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Abstract 
This article introduces a new inverse method for thermal model parameter identification that 
stands out from standard inverse methods by its formulation. While these latter methods aim at 
identifying all the model parameters in order to fit the experimental data at best, the proposed 
goal-oriented inverse method focuses on the prediction of a specific quantity of interest, 
automatically identifying and updating the model parameters involved in its computation alone. 
To further reduce the computational time, the goal-oriented inverse method is associated with  
a model order reduction method referred to as Proper Generalized Decomposition (PGD). The 
objective of this original approach is to robustly predict the sought quantity of interest in a 
reduced computational time while using a limited measurement data set. The goal-oriented inverse 
method is developed and illustrated on transient heat transfer models encountered in building 
thermal problems. The first application deals with a simplified 1D heat transfer problem through a 
building wall with synthetic data, and the second one is dedicated to a real building with measured 
data. The performance of the approach is numerically assessed by comparing the results with 
those obtained using the classical least squares method (with Tikhonov’s regularization). It is shown 
that the goal-oriented inverse method allows to robustly predict the sought quantities of interest, 
with an error of less than 5% by updating only the model parameters that affect it the most and 
thus leads to save computation time compared to standard inversion methods. 
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1 Introduction 

Mitigating the impact of the global warming is one of the 
critical current challenges. In this context, reducing buildings 
energy consumption is a major concern. Indeed, the building 
sector stands for more than 35% (IEA 2019) of the final 
energy consumption in the world. In France for instance, 
due to a low annual renewal rate of 1% to 2%, the building 
stock mainly consists of old and high energy-consuming 
buildings. Therefore, to achieve the target of the French 
government (−50% of final energy consumption by 2050), 
it is crucial to act on the existing buildings and important 
renovation works at the national level are necessary.  

In order to choose the optimal renovation strategy, one 
needs to have a good knowledge of the buildings energy 
consumption and its distribution in the different energy 

consumption areas (heating, ventilation,...). Unfortunately, 
when it comes to old constructions, most of information 
required to estimate the real building consumption such  
as the building envelope composition are usually missing. 
Standardized methods are currently used to carry out 
building energy performance diagnosis. They are based on 
energy bills, with assumptions and mean values, so that results 
do not always reflect the real building behavior. There are 
also some non-destructive methods developed for onsite 
buildings characterization such as ISABELE method (Boisson 
and Bouchié 2014; Bouchié et al. 2014; Thébault and Bouchié 
2018) and QUB (Alzetto et al. 2018; Mangematin et al. 2012) 
method, but these methods are only applicable in restrictive 
conditions (e.g., they can only be used in unoccupied 
buildings).  

To overcome the lack of effective tools in this field, 
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List of symbols 

BQ  thermal load of the adjoint problem related to   
  thequantity of interest   
BQ  nodal load vector associated with BQ 
C  global heat capacity (J·K−1) 
h  convective heat exchange coefficient (W·m−2·K−1) 
  minimization functional 
k  global heat conduction coefficient (W·m−1·K−1) 
L  thickness of the wall (m) 
  Lagrangian 
ns  number of sensors 
Q   quantity of interest 
   energy production inside the building (W) 
q   heat flux (W·m−2) 
   air renewal rate (s−1) 
Se  exchange surface area (m2)  
s  area of the envelope subjected to the solar heat flux 
  (m2) 
Ti  temperature of the element specified by the index i 
  (°C) 
t   time coordinate (s) 
U  thermal transmittance 
   heating power (W) 
x  space coordinate (m) 
α/r  regularization parameters  
τ   time constant of the envelope/building (s) 
Γ0  solar flux absorption coefficient of the outside wall
  surface  

Φ    solar flux density (W·m−2)  
f(t)/h(x) time/space extractor functions  
B(t)/K(t) PGD time functions  
G(x)/H(x) PGD space functions  
P(p)  PGD parameter function   

Indices   

0/f   initial/final condition 
a    air 
mes  measured 
out   outside environment 
w/e   wall/envelope  
wi/ei  inside wall/envelope surface   
we/ee   outside wall/envelope surface  
z    thermal zone  
m    PGD mode number  
M    PGD maximum number of modes 

Matrix and vectors   

    heat capacity matrix  
   scaling matrix 
   heat conduction matrix  
p    parameters vector   
Γ, q   admissible fields introduced in the mCRE method
T, V, W temperature vectors (°C)   
λ, Λ, γ  Lagrange multipliers  
Π   extractor operator  

  
 
inverse methods based on a combination of in situ mea-
surements and numerical models can be used. Unlike the 
direct problem whose solution consists in finding the model 
response when its inputs are known, the solution of inverse 
problems consists in finding the model inputs knowing part 
of its response. Typically, solving a thermal inverse problem 
consists in finding the model parameters such as the material 
heat capacity and conductivity or the thermal sources knowing 
the temperature at some points. The major drawback of 
inverse problems is their ill-posed feature in the Hadamard 
sense (Hadamard 1923). On the one hand, the solution is 
generally not unique especially in thermal building problems 
where the number of sensors is small compared to the 
number of model parameters to be updated. On the other 
hand, the solution can be highly sensitive to data variations. 
To tackle these issues, different strategies are commonly 
implemented in building physics. First, a sensitivity analysis 
may be performed to evict the less sensitive model parameters 
from the updating process. As underlined in the review 
work (Rouchier 2018), local sensitivity analysis approaches 

are preferred to global sensitivity analysis approaches such 
as Morris and Sobol methods due to their lower computational 
cost. Some recent uses of sensitivity analysis for thermal 
building purposes can be found in (Berger et al. 2016b; 
Kristensen and Petersen 2016; Li et al. 2018; Martínez   
et al. 2019). Then, the inverse problem can be solved in 
deterministic or stochastic frameworks. In the deterministic 
context, inverse problems are formulated as minimization 
problems whose solution consists in finding the set of 
parameters for which the model solution best fits the measured 
data. Regularization methods such as the well-known 
Tikhonov method (Tikhonov and Arsenin 1977) are usually 
considered to prevent the solution to be sensitive to small 
sensor output perturbations. The regularization consists in 
adding to the minimization term (called the cost function) 
a second term (called the regularization term) that 
contains information constraining the solution to verify 
additional conditions. The Tikhonov method is a widespread 
regularization method, used for instance in (Artiges 2016; 
Brouns et al. 2016; Nassiopoulos et al. 2014). Let us note 
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that the computational cost of these standard deterministic 
inverse methods can drastically increase with the number 
of model parameters to be updated. In the stochastic 
context, Bayesian techniques are widely considered (Berger 
et al. 2016b; De Simon et al. 2018; Martínez et al. 2019; 
Raillon and Ghiaus 2018). In a preliminary stage, prior 
distribution for each model parameters has to be chosen 
which can be nontrivial. After a large number of computations 
for various sets of model inputs via Monte Carlo Markov 
Chain methods for example, model parameter posterior 
distributions are obtained. Thus, Bayesian techniques are 
usually more time consuming than deterministic inverse 
methods but model parameter confidence intervals can be 
derived from the posterior distributions. For more details 
on solving inverse problems in building physics, the reader 
can refer to the review article (Rouchier 2018).   

