augmentation techniques is to map 
the real data into a set of latent distributions, based on which 
synthetic data can be sampled during data generation. A 
GAN model, which consists of a generator and discriminator, 
is trained in an adversarial way to generate high-quality 
synthetic data. Previous studies have shown GAN models 
were capable of producing highly realistic daily patterns 
describing both general trends and stochastic dynamics in 
building operations (Wang and Hong 2020). However, 
GAN models can be extremely difficult to train in practice 
and typically require extensive experiments to find optimal 
model parameters (Creswell et al. 2017; Tian et al. 2019). 
By contrasts, VAEs are much easier to train using gradient- 
based methods and have obtained state-of-the-art results in 
generative modeling (Goodfellow et al. 2016; Bregere and 
Bessa 2020). More importantly, VAEs are capable of learning 
structured latent spaces, which can provide more controls 
over the synthetic data generation process (Chollet and 
Allaire 2018). Therefore, this study adopts VAEs as the 
main technique for augmenting building energy data. The 
technical details are shown in Section 2.3. 

2.3 Basics on variational autoencoders 

Variational autoencoders (VAEs) are developed in 2013 

(Kingma and Welling 2013). VAEs are variations of 
conventional autoencoders, which aim to reconstruct original 
data through an encoding and decoding process. As 
illustrated in Figure 2, a conventional autoencoder has a 
bottleneck architecture and consists of an encoder and a 
decoder. The encoder transforms the original data into a 
lower dimensional latent vector Z. The decoder tries to 
reconstruct the original data by taking Z as inputs. Various 
training constraints can be applied to derive meaningful 
latent representations of original data. Autoencoders have 
been widely used for data dimensionality reduction and 
feature engineering (Baldi 2012).  

As shown in Figure 3, instead of simply compressing 
the original data into a latent vector, the encoder of VAE 
transforms the original data into a set of means and variances 
(i.e., denoted as μ  and 2σ  respectively), which specify the 
characteristics of normal distributions (Um et al. 2017). 
Random sampling is then performed to obtain a latent vector 
Z from latent normal distributions, where Z μ σ= +   ,  
are random values drawn from standard normal distributions, 
and   denotes element-wise product. Such random sampling 
process, which is known as the reparameterization trick, 
enables the gradient backpropagation through the whole 
VAE models while ensuring the stochasticity (Goodfellow 
et al. 2016). VAEs are trained with the aim of minimizing 
two types of losses. The first is reconstruction loss, which 
compares the difference between original and synthetic 
data. The second is regularization loss, which aims to reduce 
the overfitting risk while developing a well-structured latent 
space (Chollet and Allaire 2018). It should be mentioned 
that the dimension of latent vectors should be optimized to 
ensure the quality of synthetic data. 

In practice, it is often desired to generate synthetic data 
given certain conditions. As an example, buildings may have 
different operation patterns in different months or day 
types (e.g., weekdays and weekends). Rather than random 

 
Fig. 2 The schematic of a conventional autoencoder 
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Fig. 3 The schematic of a variational autoencoder (VAE) 

data augmentation, one may want to generate synthetic 
data for a given month or day type. Conditional variational 
autoencoders (CVAE) can be applied to address such needs 
(Sohn et al. 2015). As shown in Figure 4, conditional 
information, which can be represented as either continuous 
or one-hot encoding vectors, is fed to both encoder and 
decoder as inputs. Once converged, the CVAE decoder can 
be applied to generate synthetic data given certain conditions. 
To summarize, CVAE models can provide users with more 
controls over the synthetic data generation process and 
therefore are used for augmenting building energy data 
in this study. 

 
Fig. 4 The schematic of a conditional variational autoencoder 
(CVAE) 

3 Research methodology 

3.1 Research outline 

As shown in Figure 5, this research aims to investigate and 

evaluate the potential of data augmentation for building 
energy analysis. To ensure the research validity, a set of 
buildings with different types and energy scales have been 
adopted for data experiments. The prediction task is defined 
as a multi-step building energy prediction with a prediction 
horizon of 24-hour. Data experiment are conducted 
separately for each building to evaluate the usefulness of 
data augmentation strategies. The training, validation and 
testing data are randomly selected with proportions of 70%, 
15% and 15%, respectively. The training and validation data 
are used for model training and validation, while the 
generalization performance is evaluated based on testing 
data. Two data augmentation strategies are utilized to generate 
synthetic data based on training data. The first is to create 
synthetic data through the classic jittering method, i.e., 
adding random Gaussian noises. The second generates 
synthetic data based on CVAEs, which are developed through 
fully connected and one-dimensional (1D) convolutional 
neural networks. Prediction models are then developed for 
each building under different data augmentation settings. 
The value of data augmentation strategies is evaluated based 
on accuracy metrics on testing data. 

