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Abstract 
In this paper, the possibilities of developing machine learning based data-driven models for the 
short-term prediction of indoor temperature within prediction horizons ranging from 1 hour up to 
12 hours are systematically investigated. The study was based on a TRNSYS emulation of a residential 
building heated by a heat pump, combined with measured weather data for a typical winter season 
in Ljubljana, Slovenia. Autoregressive models with exogenous inputs (ARX), neural network models 
(NN), and extreme learning machine models (ELM) are considered. The results confirm the finding that 
nonlinear models, particularly the NN model trained by regularization, consistently outperform 
linear models in both fitting and generalization performance, so they are the recommended choice 
as predictive models. The availability of future weather data considerably improved the predictive 
performance of all the tested models. Besides data about the future outdoor temperature, also 
data about future expected solar radiation significantly improve predictions of temperature in 
buildings. The linear models required embedding dimensions of 24 hours for accurate predictions, 
whereas the nonlinear models were not very sensitive to the use of past data. Nonlinear models 
required about three months of training data to reach good predictive performance, whereas  
the linear models converged to accurate predictions within six weeks. The RMSE prediction errors, 
averaged over all the data sets and all the prediction horizons, are within the range between 0.155 °C 
for the linear ARX model (in the case of no future available weather data), and 0.065 °C for the neural 
network model (in the case of available future weather data).  
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1 Introduction 

New energy efficiency guidelines in the building sector 
(Zygierewicz 2016) have emphasized the need to reduce final 
energy consumption. Such a decrease in energy consumption 
could be achieved, on the one hand, by increasing the thermal 
efficiency of the building envelope, and, on the other hand, by 
applying advanced process control techniques to the building 
services. In many cases, despite the energy efficiency of the 
building, we are often faced by decreasing indoor thermal 
comfort and inefficient energy use. This is often caused by 
inappropriate optimization methods in building services 
control techniques. The most common traditional optimization 
methods are based only on the current outdoor temperature 
where the relation between the outdoor temperature and 
the temperature of the heating system is defined by the 
so-called heating curve. 

Considerable improvements in the performance of 
building service systems can be achieved by using advanced 
process control techniques, such as model predictive control 
(MPC) (Lindelöf et al. 2015; Serale et al. 2018), where  
the optimization system consists of a thermal model of 
the building, weather forecasts, various constraints, and an 
optimization algorithm. The benefits of applying MPC to 
building services, both residential and commercial, have 
been broadly investigated in a number of studies, some of 
the latest of which are summarized here. For residential 
buildings, it has been shown that heating demand can be 
decreased by up to 25% in the case of high indoor comfort 
criteria, and by up to 49% in the case of low indoor comfort 
criteria (Smarra et al. 2018). A 26% reduction in heating 
demand in residential buildings, by using the adaptive 
predictive control of thermo-active building systems, was 
presented in Schmelas et al. (2017), whereas in Pang et al.  
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(2018) a 16% reduction in the cooling demand in case of an 
applied MPC to a radiant slab cooling system was reported. 
In commercial buildings, the implementation of MPC in 
building services has resulted in yearly energy savings of 
between 31% and 36% (Killian and Kozek 2018). Somewhat 
smaller savings are presented in Bamdad et al. (2018), where 
the yearly energy saving was up to 26%. The study considering 
the cold Finnish climate (Arabzadeh et al. 2018) reported 
that the application of the predictive control could reduce 
the heating energy cost up to 12%, and concluded that the 
application of a data-driven control for the demand prediction 
brings efficiency to demand response control. 

In developing MPC for building installation systems, it 
is essential to select appropriate models for the evaluation 
of the operation and thermal response of the systems. A 
number of authors (Afroz et al. 2018; Deb et al. 2017; Do 
and Cetin 2018; Ahmad et al. 2018) have reported, in their 
research, the key findings which are relevant to the selection 
and design of appropriate models for the management of 
various building installations systems. A comprehensive review 
of the challenges of building performance simulation was 
recently presented by Hong et al. (2018), highlighting some 
of the most important technical challenges facing building 
simulation. The crucial component for the effective operation 
of MPC is the precision and accuracy of the thermal building 
models (Prívara et al. 2013). There are three general categories 
of thermal building models: detailed physical models, 
simplified physical models, and statistically-based models 
(Li and Wen 2014).  