The present paper deals with a goal-oriented inverse 
method introduced in (Chamoin et al. 2014) for mechanical 
problems. It is a variant of an alternative regularization 
method named “modified Constitutive Relation Error 
(mCRE)” (Ladevèze 1977) which is mainly used in mechanics. 
The mCRE concept was initially introduced in a global 
version to deal with nonlinear mechanics inverse problems 
(Chouaki et al. 1996; Ladevèze et al. 1994), i.e. data misfit 
minimization with a mCRE regularization term derived from 
the physics. The studied original goal-oriented identification 
method stands out from the standard global methods by its 
formulation that aims at predicting a predefined quantity 
of interest. It thus automatically identifies and updates 
model parameters involved in its computation alone, 
compared to standard inverse methods which identify all 
sensitive model parameters in order to accurately predict 
the full solution. The proposed approach naturally includes 
sensitivity analysis with respect to the quantity of interest, 
so that minimal model updating is performed to reach the 
targeted accuracy on the quantity of interest. In addition, it 
can be effectively used in the case of few measurement data. 
Contrary to mechanical problems, long time horizon are 
usually considered in building problems. In practice, this 
long time horizon can lead to memory issues when solving 
the original goal-oriented inverse method (Chamoin et al. 
2014) due to coupled forward-backward thermal problems 
involved in its formulation. To tackle memory issues and to 
reduce the computational time, we propose herein to 
associate a model order reduction method in the inversion 
process. It refers to the Proper Generalized Decomposition 
(PGD) method (Chinesta et al. 2014) and is used here    
to decompose space and time variables. To summarize,  
the goal-oriented inverse method embedding a dedicated 
sensitivity analysis aims to accurately predict a quantity of 
interest by only updating the influential model parameters 
in a reduced computational time considering few sensors. 

For the first time, the overall inversion strategy combing the 
goal-oriented inverse method and the PGD is implemented 
and numerically analyzed on two transient heat transfer 
models encountered in building thermal problems. It is 
shown that it permits an accurate prediction of quantities 
of interest, for various configurations, with a fast and cheap 
process (few iterations) compared to classical approaches.   

The paper is organized as follows: after this introduction, 
the considered framework of transient thermal model 
inversion is defined in Section 2; basics on the modified 
Constitutive Relation Error method, which is at the core of 
this work, are given in Section 3; the proposed goal-oriented 
inversion method is detailed in Section 4; the beneficial use 
of PGD model reduction is developed in Section 5; numerical 
results are reported in Section 6; eventually, conclusions 
and prospects are drawn in Section 7.  

2 Inverse problems for building thermal applications 

Building thermal problems are usually studied using models 
based on the partition of the building into thermal zones and 
walls (Hong and Jiang 1997). In such models, each thermal 
zone includes one or more rooms of the building where the 
temperature is homogeneous enough to be represented by 
a single point, whereas the walls describe the heat transfer 
between two adjacent zones or one zone and its adjacent 
environment. The thermal problem is then built by writing 
the heat transfer equations between each zone and its adjacent 
wall and through each wall. The simplest model of this type 
is the mono-zone model (Fig. 1) where the building is 
represented by one thermal zone and one wall. In this case, 
the problem is described by two equations: an ordinary 
differential equation for the heat transfer inside the thermal 
zone (1) and a partial differential equation for the heat 
transfer through the building wall (2). This procedure can 
be easily extended to more refined models including more 
thermal zones and walls. The model mono-zone reads:  

( )( ) ( )

0

z
z a out z i wi z

0 f

z z

d ( ) ( ) ( ) ( )
d

( ) ( ) ( ), 0
( 0)

T tC C T t T t h T t T t
t

Γ sΦ t t t t t
T t T

é ù
ê úë û

ìïï = - + -ïïïí + + + " Î ,ïïïï = =ïî
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(2) 

where Tz (resp. Tw) denotes the room temperature (resp. wall   
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temperature). The definition of the model parameters is 
given in the list of symbols. 

For their numerical solution, Eqs. (1, 2) are expressed 
in a matrix form as:  

+ = T T F                                   (3) 

The inverse problem associated with model parameter 
identification can be expressed as a least-square minimization 
problem that consists in finding the set of parameters p 
that minimizes the gap between the discretized simulated 
solution T of the problem (2) and the measurement data Tmes. 
Tmes is a vector with ns components where ns is the number 
of temperature sensors. The problem reads: 

( )

( ) ( )
f 2

mes
0

arg min ,

1, ( ) d
2

t
t

=

= -ò





p
p T p

T p T ΠT p
                (4) 

where Π is an extraction operator. This type of problem 
is usually ill-posed in the sense of Hadamard (Hadamard 
1923). To ensure the uniqueness of the solution, a priori 
information on the model parameters and regularization 
techniques such as the Tikhonov regularization technique 
(Tikhonov and Arsenin 1977) are often used. In the following, 
we focus on an alternative regularization technique based on 
the modified Constitutive Relation Error (mCRE) concept. 

3 The modified Constitutive Relation Error method 

For a better understanding of the goal-oriented inverse 
method, one should first introduce the modified Constitutive 
Relation Error (mCRE) method. The mCRE is a variational 
approach in which the regularization is based on the 
physics by imposing some admissibility constraints such as 
the equilibrium equations. The philosophy of the mCRE is 
to impose the most reliable information about the model 
(equilibrium, sensor position, ...) and to relax the less reliable 
ones (constitutive relations, measurement data, ...). The 
energy-based mCRE concept was initially introduced to deal 

with dynamic models in mechanics (Chouaki et al. 1996; 
Deraemaeker et al. 2002; Ladevèze et al. 1994, 1999), then  
it was successfully implemented in various applications 
including defects detection (Bui and Constanctinescu 2000), 
corrupted measurement data and uncertain models (Ladevèze 
and Pelle 2005; Ladevèze et al. 2006). It derives from the 
Constitutive Relation Error notion that has been used as an 
a posteriori discretization error control in finite element 
computations for more than 40 years (Ladevèze and Pelle 
2005; Ladevèze and Chamoin 2015). The mCRE approach 
is based on a primal-dual formulation in a thermodynamic 
framework (Chavent et al. 1996) and involves a cost function 
with good convexity properties, even when dealing with 
nonlinear problems (Marchand et al. 2019). The use of the 
mCRE presents several advantages in the context of inverse 
problems: it was shown that the method is more robust to 
measurement noise and defective sensors than least-square 
based methods (Allix et al. 2005; Feissel and Allix 2007; 
Nguyen et al. 2008).  