3.2 Data augmentation strategies for building energy 
data 

As an initial step, building operational data are prepared 
into suitable formats for 24-hour ahead building energy 
predictions. Considering the practical data availability, the 
prediction model consists of two types of input variables. 
The first is the Month of the prediction day, which can   
be used to describe seasonalities in building operations  
and indoor occupancy schedules. The second are historical 
building energy data. Building operations have significant 
weekly and daily patterns (Fan et al. 2019b; Piscitelli et al. 
2021). Therefore, the maximal time lag (i.e., denoted as w) 
for model inputs is defined as one week. For instance, given 
hourly data collection interval, the building energy data at 
time step T−167, T−166, …, T will be used to predict energy 
consumptions at T+1, T+2, …, T+24. Once the data format 
is determined, data partitioning is performed to randomly 
divide the data for each building into three segments, i.e., 
training, validation and testing data, each with probabilities 
of 70%, 15% and 15%, respectively. The training data are 
used for model development. The validation data are used 
to calculate the validation loss when applying the early- 
stopping training scheme. The model performance is 
evaluated using the testing data. It should be mentioned 
that the main research scope is to explore the value of data 
augmentation strategies for short-term building energy 
predictions. Future studies can be conducted considering 
different training data availabilities. 
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Different data augmentation strategies are then applied 
to enrich the training data. The first is the classic jittering 
method, which injects random noises drawn from Gaussian 
distributions to the original energy data. The magnitudes  
of random noises can be controlled by setting different 
standard deviations for Gaussian normal distributions. In 
this study, different levels of standard deviations and the 
amount of synthetic data are specified for data experiments. 
The second strategy utilizes CVAEs for synthetic data 
generation. As shown in Figure 6, two types of CVAE models 
(i.e., denoted as CVAE-1 and CVAE-2) are developed 
based on fully connected and 1D convolutional layers 
respectively. While CVAE-1 treats each value in the 8-day 
building energy pattern as independent, CVAE-2 utilizes 1D 
convolutional operations to capture temporal dependencies 
among successive energy measurements. Considering that 
buildings typically have different operation patterns given 
different seasons and occupancy schedules, the time variable 
Month is transformed into one-hot encoders as conditional 
information. It should be mentioned that other variables 
can be integrated as the conditional information for more 
customized synthetic data generations. For instance, building 
operations typically present dramatic differences between 
weekdays and weekends and hence, the Day Type can be 
used as additional conditional information. In this study, 
the prediction model takes 7-day historical data as inputs, 
which in essence have already include the information of 
Day Type for the prediction day. Therefore, to make the 
CVAE and prediction model more concise, only Month is 
adopted as the conditional information for synthetic data 
generation. 

CVAE models are trained based on training data only. 
The early-stopping training scheme is adopted to prevent 
the overfitting problem and the patience was set as 20. 
More specifically, the model loss on validation data will be  

 
Fig. 6 CVAEs for synthetic building energy data generation 

calculated at each training iteration. If the validation loss 
does not decrease for over 20 iterations, the training process 
will terminate. As described in Section 2.3, the latent vector 
dimensions can significantly affect the quality of synthetic 
data. Therefore, besides general model architectures, the latent 
size should also be optimized for individual buildings. 

3.3 Predictive modeling on 24-hour ahead building 
energy consumptions 

There are three main approaches for multi-step ahead 
building energy predictions, i.e., the recursive, direct, and 
multi-input multi-output approaches (Fan et al. 2019c). Our 
previous work has shown that the direct approach, which 
develops separate models for each time steps, can achieve 
better performance as it can effectively avoid the error 
accumulation problem observed in the recursive approach 

 
Fig. 5 Research outline 
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while resulting in more accurate predictions compared with 
the MIMO approach (Gal and Ghahramani 2016). Therefore, 
this study adopts the direct approach for developing short- 
term building energy prediction models.  