The detailed physical models or so called white-box 
models (Crawley et al. 2008) are based on physical knowledge 
about the building and its thermal balance equations. Such 
models require good knowledge of the structure and of 
the physical and material properties of the building and the 
technical properties of the building services. White-box models 
are appropriate in the case of off-line or preliminary research 
into new system optimization. The potential benefits of 
operating a heat pump in an energy-efficient residential 
building using a white-box model have been presented in 
Romero Rodríguez et al. (2018), where cost savings of up to 
25% were achieved by using optimal strategies. 

The simplified physical models or grey-box models 
combine a prior partial physical model with historical data 
in order to complete or improve the model. The simplified 
model that was presented in Reynders et al. (2014) shows, 
in general, good agreement with detailed physical models. 
The use of such a model for short-term thermal prediction 
resulted in the best performance with a root-mean square 
error (RMSE) of less than 0.5 °C in the case of a prediction 
horizon of h = 1 h, and up to 1 °C in the case of a prediction 
horizon of h = 3 h (Ferracuti et al. 2017). A better prediction 

was presented in Žáčeková et al. (2014) for a real office 
building, where RMSE values below 0.4 °C in the spring time 
and below 0.3 °C in winter time were reported. In both cases, 
the prediction horizon was h = 2 h. Using a combination of 
the RC-model and the 24 hours of historical data resulted in 
a prediction error in energy use of less than 5% (Oldewurtel 
et al. 2012).  

It is difficult to apply white-box and grey-box models for 
on-line operation, since they require thousands of parameters 
and long training times (Foucquier et al. 2013; Prívara et al. 
2013). Besides this, the real building parameters and building 
service characteristics are often unknown in existing buildings, 
so that the use of statistical or so called black-box models 
that have self-learning capabilities is more appropriate 
(Pedersen 2007; Prívara et al. 2013). Data-driven statistical 
models which are based on inverse modelling techniques 
using multiple linear regression analysis between the 
measured data of the analyzed system (temperature, energy 
consumption, building occupancy, heat gains, outdoor 
parameters, etc.) can be successfully applied (Wang et al. 
2018; Amasyali and El-Gohary 2018; Wei et al. 2018). The use 
of artificial intelligence methods, including autoregressive 
models with exogenous inputs (ARX) and neural networks 
(NN), has been shown to result in better predictions of 
building thermal response over traditional regression 
techniques (Kalogirou 2001; Li et al. 2009). The prediction 
of 10 min ahead of indoor temperature by means of an ARX 
model (Ríos-Moreno et al. 2007) based on 15 min of historical 
data of four exterior variables (outdoor temperature, relative 
humidity, wind velocity and solar radiation) and one interior 
variable (indoor temperature) showed the best value of the 
coefficient of determination (R2) between 0.88 and 0.90. 
Using climate data older than 20 min did not improve the 
model’s performance. Application of an ARX model with 
two exterior variables (outdoor temperature and solar 
radiation) and three interior variables (indoor temperature, 
indoor heat gains, and the thermal gain of the heating/cooling 
system) showed better accuracy in the case of short-term 
than long-term prediction of indoor temperature. In the 
case of 3-hour prediction, the value of RMSE was up to  
0.8 °C and in case of 15-min prediction up to 0.3 °C (Ferracuti 
et al. 2017). A more efficient ARX model (Yun et al. 2012) 
can be constructed by including a physical understanding 
of the building capacity (making use of knowledge about 
energy use for a 4-hour back time step). The results showed 
that such a model is well suited for the prediction of thermal 
load for 1-hour ahead. This model is based on four exterior 
variables (outdoor temperature, relative humidity, wind 
velocity and solar radiation) and two interior variables (indoor 
heat gains, and the thermal gain of the heating/cooling 
system). Regardless of the type of the building and the  
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thermal load (cooling or heating), the accuracy level is 
between 2.0% and 5.4%. The outdoor temperature was found 
to be the most dominant exterior variable.  