To illustrate the mCRE inversion method, we focus on 
the study of the heat transfer problem through a single building 
envelope described by Eq. (3). The mCRE framework leads 
to the following formulation: Find the trio (T, Γ, q) such that:  
 T is kinematically admissible; i.e. T satisfies the initial 

condition:  

0 [0 ] 0T T x L t= , " Î , , =                         (5) 

 (Γ, q) is dynamically admissible; i.e. it verifies the 
equilibrium equations:  

fdiv( ) [0 ] [0 ]Γ x L t t- = , " Î , , Î ,q                  (6) 

To use standard Finite Element methods, the admissible 
fields q and Γ are rewritten using additional temperature 
fields V and W such that:  

f

0 i z f

e out f

[0 ] [0 ]
( ) 0 [0 ]

( ) [0 ]

k V x L t t
q h V V x t t

h V T x L t t

ì =-  , " Î , , Î ,ïïïï- ⋅ = + - , = , Î ,íïïï ⋅ = - , = , Î ,ïî

q
q n

q n
       (7) 

 
Fig. 1 A building mono-zone thermal model (left) and heat transfer through a building envelope (right) 
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and  

f[0 ] [0 ]WΓ C x L t t
t

¶
= , " Î , , Î ,

¶
                   (8) 

Herein, replacing the fields q and Γ by their Eqs. (7, 8) in 
the weak form of (6) leads to:  

+ = W V F                                  (9) 

Let us now introduce the cost function CRE which is 
associated with the inversion method based on the CRE 
concept, and referred to as the modified Constitutive Relation 
Error (mCRE). It reads:  

( ) ( ) ( ) ( ){ }

( ) ( )

f

f

TT

0

T
mes mes

0

1 d
2

1 d
2

t

CRE

t

τ t

α t

= - + -- -

+ - -

ò

ò

  



 T V T WT V T W

ΠT T ΠT T

 

(10) 

The first term of the cost function CRE measures the 
error on the constitutive relations (modeling error) while 
the second term is introduced to take into account the 
information provided by the measurement data (measurement 
error). This formulation implies two minimization steps: 
regarding the admissible fields and regarding the model 
parameters.  is a scaling diagonal matrix, τ is a characteristic 
time and α is the regularization coefficient. In practice α is 
chosen to give more or less weight to the model or the 
measurements (α → 0 means ∞that all the weight is given 
to the model, while α → +∞ means that all the weight is 
given to the measurements). In the literature, this coefficient 
is usually taken equal to 1 so that neither the model, nor 
the data are privileged but some methods can be used to 
optimize the value of α such as the Morozov discrepancy 
principle (Morozov 1966) or the L-curve method (Lawson 
and Hanson 1974).  

The thermal inverse problem consists then in finding 
the set of parameters that minimizes the cost function (10) 
among the admissible fields. This constrained minimization 
problem can be solved with an iterative gradient method 
and the adjoint-state method is used to computation of the 
gradient. For this purpose, we introduce the Lagrangian:  

( ) ( ) ( ) ( ){ }
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λ W V F

 

(11) 

Finding its saddle point (12) leads to:  
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so that  

T
T mes

1
τ αα

ì üï ïï ïï ïï ïï ïí ýï ïï ïï ïï ïï ïî þ
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λ Π Tλ Π Π

 

(13) 

with  

( )

( )τ

= -ìïïíï = -ïî


λ V T

λ W T
                               (14) 

and  

0

f

[0 ] 0
0 [0 ]

x L t
x L t t

ì = , " Î , , =ïïíï = , " Î , , =ïî

T T
λ

                      (15) 

The system (13–15) is a coupled forward-backward problem 
since the temperature field T has a known initial condition 
while the Lagrange multiplier λ has a known final condition. 
The field T satisfying the system (13–15) can be seen as an 
extrapolation of the measured data using the numerical 
model. Let us notice that the measurement data are not taken 
into account as imposed temperatures but are considered 
through a penalization term.  

4 Goal-oriented inverse method 

The goal-oriented inverse method introduced in (Chamoin 
et al. 2014) derives from the mCRE regularization method 
(Chouaki et al. 1996; Ladevèze et al. 1994). Unlike the 
standard inverse methods such as the Tikhonov (Tikhonov 
and Arsenin1977) and the mCRE methods which aim at 
identifying all the model parameters in order to compute 
the solution of the physical problem, the goal-oriented 
inverse method focuses on the robust prediction of a scalar 
quantity of interest, and thus aims at identifying only the 
set of parameters involved in its computation. This strategy 
is similar to the approach used in (Becker and Vexler 2004) 
and (Johansson et al. 2011) where the model and the 
discretization errors were controlled to predict a quantity 
of interest. The sought quantity of interest can be any output 
of the studied model such as the temperature evolution at a 
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given position in the building or the energy loss through 
an envelope wall during a given period of time. Once the 
quantity of interest Q is chosen, the cost function is expressed 
to minimize the gap between the quantity of interest 
calculated from two different ways: Q1 is computed from 
the direct solution T1 of the numerical model while Q2 is 
obtained with the temperature field T2 calculated by an 
extrapolation of the measured data with the numerical 
model:  

( )( ) ( )( )[ ]21 1 2 2
1( )
2Q r Q Q, = - T p T p T p            (16) 

where r = α/(1+α), α being the regularization parameter and 
T2 derives from the mCRE framework (see Eqs. (13–15)). 
In practice, the coefficient α involved in the r term of  
the goal-oriented inverse functional is the same as the α 
introduced in the modified Constitutive Relation Error 
functional (see Eq. 10).   

This minimization problem is solved using a gradient 
method where the descent direction is determined using 
the adjoint state method (see Section 3). We then introduce 
the Lagrangian Q:  
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Finding the saddle point of (17) leads to solve Eq. (18).  
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   (18) 

Rewriting these equations in a concatenated form (19) 
leads to solve four problems: the first one is the direct heat 

transfer problem, the second one is an adjoint problem and 
the third and the fourth ones are two forward/backward 
problems leading to the computation of the temperature 
vector T2 by extrapolating the measured data through 
the model and the Lagrange multipliers Λ2, λ2 and γ2 that 
will be used for the computation of the gradient of the 
functional Q with respect to the model parameters.  
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with  
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             (20) 

BQ is a nodal force vector associated with BQ(x, t) defined 
by:  

[ ]1 2( )Q
QB x t r Q Q
T

¶
, = -

¶
                        (21) 

and the quantity of interest Q is rewritten using an extractor 
function in space h(x) and extractor function in time f(t)   

f

0 0

( ) ( ) ( ) ( )d d
t L

Q T T x t f t h x x t= ,ò ò                    (22) 

Hence  

f

0 0

δ δ ( ) ( )d d
t LQ T Tf t h x x t

T
¶

=
¶ ò ò                     (23) 

[ ]1 2( ) ( ) ( )QB x t r Q Q f t h x, = -                     (24) 

To sum up, solving the inverse problem of model 
parameter identification using the goal-oriented inverse 
method consists of repeating the following steps:  
1) Solve the direct heat transfer equation (first equation in 

(19)) in order to compute the temperature vector T1 and 
the quantity of interest Q1.  
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2) Solve the first coupled forward/backward problem (third 
equation in (19)) in order to compute the temperature 
vector T2, the Lagrange multiplier λ2 and the quantity of 
interest Q2.  

3) Solve the second coupled forward/backward problem (forth 
equation in (19)) in order to compute the Lagrange 
multipliers Λ2 and γ2.  

4) Solve the adjoint problem (second equation in (19)) in 
order to compute the Lagrange multiplier Λ1.  

5) Compute the gradient Q p  then determine the descent 
direction and select the parameter to be updated. Only the 
parameter leading to the highest value of the gradient is 
updated.  

6) Evaluate the functional Q (16).  