The artificial neural network is selected as the modeling 
technique. The main considerations are two-fold. Firstly, 
artificial neural networks provide great flexibilities in model 
architectures. It can be easily adaptable for implementing 
the direct approach by changing the number of output 
neurons. In such a case, there is no need to develop 
completely different models for each time step, resulting 
in potential reductions in computational costs. Secondly, 
through the use of various convolutional and recurrent 
operations, artificial neural networks can accurately capture 
temporal data dependencies, resulting in excellent perfor-
mance in time series predictions (Hochreiter and Schmidhuber 
1997; Gal and Ghahramani 2016). Therefore, this study selects 
neural networks for short-term building energy predictions. 
Prediction models are developed based on one-dimensional 
convolutional and recurrent operations. Optimizations in 
terms of the model architecture will be performed to ensure 
the generalization performance. 

3.4 Performance evaluation 

To ensure the result validity, this study adopts buildings 
with different types and scales for analysis. For each building, 
prediction models are developed using the training data 
only, with or without data augmentation. The early-stopping 
scheme is adopted to prevent the overfitting problem 
considering the mean square error in validation data. The 
generalization performance is evaluated based on the 
remaining testing data. The root mean squared error (RMSE) 
and the coefficient of variation of root mean squared error 
(CV-RMSE) are selected for performance comparisons as 
shown in Eqs. (1) and (2), where the total sample size is 
denoted as n, ŷ  and y denote predicted and actual values, 
respectively. The performance enhancement ratios (PERs) 
are defined to quantify the usefulness of data augmentation 
strategies in short-term building energy predictions. As 
shown in Eq. (3), PER is defined as the relative reduction in 
RMSEs when data augmentation is used, where RMSE1 and 
RMSE2 are obtained by prediction models based on the 
original and augmented data sets, respectively. On the premise 
that data augmentation is useful, RMSE2 should be smaller 
than RMSE1, resulting in positive PER. On the contrary, 
PER should be negative if data augmentation has negative 
influence on short-term building energy prediction. 
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4 Data experiment results and discussions 

4.1 Data description 

The Building Data Genome Project was utilized for data 
experiment (Miller and Meggers 2017). The project provides 
one-year building operational data for 507 non-residential 
buildings. All the data analysis tasks were performed using 
the R programming language (R Development Core Team 
2008). Three general types of information are available for 
analysis. The first describes the general building information, 
including building physical attributes (e.g., locations, total 
floor areas and occupancy numbers) and main functionalities 
(i.e., office, primary/secondary classrooms, university 
classrooms, university dormitories and university laboratories). 
The second provides ten-minute interval descriptions on 
outdoor conditions using a set of meteorological variables, 
such as outdoor temperature and relative humidity. The 
third is one-year building energy consumption data collected 
at hourly interval.  

As mentioned in Section 3.2, the maximal time lag for 
model inputs was set as 168 considering weekly seasonalities 
in building operations. Therefore, the building energy data 
were firstly merged with outdoor conditions and then 
transformed into subsequences with a length of 192 (i.e., 
168 + 24 = 192) for each building. The data subsequences 
were generated with a daily stride, i.e., 24-hour. To ensure 
the fairness and validity of data experiments, each testing 
building should possess the same amount of data subsequences 
for model development and evaluation. However, the buildings 
in the Building Data Genome Project have different data 
availabilities due to the presence of missing values or 
outliers. It is observed that 52 buildings (i.e., 10 offices, 12 
university classrooms, 7 university dormitories and 23 
university laboratories) have exactly the same amount of 
data subsequences (i.e., 276). Given larger data subsequence 
numbers, the number of testing buildings selected would 
be much smaller than 30, which may not justify the statistical 
significance of experiment results. Therefore, these 52 
buildings have been adopted for data analysis. The general 
energy patterns of these 52 buildings are depicted in Figure 7 
according to their building types using median values. 
Significant differences between weekdays and weekends  
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can be observed for all building types except for university 
dormitories. This is expected as the occupancy schedule of 
university dormitories is relatively fixed across the whole 
week. In addition, university laboratories have slightly higher 
energy uses, which is also expected due to the operation of 
energy-intensive equipment.  