Using different NN models to predict the daily building 
and heat pump energy consumption in a residential building 
(Biswas et al. 2016) showed a satisfactory prediction with 
R2 values between 0.87 and 0.91. The models were based on 
three exterior variables: outdoor temperature, solar radiation 
and values of the day of the week. In a case study which 
attempted to optimize hybrid cooling systems (i.e. a com-
bination of a ground heat pump and a cooling tower), 
different NN models were used in order to predict the 
temperature of the cooling water exiting the ground heat 
exchanger and the cooling tower (Gang et al. 2014). Several 
exterior and interior variables (the inlet outlet temperature 
of the cooling water, the operating time, the temperature of 
the ground, and the ambient temperature, etc.) were taken 
into account, and the results showed good agreement with 
the measured data (with an RMSE up to 0.5 °C). Development 
of NN models to predict indoor temperature and heating 
energy consumption for residential buildings without knowing 
the exterior variables was presented in Magalhães et al. 
(2017). These models are based on different sets of interior 
variables which are common for detailed or simplified 
physical models (indoor temperature, energy consumption, 
building occupancy, heat gains and thermal load). The 
authors concluded that the prediction of either heating 
energy use or indoor temperature was appropriate with R2 
higher than 0.93. One advantage of such models is that they 
can be used in climatically various areas. Recently, some 
new machine learning approaches have been investigated 
(Robinson et al. 2017; Liu et al. 2019; Fan et al. 2017; Guo 
et al. 2018) such as deep learning, extreme learning machines 
and support vector machines, and good performance of 
extreme learning machines was reported. 

The predictive accuracy of data-driven predictive models 
is strongly influenced by the availability of exterior and 
interior variables, and also by the quality and quantity of the 
training data (i.e. by the length of the training period). The 
results of one study (Ding et al. 2018) showed that, by using 
only exterior variables, the prediction accuracy could be up 
to 12% lower than in the case when interior variables, too, 
are used. Based on the limited availability of reports in the 
literature regarding appropriate lengths of training data, the 
suggested training periods are between 6 days and 77 days 
(Ding et al. 2018; Gang et al. 2014; Huang et al. 2018). The 
training data which are required to train predictive models 
(i.e. to calculate the model’s coefficients) can be obtained 
either from in-situ data corresponding to real buildings, or 
from simulation data (i.e. from white-box or grey-box models) 
such as: TRNSYS (Klein et al. 2013; Villa-Arrieta and Sumper 
2018), Energy Plus, and others (Crawley et al. 2008; Arabzadeh 

et al. 2018). The last method based on simulation data is 
suitable especially in the development of MPC in a case of 
new buildings, where the required training data (i.e. the 
thermal response of the building and building service 
systems) are not yet available. 

1.1 Research objectives 

Based on the results of the performed literature review, we 
can conclude that there is no universal model that can be 
utilized under all conditions. The development of the model 
is therefore essential and requires case-by-case. The main 
goal of our research was to systematically investigate the 
possibility of developing machine learning based data-driven 
models for the short-term prediction of indoor temperature 
in buildings. The models are designed to be available for 
application in the model predictive control of thermal 
comfort in buildings. For this reason short-term predictive 
horizons within the range from 1 hour to 12 hours were 
investigated. The specific research topics explored in this 
paper include: 
1. Construction and critical comparison of various data- 

driven machine learning models, including: 
– autoregressive models with external inputs, combined 

with a stepwise regression procedure for the selection 
of relevant inputs, 

– feedforward neural network based models, 
– extreme learning machine models.  

2. Investigation of the influence and relevance of the 
availability of future weather data. The models are 
constructed in three versions, as follows: 
– without any available future weather information, 
– with available hourly data about future outdoor 

temperature, 
– with available hourly data about future outdoor 

temperature and solar radiation.  
3. Investigation of the required embedding dimensions for 

past inputs. Embedding dimensions, denoting the length 
of recent history of inputs, are explored within the range 
from 0 to 33 hours, for different model types, and for 
different availabilities of future weather data. 