Remark 1 

Step 5 indicates how the model parameter to be updated is 
selected at each iteration. This procedure can be seen as an 
alternative to the standard sensitivity analysis methods 
(Kleiber et al. 1997; Saltelli et al. 2000). Indeed, when there 
is a large number of unknown parameters, a sensitivity 
analysis is usually used to determine the most influential 
parameters and update them, while the less influential ones 
are fixed at their nominal values (Heiselberg et al. 2007; 
Gagnon et al. 2018). These methods can be expensive in 
terms of computation time and lead to rank the parameters 
into influential and less influential without taking into 
account whether they are well identified or not. Even after 
choosing a dimensionless framework, and using homo-
genization and engineering experience on the model, it is 
still possible to end up with parameters that only have 
marginal influence on the quantity of interest for the 
design problem considered. This can be highlighted using 
global sensitivity analysis (GSA) or Sobol indices. The 
proposed method simultaneously and automatically includes 
sensitivity of parameters with respect to the quantity     
of interest, and measurement sensitivity with respect to 
parameters.   

Remark 2 

On the one hand the solution of the thermal inverse problem 
usually requires a long observation period, on the other 
hand the updating process of the goal-oriented inverse 
method requires to solve two coupled forward-backward 
thermal problems at each iteration. This can lead to high 
dimensional numerical problems (2Nx × Nt, where Nx is the 
space dimension and Nt the time dimension), and thus be 
computationally prohibitive. To tackle memory issues and 
to decrease the computation cost, several techniques can be 
used. We propose herein to use the Proper Generalized 
Decomposition (PGD) model reduction method, which is 

introduced in the next section. The use of the PGD for 
inverse problems was investigated in many application areas 
such as geophysics, structural mechanics and thermal 
building problems (Berger et al. 2016a, 2017a,b; Beringhier 
and Gigliotti 2015; Bouclier et al. 2013; González et al. 2012; 
Marchand and Chamoin 2016; Rubio et al. 2018; Signorini 
et al. 2017).  

5 PGD model reduction method 

To override the computational time and the memory storage 
constraints due to the multiple resolutions of the two coupled 
forward-backward problems (third and fourth equations  
in (19)) during the updating procedure, one can resort to 
Reduced Order Methods (ROM) (Chinesta et al. 2004; Rozza 
et al. 2018). Among the various reduced order methods 
available in the literature, we can cite the Proper Orthogonal 
Decomposition (POD) method (Chatterjee 2000), the Singular 
Value Decomposition (SVD) method (Golub and Reinsch 
1970; Klema and Laub 1980), and Reduced Basis methods 
(RB) (Ohlberger and Rave 2016; Quarteroni et al. 2016; Rozza 
2009). These model order reduction methods, based on the 
approximation of large size systems with much smaller 
systems, lead to an optimization of the numerical capabilities 
and a considerable computation time shortening without 
compromising the precision. Sometimes called a posteriori 
methods, they require a prior information collection and 
their results are often exploitable only in similar conditions 
to those where information were collected. Another group 
of methods, called a priori methods because their construction 
does not require any information and is only based on the 
problem equations, is the Proper Generalized Decomposition 
(PGD) method, introduced in (Allix et al. 1989) under the 
denomination “Radial time-space approximation”. The PGD 
method was initially introduced to tackle nonlinear mechanics 
problems as mechanical damage and was used in combination 
with the LATIN (LArge Time INcrement) method (Ladevèze 
and Chouaki 1999) then extended to various applications 
in different aspects of solid and fluid mechanics (Chinesta 
et al. 2011). The Proper Generalized Decomposition relies 
on the variable separability of the problem equations. It 
allows the calculation of a given field (temperature field in 
our case) as a superposition of a finite number of approximate 
solutions written as a product of two or more functions, 
called modes. Each mode is a product of functions of a 
single variable that can be the time, the space or any model 
parameter (25).  

1
( ) ( ) ( )

M

n n n
n

T x t B t P
=

, , = ´ ´åp G p                   (25) 

where Gn are the space modes, Bn(t) the time modes, Pn(p) 
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the parameter modes, and M the number of modes. The 
fundamentals and the formulation of the PGD method  
on the solution of partial differential equations are given in 
(Nouy 2010). The possibility of expressing explicitly the 
problem equations with regard to the model parameters is 
of a great interest in the case of model parameter identification 
problems. Indeed, during the identification process, the 
PGD solution is computed only once and the same solution 
is used to adjust the model parameters during the whole 
updating process. Some examples of the use of the PGD 
method in combination with the mCRE can be found in the 
literature (Bouclier et al. 2013; Marchand and Chamoin 
2016). When the PGD method is applied in combination 
with the mCRE method, the reduced basis is built from the 
data. This approach is similar to the GEIM and PBDW 
strategies used in (Maday and Mula 2013; Maday et al. 
2015a,b), and is equivalent to the methods used in (Becker 
and Vexler 2004) and (Johansson et al. 2007) but is different 
from the classical model calibration approaches using the 
PGD such as (González et al. 2012). The PGD method can 
also be exploited as an alternative to the sensitivity-based 
approaches used in (Alekseev and Navon 2010; Daescu and 
Carmichael 2003; Kleiber et al. 1997; Waeytens et al. 2017) 
or to the energetic considerations in (Papadimitriou and 
Lombaert 2012) to optimize the number of sensors required 
for the model calibration. This can be achieved if the 
sensors are placed at the positions where the space modes 
amplitudes are the largest. A similar strategy, based on the 
reduced basis method, is adopted in (Maday et al. 2015a) 
and (Binev et al. 2018).  

In this work, the PGD method is mainly used as an 
alternative to the Ricatti approaches (Nguyen et al. 2008) or 
temporal scheme based methods (Bonnet and Wilkins 2014) 
to reduce the computation time due to the coupled forward- 
backward problems (see Eq. (19)) by separating the time 
and space variables alone, similarly to what is done in 
(Marchand et al. 2016). 

5.1 Solution of the coupled problems using the PGD 
method 

The first forward/backward problem   

We first deal with the forward/backward problem expressed 
by the third equation in (19). To make the notation less 
cluttered, the index 2 is omitted on purpose. We first replace 
the vectors T and λ by their separated form Tm and λm, 
expressed in (26) where Gm and m

G , Bm(t) and ( )mB t  depend 
respectively on space and time variables. We introduce a 
Galerkin formulation in the tangent space by multiplying 
the equation by two test fields δTm and δλm (27) and we 
obtain (28).  

1

1

( )

( )

m

m n n
n

m

m n n
n

B t

B t

=

=

ìïï = ´ïïïíïïï = ´ïïî

å
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                            (26) 
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     (28) 

Solving (28) leads to solve two systems (29) and (30), 
leading respectively to the computation of the space modes 
Gm and m

G  and the time modes Bm(t) and ( )mB t . Let us 
notice that these two systems are coupled and a fixed point 
algorithm is therefore used to solve them.  

1 2 1
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       (30) 

In practice, the first space mode is determined to satisfy 
the initial condition on T and the final condition on λ, then 
each mode m is determined based on the m −1 modes.  

The second forward/backward problem 

We follow the same procedure to solve the second coupled 
forward-backward problem (fourth equation in (19)). We 
introduce the separated form of the fields Λ and γ, expressed 
in (31). In the same way as for the previous problem, we 
express the fields Λm and γm according to the space and the 
time variables, respectively through the functions H and 
H , K(t) and ( )K t . We introduce the test fields δΛm and 

δγm (32) then we obtain a system whose solution leads to 
compute the space modes H and H  and the time modes 
K(t) and ( )K t  by solving (33) and (34).  
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     (34) 

The procedure is detailed in the Appendix where all the 
parameters of Eqs. (29), (30), (33) and (34) are explicitly 
expressed. The Appendix is in the Electronic Supplementary 
Material (ESM) of the online version of this paper. 