4.2 Synthetic data generation  

As described in Section 3.2, data experiments have been 
conducted for each building separately. The available data 
subsequences of individual buildings were randomly par-
titioned into training, validation and testing data sets with 
proportions of 70%, 15% and 15%, respectively. The data 
augmentation was performed based on the training data 
set only. To evaluate the impact of synthetic data amounts 
to short-term building energy predictions, two sets of 
synthetic data have been generated and denoted as 5-fold and 
10-fold respectively. The 5-fold data have 965 subsequences, 
which is 5 times the number of training subsequences (i.e., 

276 × 0.70 = 193) for individual buildings. The 10-fold data 
have 1930 subsequences, which is 10 times the number of 
training subsequences for individual buildings. 

Two data augmentation strategies have been implemented 
for each building. As shown in Figure 8, the first applies 
random Gaussian noises to each time step of the training 
data subsequences. Three levels of standard deviations were 
set to control the magnitudes of Gaussian noises, i.e., 1%, 
5% and 10% of the standard deviation in original building 
power consumption data.  

The second develops CVAEs for synthetic data generation. 
CVAE-1 was developed using fully connected layers. As 
shown in Table 1, the grid-search has been used for model 
parameter optimization. To summarize, CVAE-1 was 
designed with symmetric architecture, indicating that both 
hidden layer and hidden neuron sizes would be the same 
for encoder and decoder models. To reduce computation 
costs in model optimization, only two essential model 
parameters were optimized, i.e., the numbers of hidden 
layers (i.e., 0, 1 or 2) and neuron sizes (i.e., 50, 100, 150).  

 
Fig. 7 Typical building energy patterns for different building types 

 
Fig. 8 Synthetic data generation using jittering-based method 
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Table 1 Grid-search settings for CVAE development 
Type Model parameters Candidates 

The number of fully connected layers 0, 1, 2 
CVAE-1 

Hidden neuron numbers at each layer 50, 100, 150 

The number of 1D convolutional layers 1, 2, 3, 4, 5 
CVAE-2 

The filter number at each layer 50, 100, 150 

 
The conditional information, i.e., Month of the prediction 
day, was transformed into one-hot representations and 
integrated with other inputs using the concatenation 
approach. Rectified linear units (ReLU) were used as the 
activation function except for the encoder and decoder 
output layers, where Linear activation function was used. 
The candidates for latent size were 2, 5 and 10, and the 
optimal value may vary for different buildings. To capture 
temporal dependencies in time series data, CVAE-2 was 
developed using 1D convolutional layers and optimized 
using a similar grid-search fashion. To reduce computation 
costs in model optimization, only the numbers of hidden 
layers and filters were optimized, as these two typically 
have the largest impacts on model performance. There 
were five candidate hidden layer values for the encoder and 
decoder, i.e., one to five. The filter number was optimized 
considering three candidate values (i.e., 50, 100 and 150) 
and was set equal for all 1D convolutional layers. Once 
optimized, synthetic data could be created for each building 
using CVAE decoders. For each building, synthetic data 
were generated considering two synthetic data amounts, i.e., 
5-fold and 10-fold. As shown in Figure 9, the conditional 
information, i.e., Month of the prediction day, was generated 
using random uniform distribution and the latent vectors 
were randomly sampled from standard normal distributions. 
As an example, Figure 10 depicts the boxplot between 

 
Fig. 9 Synthetic data generation using CVAE-based methods 

 
Fig. 10 An example boxplot of synthetic and actual energy data 
for a university dormitory building 

synthetic and actual building energy data for a university 
dormitory building. It is observed that the mean values of 
different Hour are approximately the same, while the synthetic 
data present much wider variations. In such a case, the 
synthetic energy data can be used to describe unseen working 
conditions and thereby, leading to possible enhancements 
in data-driven prediction models.  