4. Exploration of the required data length for the construction 
of models. Various data lengths spanning from 1 week 
to 6 months were investigated with respect to the 
generalization ability of the constructed models, with the 
goal of estimating an appropriate time window, as required 
for model training in real building situations. 
The research results based on all of the above proposed 

research objectives are considered as new contributions to 
the field of modelling and the predictive control of thermal 
comfort in buildings. The first research topic brings new 
insights into the characteristics of good short-term predictive 
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model structures with respect to their complexity and to 
linearity vs. nonlinearity, and answers the question about 
the proper choice of the machine learning algorithm.  

The second research topic reveals the impact of the 
availability of future weather data which is important to 
determine the theoretical boundaries of the predictive 
accuracy of the developed short-term predictive models 
with respect to the availability of weather data. In a realistic 
situation, only weather forecasts are available (and not 
accurate future weather data), so that the presented results, 
either including the full availability of future weather data, 
or without any availability of future weather data, represent 
the boundaries within which realistic short-term predictions 
of temperature in buildings can be expected. Furthermore, 
solar radiation is known to be a significant influential factor 
for the thermal balance of a building (Soldo et al. 2014), so 
that this factor was also investigated in the study in order to 
estimate the potential influence and benefits of the availability 
of accurate solar radiation forecasts. 

The third research topic investigates the required 
embedding dimensions for all combinations of the models 
and the availability of weather data. Proper selection of inputs 
and their embedding dimensions is an important factor in 
designing predictive models, so that the results with respect 
to proper embedding dimensions reveal important insights 
into the causal relationship of building thermal balance with 
respect to past inputs, and offer practical information for 
researchers and designers of predictive systems for buildings. 

Finally, the required data lengths for the construction of 
predictive models are analysed, which also helps designers 
of predictive systems in the planning, constructing and 
deploying of predictive models for the application of predictive 
control in buildings. The results of this study systematically 
reveal the best approach to the construction of short-term 
predictive models, and are therefore directly applicable to 
the practical use of predictive models in real buildings.  

2 Simulation data 

In this section, the construction of the TRNSYS building 
emulator model is described. The weather data for the region 
of Ljubljana, Slovenia, are then presented, and finally, the 
preparation of several data sets for this study is described. 
The data sets were derived by generating heating temperature 
profiles and combining them with weather data and the 
TRNSYS emulation. The data sets represent a basis for the 
training and validation of the predictive models described 
in this study. 

2.1 The TRNSYS building models 

In this study a single-family residential building was 

considered. The building, which has two floors and 180 m2 
of total living space, has external dimensions of 8 m × 11 m 
and an annual specific heating demand of 67 kWh/(m2·year). 
The heating system consists of a heat pump (air-water) and 
a floor heating system. The floor heating system is regulated 
by the inlet temperature of the heating media, i.e. the heating 
temperature Theat, and the heating is turned off when the 
heating temperature Theat drops below the building’s indoor 
temperature Tin. The weather regulated heating curve 
of the heating system was optimized with the objective of 
maintaining continuous operation and thereby operating 
with the highest COP (coefficient of performance) of the 
heat pump, consequently minimizing the requirements to 
turn off the heating system. The structures of the external 
and internal opaque walls were assumed to be of heavyweight 
construction (ISO 13790 2008). The thermal transmittance 
of the building envelope was 0.328 W/(m2·K) for the external 
wall, 0.167 W/(m2·K) for the floor, 0.126 W/(m2·K) for the 
roof, and 1.3 W/(m2·K) for the windows. The total solar 
radiation transmittance of the glazing (g) was 0.551. The 
window-to-wall ratio was 0.28, and the total area of the 
windows was 58 m2. The windows have external shading 
devices with a shading factor of 0.75, and are activated 
when the solar radiation acting on the horizontal plane (SR) 
exceeds 300 W/m2 and when the indoor temperature Tin is 
higher than 24 °C. 

The building was considered to be occupied, except during 
weekdays from 7 AM till 4 PM. During the occupied hours 
the air exchange rate was 0.5 h−1, whereas during the 
unoccupied hours the air exchange rate was reduced to  
0.2 h−1, which corresponds to the airtightness of the building. 
The internal heat gains Qin (people, home appliances and 
lighting) were estimated to amount to 5 W/m2 of the building 
floor area, and were taken into account during the occupied 
hours. Internal thermal comfort was evaluated by using 
the predicted mean vote (PMV) model (Fanger 1970). This 
model takes into account 6 parameters: air temperature, 
radiant temperature, air speed, humidity, metabolic rate and 
clothing insulation. The values of the air temperature, radiant 
temperature and humidity were calculated at each time step, 
whereas the other parameters of the PMV model were kept 
constant.  