Let us notice that the PGD method leads to solve the 
coupled forward-backward problems (third and fourth 
equations in (19)) as two separated problems each and this 
leads to drastically reduce the computation time.  

6 Thermal building applications 

6.1 Academic case study: 1D transient heat transfer 
through a building wall 

To assess the goal-oriented inverse method performance 
on the prediction of a quantity of interest and on the 
identification of the model parameters involved in its 
computation, we apply the method on a 1D transient heat 
transfer problem through a building wall (cf Fig. 2). This 
problem corresponds to the one described by the mono- 
zone model (see Fig. 1) where the heat exchange at the 
internal wall surface is an imposed heat flux q0(t) and the 
heat exchange at the external wall surface is considered null. 
This simplification is done in order to obtain a problem 
whose analytical solution is known. The benefit of the 
analytical solution is to help understanding, explaining and 
validating the numerical results of the proposed goal-oriented 
inverse technique. It is also used to get the analytical 
expression, depending on the model parameters, of the 
studied quantities of interest. These analytical expressions 
are considered as reference thereafter to show that the goal- 
oriented inverse method properly selects and updates the 
model parameters that have the greatest influence on the 
quantity of interest.   

 
Fig. 2 A simplified 1D transient heat transfer through a building 
wall 

When considering an imposed heat flux q0(t) with a ramp 
evolution in time, we can show that the analytical solution is  
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cL q n x n kt
Ln k cL

¥

=
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+ - -å

( )

( ) ( )( )
  (35) 

where T0(x) is the initial temperature in the wall of thickness 
L and δq0 is the slope of the ramp in W/(m2·s) such that  
q0 = δq0t.  

The studied problem has two unknown parameters, i.e. 
two potential parameters to be identified: the wall global 
heat conduction coefficient k and its global heat capacity c. 
We consider two temperature sensors: Tei at the inside wall 
surface and Tee at the outside wall surface. The measurement 
data are numerically generated using the direct heat transfer 
model (3) with the exact set of parameters:  

6 3
ex ex

o 2 2
0 0

2 W/(K m), 2 2 10 J/(K m )
0 2 m ( ) 8 C δ 1 157 10 W/(m s)

k c
L T x q -

= ⋅ = . ´ ⋅

= . , = , = . ´ ⋅
    

(36) 

which corresponds to a category of concrete building walls. 
A white noise (0,σ) with σ = 0.5 °C is added to the synthetic 
sensor outputs.  

In the inverse modeling strategy, we take as initial guess 
the parameters:  

0 ex 0 ex0 6 0 6k k c c= . , = .                          (37) 

As presented in Section 4, the proposed goal-oriented 
inverse method involves two specific parameters. The 
parameter τ being a characteristic time, it is chosen as 

2
0 0( )τ c k L= / ´ . Concerning the regularization parameter 

α, it is selected according to Morozov’s principle (Morozov 
1966) such that the data misfit at the end of the model 
updating process is slightly higher than the measurement 
error. For the verification of the Morozov principle in the 
goal-oriented inverse method, the considered data misfit  
is the gap between the temperature sensor outputs and the 
temperature field T2, which is the extrapolation of the 
measurements with the numerical model computed from 
Eq. (13). In the following, the inverse method is illustrated 
on two quantities of interest. In both cases, the exact value 
of the quantity of interest is computed using the exact 
temperature Tex(x, t) obtained from the thermal building 
model with the exact set of parameters kex and cex, which 
would be unknown in practice.  

6.2 First quantity of interest 

The first studied quantity of interest is  
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- ò       (38) 

Let us notice that the quantity Ak Q´  corresponds to the 
averaged heat flux transferred through the wall between 
times t1 and t2. Herein, t1 = 8 h and t2 = 10 h. From the 
analytical solution (35), we can show that the quantity of 
interest QA is much more sensitive to the wall global heat 
conduction coefficient k than to the global heat capacity c. 
Hence, a robust prediction of the quantity of interest should 
be achieved by only updating the parameter k.   

In Fig. 3, we present the results at the initial stage and 
at the end of the goal-oriented model updating process. 
The regularization parameter was set to α = 500 to satisfy 
the Morozov principle. At the initial stage, the error on the 
model parameters k and c is around 40% leading to an error 
of about 67% on the quantity of interest QA. When applying 
the goal-oriented inverse method, as expected we can see 
that only the parameter k is updated and the error on this 
parameter is drastically reduced to 3%. The quantity of 
interest QA being mostly sensitive to the parameter k, the 
proper identification of this parameter conducts to a robust 
estimation of the quantity of interest. The time evolution 
of the temperature sensor outputs and the predicted 
temperatures T1 and T2, before and after the goal-oriented 
model updating process, are compared in Fig. 4. We recall 
that T1 is computed from a finite element direct solution of 
the building thermal equations and T2 is a temperature 
field coupling sensor outputs and the physical model via 
the weight parameter α. This parameter being selected to 
500, which gives an important weight to the sensor outputs, 
we can see that the temperature T2 is closer to the measured 
temperature than the numerical temperature T1 derived 
from the physical model. In Fig. 4, the quantity of interest 
QA is represented in a graphical way. In this particular case, 
let us notice that QA can be fully computed from the sensor 
outputs. The goal is to graphically compare the predicted 
quantity of interest derived form the inverse method and 
the exact quantity of interest. In Fig. 4 the exact quantity of 
interest, ignoring the multiplication scalar factor 21/( (L t -  

1))t , corresponds to the red dashed-lines hatched area 
whereas the predicted quantity of interest is represented by 
the yellow colored area. At the initial stage (Fig. 4), it can 
be noticed that the quantity of interest is overestimated, i.e. 
the yellow-colored area is larger than the area in red dashed 
lines. Once the goal-oriented inverse method has correctly 
identified the parameter k, we can see that both areas (bottom 
of Fig. 4) are approximately the same. Although the error 
between the calculated and the measured values of the 
quantity of interest is small, the gap between the temperature 
T1 predicted from the physical model and the temperature 
sensor outputs remains relatively large. Indeed, the considered  
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Fig. 3 Numerical results at the initial stage, denoted “I”, and at the 
end of the goal-oriented model updating process, denoted “U”, 
considering the quantity of interest QA ( ex 83 3 K/mAQ = . ) 
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Fig. 4 Comparison of temperature sensor outputs and predicted 
temperature at the initial stage (top) and after the goal-oriented 
model updating process (bottom). The predicted (resp. exact) 
quantity of interest QA, ignoring the multiplication scalar factor 

2 11/( ( ))L t t- , is represented by yellow-colored area (resp. using 
red dashed-lines area) 
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quantity of interest QA allows an accurate prediction of the 
temperature difference, while the absolute temperature is 
not accurate, such as infrared temperature measurement. 
To summarize, even if the predicted temperatures do not 
fit the temperature sensor outputs like in standard inverse 
techniques, the objective of a reliable prediction of the 
quantity of interest is reached.  

6.3 Second quantity of interest 

Let us now consider the quantity of interest defined as  

2 1
0

( ( ) ( ))d
L

BQ T x t t T x t t x= , = - , =ò              (39) 

It can be noticed that Bc Q´  corresponds to the stored energy 
in the wall over the time interval [t1, t2]. As previously, t1 = 
8 h and t2 = 10 h. In this case, it can be shown from the 
analytical solution that the global heat capacity c has a 
significant influence on QB contrary to the wall global heat 
conduction coefficient k.   