4.3 Prediction model development and optimization 

As described into Section 3.3, the direct approach based on 
artificial neural networks has been adopted for 24-hour 
ahead building energy predictions. To ensure the fairness 
in evaluating data augmentation strategies, the model 
architecture has been optimized based on building operational 
data from 10 random selected buildings and fixed for all 
the other data experiments. The grid-search settings and 
results for model optimization are summarized in Table 2. 
Considering that building energy data present significant 
temporal and seasonal patterns, the model was designed 
with possible 1D convolutional and recurrent operations. 
More specifically, the model was optimized considering four 
essential parameters, i.e., the number of 1D convolutional 
layers, the filter number in 1D convolutional layers, whether 
to use bidirectional operations for recurrent operations, 
and the recurrent unit number in the LSTM layer. The 
recurrent unit number was designed with four candidate 
values (i.e., 24, 48, 72 and 96) to capture possible interactions 
among daily energy patterns.  

The optimal model architecture is shown in Figure 11. 

Table 2 Grid-search settings for prediction model optimization 

Model parameters Grid-search candidates Results 

1D convolutional layer numbers 1, 2, 3 2 

The filter number 50, 100, 150, 200 100 

Bidirectional operations Yes/No Yes 

LSTM neuron numbers 24, 48, 72, 96 48 
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Fig. 11 The optimized prediction model architecture 

The model inputs consist of one-week historical energy 
consumptions and the Month of the prediction day. Both 
convolutional and recurrent operations have been utilized 
to handle the historical energy consumptions. Two one- 
dimensional convolutional layers have been used to extract 
high-level temporal features and reduce computation costs. 
The filter sizes were set as 200 and 100 respectively. The 
ReLU is selected as the activation function to reduce the 
risk of exploding or vanishing gradients. The relationships 
among temporal features were then captured based on 
bidirectional and long short-term memory (LSTM) operations. 
The bidirectional operations were adopted to enrich the 
temporal information for recurrent model development. 
More specifically, a bidirectional recurrent layer consists of 
two recurrent operations, which take a forward and reversed 
pass through the input sequence respectively. The hyperbolic 
tangent is selected as the LSTM activation function, as other 
choices may lead to failures in model training. Besides the 
early-stopping training scheme, the dropout and recurrent 
dropout for recurrent operations were both set as 20% to 
reduce the risk of overfitting. Meanwhile, the Month is 
transformed using embedding operations and integrated 
with recurrent outputs using dot multiplication. Afterwards, 
batch normalization layer is applied to stabilize the training 
process. The output layer is a 24-neuron dense layer with 
the Linear activation function, representing predictions for 
the next 24-hour.  

4.4 Evaluations and discussions on data augmentation 
strategies  

4.4.1 Evaluations on jittering-based data augmentation 
strategies 

Different prediction models have been developed for each 
building to evaluate data augmentation methods. A baseline 
model was firstly developed using the real data alone. The 

early stopping training scheme was adopted to prevent the 
risk of overfitting. The CV-RMSEs on testing data sets   
of all 52 buildings were calculated to indicate the baseline 
prediction performance. Figure 12 serves as the density 
plot of 52 CV-RMSEs. The mean and median CV-RMSEs 
are 13.86% and 12.04%, respectively. It is observed that  
the majority of CV-RMSEs are below 30%, which are in 
accordance with results obtained in other studies using the 
Building Genome Project (Miller and Meggers 2017). As 
explained in Section 3.4, the CV-RMSEs of baseline models 
were then used to calculate performance enhancement ratios 
(PERs) to quantify the value of different data augmentation 
methods. 

Prediction models were then trained based on augmented 
data, where actual training data were combined with synthetic 
data for model development. As the initial attempt, six 
augmented data sets are generated using the jittering-based 
methods. Each data set varies in terms of the synthetic data 
amount (i.e., denoted as 5-fold and 10-fold) and the level of 
random Gaussian noises (i.e., denoted as 1%, 5% and 10%). 
The PERs can be calculated for each augmented data and 
the resulting PER distributions are summarized in Table 3. 
More specifically, four statistical features are reported, i.e., 
the mean, the 5%, 50% and 95% quantiles of PERs obtained 
for 52 buildings. The mean and median values are close to 
zero, indicating that the jittering-based method does not 
provide reliable enhancements for building energy predictions. 
Based on the 5% and 95% quantiles, it is observed that the 
increase in synthetic data amounts can lead to slightly 
better PERs, while the variations in noise levels do not 
present evident changing trends for PERs. As shown in 
Figure 13, the violin and boxplots have been adopted for 
visualizing the PER distributions. The violin plot illustrates 
the PER density while the boxplot presents statistical 
characteristics of PER distributions, such as the 5%, 25%, 
50%, 75% and 95% quantiles. It shows that the overall 
performance is not satisfactory as negative PERs can be 
observed in almost half of the 52 buildings. It is therefore 