The data sets which are required for the training and 
testing of the predictive models were calculated using the 
TRNSYS simulation code (Klein et al. 2013), which is one 
of the most powerful house energy simulators (Pedersen 
2007). The universality, widespread application and validation 
of TRNSYS has been demonstrated in many studies (Al-Saadi 
and Zhai 2015; Crawley et al. 2008; Lu et al. 2017; Safa et al. 
2015; Drissi Lamrhari and Benhamou 2018) where this model 
was used to simulate the thermal response of different building  
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structures (e.g. walls, windows, slabs on grade, roofs, and 
solar walls) in combination with various building services 
(HVAC, heat pumps, solar systems, etc.). In our study, the 
main components of the TRNSYS model were: Type 9 (the 
data read model), Type 16 (the solar radiation processor 
model), Type 69 (the long-wave radiation exchanger model), 
Type 33 (the psychometrics model), Type 56b (the multi-zone 
building model), Type 25 (the printer module), and Type 581 
(the multi-dimensional data interpolation model for the heat 
pump). The accuracy of the TRNSYS models in our study 
was validated in our previous research (Potočnik et al. 2018), 
where the adequate performance of TRNSYS emulation was 
confirmed. We therefore consider the results of the TRNSYS 
emulation to be accurate and relevant to support the 
conclusions and recommendations of this study. 

2.2 Weather data 

Measured weather data corresponding to one typical winter 
season in Ljubljana, Slovenia, were used in this study (ARSO 
2017). These data include hourly measurements of the 
outdoor temperature Tout and the solar radiation SR for a 
period of six months. Figure 1 shows six months of the 
measured outdoor temperature Tout and the solar radiation 
data SR. 

2.3 Generating data sets 

This study required several data sets for the training and 
testing of the investigated predictive models. Each data set 
consisted of weather data, different heating profiles (control 
variable Theat), and building indoor temperatures (Tin) 
calculated by TRNSYS simulations. Different heating 
temperatures Theat which corresponded to possible control 
strategies were generated for each data set. Data sets 1–3 
were generated by random Theat profiles, and data sets 4–6 
included Theat profiles which were optimized according to 
various degrees of freedom in order to achieve minimal 
(but always positive) PMV values (Potočnik et al. 2018). The 
data sets are represented as follows: 

Data sets 1–3: Randomly generated Theat, with amplitudes 

ranging between 20 °C and 35 °C , and time intervals between 
changes ranging randomly between 1 hour and 96 hours. 

Data set 4: Constant Theat throughout the season, optimized 
in order to only yield on average the optimal building 
temperature. 

Data set 5: Variable Theat, optimized with respect to the 
outdoor temperature Tout. 

Data set 6: Variable Theat, optimized with respect to the 
outdoor temperature Tout and the solar radiation SR. 

The data sets are presented in Fig. 2, where the control 
variable (Theat) and the building response (Tin) are shown 
for each case. The aim of using the proposed data sets was 
to include a wide range of possible heating regimes, as 
represented by the randomly generated first three data sets, 
but also to include more realistic (and actually less demanding) 
situations that can be encountered in real buildings where 
measurements can be obtained in already regulated and 
less flexible heating regimes. The latter is represented by 
the last three data sets. As described later in Section 4.4, 
only the first data set was used as a training set to construct 
the predictive models, and all the other data sets were used 
as testing data in order to validate the performance of the 
model. 

2.4 Additional inputs 

Besides the weather-related inputs (Tout, SR), the internal 
heat gains (Qin), the heating temperatures (Theat) and the 
corresponding building indoor temperatures (Tin), two 
further inputs were added in order to facilitate the model’s 
predictive performance. The first additional input was defined 
as the hour of the day (hd), and the second additional input 
(wd) was defined in order to denote a workday or a weekend. 
The values of these inputs can be hd = {0, 1, 2, …, 23}, and 
wd = {0,1}. By adding these two additional inputs to the 
created data sets, each complete data set had the structure 
presented in Table 1. The data sets organized in this format 
were used in our simulation study to construct the predictive 
models. Table 1 only shows a small subset of data in order to  
illustrate the data structure. In this study the total number 
of samples was N = 4369 for each data set. 