To ensure Morozov’s discrepancy principle, the numerical 
value of the regularization parameter is determined to α = 
200. The results at the initial stage and at the end of the model 
updating process are summarized in Fig. 5. The parameter 
c, having a major impact on the quantity of interest, is suitably 
estimated with an error below 10% while the parameter k is 
not updated. Hence, the error on the prediction of the 
quantity of interest goes from 67% at the initial stage to 8% 
after the goal-oriented inverse process. The definition of 
the quantity of interest QB involves the temperature gap 

2 1( ) ( )T x t T x t, - , . In Fig. 6, we compare the temperature 
gap obtained in different ways, notably using:  
 the temperature T1, defined in Section 4, at the initial stage 

and at the end of the goal-oriented process;  
 the temperature T2, defined in Section 4, at the initial stage 

and at the end of the goal-oriented process;  
 the exact temperature field, computed with the direct 

physical model and the exact set of parameter kex and cex, 
which would be unknown in practice.  

From this temperature gap, we represent the exact 
quantity of interest using the red dashed-lines hatched area 
and the predicted quantity of interest, at the initial and the 
final stage of the inverse technique, using a yellow-colored 
area. In the lower graph in Fig. 6, we note that at the end of 
the goal-oriented inverse process the spatial temperature 
curves have intersection points, which means that the error 
between the calculated temperature difference and the 
measured temperature difference is not always reduced. 
Contrary to standard inverse techniques, the calculated 
temperature has not to fit the sensor outputs point by point 
but only to accurately predict the quantity of interest, which  
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Fig. 5 Numerical results at the initial stage, denoted “I”, and at  
the end of the goal-oriented model updating process, denoted “U”, 
considering the quantity of interest QB ( ex 1 228 K mBQ = . ⋅ ). 
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Fig. 6 Comparison of temperature gap between time t1, and t2, 
involved in the quantity of interest QB , at the initial stage (top) 
and after the goal-oriented model updating process (bottom). The 
sensor outputs at the internal and the external faces of the wall are 
indicated by a circle. The predicted quantity of interest QB is 
represented in yellow color - The exact quantity of interest QB , 
depicted by the red dashed-line area, is computed using the exact 
temperature gap ex 2 ex 1( ) ( )T x t T x t, - ,  obtained from the building 
thermal model with the exact set of parameters kex and cex 

corresponds herein to an integral on the whole envelope. 
Graphically, the yellow area has to fit the red dashed-lines 
hatched area. At the initial stage, we observe that the predicted 
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quantity of interest QB, i.e. 2.048 K·m, is overestimated by 
about 67%. Nevertheless, at the end of the goal-oriented 
inverse process we can see that the predicted quantity of 
interest QB, i.e. 1.137 K·m, draws with the exact quantity of 
interest, i.e. 1.228 K·m, but due to measurement error it is 
underestimated by about 8% as mentioned in Fig. 5.  

Lastly, we compare the results of the standard Tikhonov 
regularization inverse method and of the proposed goal- 
oriented inverse method. In both methods, the updating 
process stops when the modification of the parameters is 
less than 0.5%. Contrary to the goal-oriented technique, the 
Tikhonov approach updates all the model parameters, i.e, c 
and k, in view of minimizing the data misfit functional. 
Hence, the Tikhonov method better reproduces the tem-
perature sensor outputs. The quantities of interest QA and 
QB computed at each iteration of Tikhonov and goal-oriented 
methods are summarized in Table 1. Results show that the 
goal-oriented inverse method stops after 4 iterations and 
that the updated quantities of interest converge faster to the 
exact value of the quantity of interest for the goal-oriented 
method than the inverse Tikhonov technique.  

Table 1 Computations of quantities of interest QA and QB at each 
iteration of the standard inverse method with Tikhonov regularization 
and of the goal-oriented inverse technique 

Iteration 
number 

Tikhonov 
ex/A AQ Q  

Goal-oriented 
ex/A AQ Q  

Tikhonov 
ex/B BQ Q  

Goal-oriented 
ex/B BQ Q  

1 1.668 1.668 1.668 1.668 

2 1.358 1.159 1.147 1.111 

3 1.073 1.033 0.907 0.980 

4 1.070 1.022 0.958 0.926 

5 1.019 — 0.976 — 

6 1.014 — 0.985 — 

7 1.009 — 0.982 — 

8 1.007 — 0.987 —  

To conclude, we showed in the academic study case 
that the goal-oriented inverse method targets and properly 
updates the model parameter in view of improving the 
prediction of the quantity of interest. Although the goal- 
oriented inverse method does not precisely reproduce the 
temperature sensor outputs as the Tikhonov method, the 
proposed inverse method can be more relevant to get an 
accurate prediction of a quantity of interest. To demonstrate 
the abilities of the proposed inverse technique for operational 
applications, it is applied to a real thermal building problem 
with real sensor outputs in the next section.  

6.4 Real case: application to the “Sense-City” chalet 

The second example deals with a mono-zone thermal model 
representing an experimental real-size wooden chalet that 
belongs to the equipment “Sense-City” (Derkx et al. 2012) 
located in Marne-la-Vallée, France (left of Fig. 7). The studied 
chalet is 20 m2 area and 2.7 m height. Its envelope is made 
of a wood layer of 44 mm thickness and is provided with an 
interior insulation layer (polystyrene) of 60 mm thickness 
and a plaster layer of 10 mm thickness. Due to air quality 
experiments in this chalet, the mechanical ventilation system 
was designed at 100 m3/h.  

In this application, we choose to model the chalet using a 
resistor-capacitance network based on the analogy between 
the heat transfer and the electric current flow. In such models 
the building envelope is modeled by a set of resistors and 
capacitors while the thermal zone is modeled by only a 
capacitor (Deng et al. 2010; Goyal and Barooah 2011). 
These models are used in several studies to describe the 
building thermal behavior at a low computational cost 
especially in optimal control applications such as in (Bartaud 
du Chazaud and Baleynaud 2016; Berthou et al. 2013). In 
the present work, the building is described by a 6R2C model, 
i.e. using six resistors and two capacitors. The 6R2C model 

 
Fig. 7 The studied building (left) and its associated 6R2C thermal model (right) 
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is a simple model but detailed enough to take into account 
all the heat exchange modes and thedifferent heat loads, such 
as the solar and the internal gains. Many studies showed 
that despite its simplicity, this model predicts the building 
thermal behavior with an acceptable accuracy, see for 
instance (Berthou et al. 2013; Faggianelli et al. 2015). This 
model integrates three heat loads identified as S1, S2 and 
S3,: S1,, assigned to the node Tz, gathers the convective 
internal gains due to the heating system and the occupancy; 
S2, applied on the node Tei, contains the radiative internal 
gains due to the heating system, the occupancy and the 
solar gains arriving inside the thermal zone; and S3, applied 
on the node Tee, represents the incident solar gains on   
the outside envelope surface. In practice, as the chalet is 
unoccupied S1 includes only the heating systems. The 
chalet having small window area, the solar gains arriving 
inside the thermal zone are not considered. The gain S2 is 
taken equal to zero (no occupancy, no radiative part due to 
the heating system and no solar gain). Concerning the solar 
radiation, we can see from the meteorological station data 
given in the supplementary material that its direct component 
is negligible with respect to its diffuse part. It is an expected 
observation for a thermal study in December in the north 
of France. We also suppose the reflected solar radiation is 
negligible. Hence, the absorbed incident solar gains S3 on 
the outside envelope surface, involved in the RC model, is 
computed herein by:  

3 e diff0.5S A α= ´ ´ ´                           (40) 

where diff  corresponds to the diffuse solar radiation in 
W/m2 measured on an horizontal panel by the meteorological 
station (see supplementary material data), αe is the absorption 
rate taken to 0.6, A = 40.2 m2 is the surface of the outside 
envelope and the standard coefficient 0.5 is associated to 
the fact that the solar radiation hits vertical faces.   