 
Fig. 12 The overall baseline model performance in terms of 
CV-RMSE 
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Table 3 Summary on PERs using the jittering-based strategy 

Noise 
levels 

Data 
folds 

5% 
quantile 

 
Median 

 
Mean 

95% 
quantile 

5 −0.46 0.00 −0.06 0.29 
1% 

10 −0.43 0.00 −0.03 0.35 

5 −0.37 0.00 −0.01 0.32 
5% 

10 −0.31 0.01 0.02 0.36 

5 −0.38 0.01 −0.04 0.25 
10% 

10 −0.39 0.01 −0.01 0.34 

 
Fig. 13 PER distributions using the jittering-based data augmentation 
strategy 

not suggested to apply such techniques for augmenting 
building energy data for short-term building energy 
predictions in practice. The data experiment results show 
that even though such technique has been reported useful 
for classification problems in other fields, it is not suitable 
for regression problems in the building field. 

4.4.2 Evaluations on CVAE-based data augmentation 
strategies 

The CVAE-based data augmentation methods have been 
applied to enrich the training data for building energy 
predictions. In total, four augmented data sets have been 
created using two types of CVAE models (i.e., denoted as 
CVAE-1 and CVAE-2, which utilize fully connected and 
1D convolutional layers respectively) and synthetic data 
amounts (i.e., 5-fold and 10-fold).   

As shown in Figure 14, the majority of PERs are 
positive, indicating that the augmented data are helpful  
in enhancing 24-hour ahead building energy predictions. 
Similar to Table 3, four statistical features of PERs are shown 
in Table 4 to summarize the performance of CVAEs for 
short-term building energy predictions. The results show 
that CVAE-1 has slightly better performance than CVAE-2 
in terms of higher PER mean values and smaller standard 
deviations. It indicates that fully connected layers have 
sufficient capability in extracting high-level features in building 
energy data. The differences in synthetic data folds do not  

 
Fig. 14 PER distributions using different CVAEs and synthetic 
data amounts 

Table 4 Summary on PERs using the CVAE-based strategy 

Type 
Data 
folds 

5% 
quantile Median Mean 

95% 
quantile 

5 −0.06 0.15 0.18 0.51 
CVAE-1 

10 −0.11 0.16 0.17 0.49 

5 −0.21 0.12 0.12 0.44 
CVAE-2 

10 −0.07 0.14 0.15 0.49 

 
present evident impacts on PERs. One possible explanation 
is that the intrinsic variations of individual building operation 
patterns are rather limited compared with data measurements 
in other fields. Hence, the increase in synthetic data amount 
may not bring extra benefits for building energy predictions. 
It should be mentioned that this study assumes that 70% of 
the one-year hourly measurements are available for model 
development, which may be sufficient for reliable model 
development. Further studies can be conducted to explore 
the value of data augmentation with different training data 
availabilities.  

Considering that there are intrinsic differences in 
energy patterns of different building types, the values of data 
augmentation in short-term building energy predictions 
may also vary. As shown in Figure 15, the boxplots of PERs 
present wider distributions for university dormitories and 
laboratories, while the distributions are much narrower  
for offices and university classrooms. It indicates that the 
potential value of data augmentation in energy predictions 
can be higher for buildings with relatively fixed energy 
patterns (e.g., university dormitories and laboratories). 
Besides, similar to previous findings, there is no significant 
PER differences when synthetic data are created using 
different CVAE models or of different amounts. 

Figure 16 presents the relative frequency of optimized 
CVAE latent dimensions in different experiment settings. 
In general, a positive correlation can be observed between 
latent dimensions and their relative frequencies in optimized 
models. Most of the CVAE models select ten as the  
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Fig. 16 The relative frequency of optimized CVAE latent 
dimensions  

optimized latent dimension, except for the first experiment 
settings where five has the highest relative frequency. The 
results indicate that the quality of synthetic data may become 
better with the increase in latent dimensions, which in 
turns leads to better performance in short-term building 
energy predictions. This is expected as a larger latent 
dimension typically leads to more information for synthetic 
data generation. 