Then, the RC model equations are obtained by writing 
the thermal balance at the nodes Tz, Tei, Te and Tee where 
these nodes represent respectively the inside thermal zone 
temperature, the inside envelope surface temperature,   
the envelope temperature and the outside envelope surface 
temperature. For convenience, the model Eq. (41) are 
written using the thermal transmittance parameter U, i.e. 
the inverse of the resistance R, in a compacted matrix form. 
One can notice that this problem has the same structure as 
the direct heat transfer problem described in Section 4, that 
means that the goal-oriented inverse method can be easily 
applied on this problem without significant changes in its 
formulation.  

+ = T T F                                  (41) 
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The thermal behavior of the chalet was studied on    
a period of 38 hours in February 2018. The chalet was 
submitted alternately to 1600 W heating and free cooling 
periods. The ventilation was operating at 100 m3/h during 
the whole studied time period. Concerning the sensors, the 
chalet was equipped with PT100 temperature sensors in the 
room, denoted mes

zT , on the inside and the outside faces of 
the north oriented wall, denoted mes

eiT  and mes
eeT . Two flux 

sensors with the dimensions 300 mm × 300 mm were also 
placed on the inside and the outside faces of the north- 
oriented wall. Lastly, a local weather station was deployed 
to get the outside temperature, denoted Tout, and the diffusive 
and the direct solar fluxes. All the sensors outputs data are 
available in the Electronic Supplementary Material (ESM) 
of the online version of this paper.  

From the technical characteristics of the chalet, we 
propose in Table 2 an initial set of model parameters. 
Using this initial set of parameters, the thermal behavior of 
the chalet is simulated and compared to the sensor outputs 
in Fig. 8. Although the predicted temperatures (without 
model updating process) are underestimated, we can see 
that the predicted flux on the inside wall surface is close to 
the measured one (less than 10% discrepancy). Nevertheless, 
we observe a different trend between the measured and the 
calculated heat fluxes at the interior wall surface, notably 
during the period 18 h–24 h. On the one hand, when the 
heating is switched on at t = 18 h, the measured zone 
temperature mes

zT  increases much faster than the measured 
temperature at the inside wall face mes

eiT  which leads to the  



Djatouti et al. / Building Simulation / Vol. 13, No. 3 

 

722 

Table 2 Initial set of the parameters of the 6R2C model 
0
siU  

(W/K) 
0
sU  

(W/K) 
0
eU  

(W/K) 
0
seU  

(W/K) 
0
fU  

(W/K) 
0
vU  

(W/K) 
0
iC  

(J/K) 
0
mC  

(J/K) 

200 200 35 1140 14 32 7.33×105 1.60×106

 
Fig. 8 Simulated and measured temperatures (top), simulated and 
measured heat flux at the interior wall surface (bottom). Simulation 
using 6R2C model with initial set of parameters defined in Table 2. 
Solid lines (resp. dashed lines) correspond to measurement (resp. 
simulation) 

peak at t = 19 h of the measured flux on the inside wall face. 
Then, the measured gap between the zone and the inside 
wall face temperatures reduces between t = 19 h and t = 24 h 
and thus the measured flux decreases. On the other hand, 
we see in Fig. 8 that the calculated flux on the inside wall face 
grows steadily from t = 18 h to t = 24 h. It may be explained  
by an overestimation of the zone thermal capacitance value 

0
iC  implying a low rise of the simulated zone temperature 

and a steadily grow of the gap between the zone and the 
inside face numerical temperatures. Moreover, we can see 
in Fig. 8 that the increase of the simulated outside surface 
temperature between t = 16 h and t = 25 h (due to solar 

radiation) is higher than the measured one. It may be due 
to the fact that the studied chalet is located close to a large 
building and thus a part of the solar radiation could have 
been masked. As we don’t consider shading effects in the 
expression of the solar gain S3, the estimated solar radiation 
may be overestimated which leads to a significant temperature 
increase.  

The flow rate of the ventilation system was measured 
using a 1D hot wire anemometer and was found in agreement 
with the manufacturer data. Hence, the ventilation thermal 
transmittance Uv is considered well-controlled and it is not 
updated in the followings. To proceed, we apply inverse 
modeling techniques in the next paragraphs to update the 7 
parameters Usi, Us, Ue, Use, Uf, Ci, Cm involved in the 6R2C 
thermal building model using the measured temperatures 
Tz, Tei and Tee. Two inverse methods are compared: a 
classical data misfit approach with Tikhonov regularization 
and the proposed goal-oriented inverse method. In both 
inverse methods, the regularization parameter is chosen to 
ensure an extended discrepancy principle taking into 
account the measurement and the model errors. It consists 
in choosing the regularization parameter such that the data 
misfit at the end of the inverse processes is close and 
strictly higher than a threshold JS defined below involving 
the model and the measurement errors. We recall that the 
considered data misfit in the goal-oriented inverse method 
is the gap between the temperature sensor outputs and 
the temperature field T2, which is the extrapolation of 
the measurements with the numerical model computed 
from Eq. (13). In the experiment, only PT100 probes were 
deployed to monitor the temperatures. The measurement 
error єmes  of the PT100 temperature sensors and the 
acquisition system were evaluated to 0.5 °C by the metrology 
department at IFSTTAR. Concerning the model error єmod, 
for simplicity it was empirically estimated to 1 °C. For a 
better evaluation of the model error, a posteriori model 
error estimators can be used (Braack and Ern 2003; Li et al. 
2015; Oden and Prudhomme 2002). From these errors, we 
define a data misfit threshold  

s
f mes mod 2 5 2

S
01

1 ( ) d 4 6 10 s K
2

n t t

tn
J t

=

==

= + = . ´ ⋅å ò є є      (44) 

where ns = 3 is the number of temperature sensors.  
To apply the goal-oriented inverse method detailed   

in Section 4, one also needs to fix an additional parameter 
that is a building characteristic time τ in seconds. Herein, 
we take τ = 374 min ≈ 6 h .  

Definition of quantities of interest 

In the following, we again focus on two quantities of interest 
QC and QD defined as  
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On the one hand, the quantity of interest QC is related 
to the interior heat flux between the room and the inside 
wall face during a heating period. It is highly dependent on  
the indoor exchange coefficient hi involved in the thermal 
transmittance Usi. Let us remark that QC is an energy. On 
the other hand, the quantity of interest QD corresponds to 
the mean value of the room temperature during one hour 
at the end of the first heating period. To evaluate the 
quality of the prediction on the quantities of interest by the 
different inverse techniques, they are measured using heat 
flux and temperature sensors respectively. 