4.4.3 General performance along the 24-hour prediction 
horizon 

In-depths investigation have been performed to assess the 
prediction performance along the 24-hour prediction 
horizon. Figure 17 presents CV-RMSE boxplots at each time 
step using the baseline model. In general, CV-RMSEs during 
office hours are smaller than those during non-office hours. 
This is expected as the occupancy schedules of office hours 
are typically more fixed and present less random variations, 
making it much easier for energy predictions. 

Figure 18 illustrates the average CV-RMSEs at each time 
using prediction models developed based on different data 
augmentation strategies. The findings are in accordance 
with those reported in previous two sections. The red solid  

 
Fig. 17 The baseline model performance along the 24h prediction 
horizon 

line represents the average baseline CV-RMSE at each time 
step. It is surround by CV-RMSE lines of different jittering 
methods, indicating that the jittering-based data augmenta-
tion strategy does not provide consistent improvement in 
building energy predictions. By contrasts, the CVAE-based 
data augmentation methods lead to relatively considerable 
CV-RMSE reductions at each time step, especially during 
non-office hours. One possible explanation is that CVAE 
models can generate synthetic samples with meaningful 
random variations, which helps to cover the unseen input 
space in training data. Experiment results also indicate that 
fully connected CVAEs (i.e., CVAE-1) can lead to slightly 
better prediction performance than 1D convolutional CVAEs 
(i.e., CVAE-2). It indicates that 1D convolutional operations 
alone may not effectively extract temporal dependencies in 
building energy data. As a possible direction for performance 
improvement, further studies may consider the integrated use 
of 1D convolutional and fully connected layers or recurrent 
operations for developing CVAE models.  

5 Conclusions 

To fully realize the potential of advanced machine learning 

 
Fig. 15 PER distributions given different building types 
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techniques, it is essential to provide sufficient high-quality 
training data to avoid the underfitting or over-fitting problem 
during model development. To tackle practical data shortage 
problems and enhance data-driven model reliabilities,  
this study proposes a novel generative modeling-based data 
augmentation method for building energy data. Considering 
the time series nature of building energy data, two types of 
conditional variational autoencoder (CVAE) have been 
designed to generate synthetic yet potentially meaningful 
data for model development. The usefulness of data 
augmentation has been tested in the task of 24-hour ahead 
building energy predictions. Data experiments have been 
conducted using 52 buildings to validate and quantify   
the value of methodology proposed. A novel metric, i.e., 
performance enhancement ratio or PER, has been defined 
to quantify the value of synthetic data in building energy 
predictions. The results indicate that CVAE-based generative 
learning methods can effectively enhance the performance 
of short-term building energy predictions. The major result 
findings are as below: 
 The average PERs ranges from 12% to 18% when CVAE- 

based methods are used for augmenting building energy 
data.  

 CVAE models with fully connected layers are sufficient 
to generate useful synthetic building energy data for 
reliable model development.  

 The potential value of data augmentation in energy 
predictions can be higher for buildings with relatively 
fixed energy patterns (e.g., university dormitories and 
laboratories). 

 The classic time series augmentation method, i.e., jittering, 
do not have consistent performance for building energy 
predictions, as the average and median PERs are close to 
zero.  

The study has provided practical guidelines and insights 
for augmenting building energy data, based on which 
advanced data analytics can be developed to facilitate 
data-driven tasks in smart building energy managements. 
The method is of particular use when the data collection 
interval is relatively large. In such a case, synthetic data can 
be used to enrich data representativeness, which typically 
lead to improvements in model generalization performance. 
Future studies can be conducted from two perspectives. 
The first is to address the problem of synthetic data quality 
evaluation. Rather than using indirect approaches, direct 
approaches can be developed to ensure the flexibility   
and applicability of data augmentation, e.g., comparing 
distributions between synthetic and actual data or constructing 
classification models for data authenticity checks. The 
second is to investigate the power of data augmentation for 
other data-driven tasks in building operation management, 
e.g., tackling the imbalanced data problem in fault detection 
and diagnosis tasks.  
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