Model updating with a standard Tikhonov approach 

In the standard inverse approach, 27 iterations are performed 
to determine the updated parameters. At each iteration, 
one has to perform:  
 the solution of the direct 6R2C Eq. (41)  
 the solution of the adjoint 6R2C equations to get the 

gradient direction  
 several solutions of the direct 6R2C equations to find the 

optimal descent step.  
As previously, the model updating process stops when 

the modification on the parameters are less than 0.5%.  
The numerical values of the updated model parameters   
at the end of the inverse modeling process are summarized 
in Table 3. As expected, all the parameters are adjusted 
using Tikhonov’s approach except the ventilation thermal 
transmittance Uv considered well-mastered. We can notice 
that the parameters associated to air infiltration and the 
envelope are the most corrected, i.e. the air infiltration thermal 
transmittance Uf (resp. the envelope thermal transmittance 
Ue) is reduced by about 87% (resp. 70%). After updating 
the model parameters, the simulated temperatures better 
approximate the measured temperatures (see Fig. 9) except 
for the outside surface temperature. We observe that    
the fluctuations of the outside surface temperature within 
15–25 hours due to solar gains are overestimated in the 
numerical simulation compared to the measurement. This 
may be due to a coarse estimation of the incident solar 
gains S3 on the outside envelope surface from the diffusive 
and the direct fluxes measured by the weather station. To 
improve its estimation, the solar gain S3 can be weighted  
by a multiplier coefficient which will be identified in the 
inverse problem. Lastly, the updated quantities of interest 
QC and QD at each iteration of the inverse procedure are 
given in Fig. 10. With the initial set of parameters, we observe 
that the gap between the predicted and the measured quantity 

Table 3 Updates of 6R2C model parameters using different inverse 
techniques: data misfit minimization with Tikhonov regularization 
(Tikh.), goal-oriented inverse methods considering quantity of 
interest QC (G-O - QC) and quantity of interest QD (G-O - QD). Uupd 
denotes the updated model parameter at the end of the inverse 
processes 
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Tikh. 0.895 0.404 0.307 0.861 0.134 1 0.840 1.308

G-O - QC 1 1 1 1 1 1 1 1 

G-O - QD 1 1 1 1 0.145 1 1 1 

 
Fig. 9 Temperatures obtained at the end of the data misfit 
minimization with Tikhonov regularization and the measured 
temperatures. Solid lines (resp. dashed lines) correspond to 
measurement (resp. simulation) 

of interest is less than 10% for QC and higher than 30% for 
QD. Indeed, we get a suitable approximation of the heat flux, 
as the temperature gap between the room and on the inside 
wall face is well predicted, while the room temperature Tz is 
coarsely determined. By minimizing the temperature data 
misfit in the inverse procedure, we see that the room tem-
perature slowly converges to the measured room temperature. 
After 27 iterations, the error between the predicted and the 
measured quantity of interest QD is about 3%. Nevertheless, 
for the quantity of interest QC we remark that the prediction 
of the heat flux is deteriorated when using standard classical 
Tikhonov technique. This may be due to the fact that the 
minimization problem is formulated on temperatures and 
not on heat fluxes.  

Model updating with goal-oriented inverse method applied 
to quantity of interest QC 

To satisfy the extended discrepancy principle taking  
into account both measurement and model errors, the 
regularization parameter α is set to 20. At the first iteration 
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of the goal-oriented inverse process, the highest component 
of the functional gradient is obtained for the thermal 
transmittance Usi, which is explicitly involved in the formula 
of QC. Hence, the parameter Usi is selected for an update. 
Nevertheless after testing various values of Usi, the goal- 
oriented functional does not decrease, which means that 
the quantity of interest QC is not improved, and leads to 
stop the inverse process. The goal-oriented inverse method 
detects that the quantity of interest QC is well predicted 
using the initial model parameters and preferred to stop at 
iteration 1 rather than deteriorating the prediction of QC. 
No parameter is updated as shown in Table 3.  

Model updating with goal-oriented inverse method applied 
to quantity of interest QD 

Herein, we take the regularization parameter α = 5 to verify 
the extended discrepancy principle. In Fig. 10, we observe 
that the updated quantity of interest QD with the goal- 
oriented inverse method converges faster to the measured 
quantity of interest than the one updated with the classical 
Tikhonov method. After 3 iterations, the error on the 
quantity of interest QD is about 3% with the goal-oriented 
inverse method while it is about 10% for the classical 
Tikhonov method. The goal-oriented inverse method 
indicates that the model parameter Uf is the most sensitive 
parameter to improve the prediction on QD and thus it 
focuses on its correction. Consequently, in Table 3 we 
observe that only Uf is updated with the goal-oriented 
inverse method and that it stops at iteration 4. Let us notice 
that the updated values of the thermal transmittance Uf by 
Tikhonov and goal-oriented methods are similar, which is 

consistent.  
To conclude, the goal-oriented inverse method has been 

applied to an academical study case where the analytical 
solution is known. In this case considered as a numerical 
proof, we verified that the proposed method properly updates 
only the model parameters having a significant impact on the 
quantity of interest. Then, we showed that the goal-oriented 
inverse method can be applied to a real building using    
a common resistor-capacitor model. In that cases, a robust 
prediction of the quantity of interest is obtained faster 
compared to a classical Tikhonov technique.  

7 Conclusion and prospects 

We proposed an inverse methodology combining the 
goal-oriented inverse method and the proper generalized 
decomposition to sharply predict a quantity of interest in 
thermal building problems. Unlike the standard inverse 
methods that aim at identifying all the model parameters in 
order to fit the data measurements, the goal-oriented inverse 
strategy focuses on the prediction of a quantity of interest 
and thus updates only the model parameters involved in its 
computation.  

This assumption was verified through four examples of 
quantities of interest. We first applied the goal-oriented 
inverse method on a numerical problem, with synthetic data, 
whose analytical solution is known and we demonstrated 
through two examples of quantities of interest that the 
proposed method accurately identifies the quantity of interest 
by updating only the model parameter to which it is the 
most sensitive.  
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A second example was dedicated to a 6R2C real building 
model where the indoor temperature and the inner and outer 
surface temperatures of the north wall were measured. The 
results were compared to those obtained using the Tikhonov 
regularization method and showed that the goal-oriented 
method predicts the sought quantity of interest faster (less 
iterations) and more accurately than the Tikhonov method. 
Indeed, the Tikhonov method sometimes deteriorates   
the predicted quantity of interest when trying to fit the 
computed temperature to the measured one. In summary, 
Tikhonov’s methods are more relevant to assess the global 
thermal behavior of a building but the goal-oriented inverse 
method should be rather selected for the prediction of a 
quantity of interest.   

The goal-oriented inverse method may have other 
advantages that were not tackled in this paper. Indeed, 
thanks to its formulation, the goal-oriented inverse method 
may lead to reduce the number of sensors required to 
accurately predict the quantity of interest and its combination 
with the PGD method would lead to optimize their positions. 
The outlines of a sensor placement strategy derived from 
the goal-oriented approach was previously proposed in 
(Chamoin et al. 2014). In a future article, this goal-oriented 
sensor placement method will be addressed and applied  
to more complex real buildings, including several thermal 
zones and a larger number of parameters.   
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