 
Fig. 1 Weather data recorded at Ljubljana, Slovenia, showing the outdoor temperature Tout and the solar radiation SR for a winter period 
of six months 
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Table 1 Example of the data set structure 

hd  
[—] 

wd  
[—] 

Tout  
[oC] 

SR  
[W/m2] 

Qin
  

[W/m2] 
Theat  

[oC] 
Tin  

[oC] 

15 0 19.3 250 0 21 23.3 
16 0 18.9 180 5 21 23.6 
17 0 18.0 81 5 21 23.7 
18 0 17.0 2 5 21 23.4 
19 0 16.2 0 5 21 23.4 
20 0 15.3 0 5 21 23.3 
21 0 13.9 0 5 26 23.2 
22 0 13.7 0 5 26 23.1 
23 0 13.0 0 5 30 23.1 
0 1 11.5 0 5 27 22.9 
1 1 10.3 0 5 27 22.8 
2 1 9.4 0 5 20 22.7 
3 1 8.6 0 5 22 22.6 

 

3 Methods 

This section provides a brief description of the various 
data-driven models applied in this study. The model 
structures included autoregressive models with exogenous 
inputs (ARX), neural network (NN) models, and extreme 
learning machine (ELM) models. All of these methods are 
described in the following subsections. Although support 
vector machine (SVM) models are another popular and 
efficient method for the construction of data-driven models 

(Cortes and Vapnik 1995), this approach was not applied 
in this study due to difficulty with tuning two of the SVM 
model parameters, i.e. the generalization parameter C, and 
the kernel parameter γ. The optimal values of both parameters 
are arbitrary and should be determined numerically by a 
cross-validation method over a wide range of possible 
values. This complicates the practical application of SVM, 
since there not much is known about proper values of these 
two parameters. A comparative analysis of SVM and ELM 
methods has already shown the similar generalization abilities 
of both methods (Liu et al. 2012), so by including an ELM 
model we expected to achieve similar results. 

3.1 ARX model 

The auto-regressive model with exogenous inputs (ARX) is 
defined by the equation: 

( ) ( ) ( ) ( ) ( )A q y t B q x t e t= +                         (1) 

where y denotes the model output, x the model inputs, e the 
white noise disturbance, and A(q) and B(q) are polynomials 
with respect to the time-shift operator q and the model 
order M: A(q) = 1 + a1q−1 + ... + aMq−M, and B(q) = b1 + b2q−1 
+ ... + bMq−M+1.  

The linear ARX model can be used to construct a 
predictive model for the thermal response of a building. In 
our study, the model order was denoted also by an embedding 
dimension De, which denotes the time lag in hours between 

 
Fig. 2 The data sets applied in this study: three data sets (1,2,3) with randomly generated heating temperatures Theat, and three data sets 
(4,5,6) with increasingly optimized heating temperatures Theat 
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the moment of prediction and the oldest past inputs. The 
embedding dimensions of up to De = 33 hours used in this 
study resulted in hundreds of potential inputs, which can 
result in high model complexity and collinearity problems.  

For the above-mentioned reasons, a combination of an 
ARX structure with a stepwise selection method (Draper 
and Smith 1998) was used in this study for the optimization 
of the selection of relevant inputs. In the first step the 
corresponding ARX model structure with a model order  
M = De was defined, whereas, in the second step, the set 
of available inputs was reduced by a stepwise regression 
procedure into only those inputs which are statistically 
relevant. This results in a compact and robust model, which 
has good generalization properties.  

Within the context of ARX models the adding of quadratic 
terms (for each input) was also investigated in order to 
explore the possible contributions of the nonlinear terms. 
For this reason two versions of the ARX model were 
investigated, which in the following text are referred to as: 
ARXsr1 – A linear ARX model optimized by stepwise 
regression; 
ARXsr2 – A quadratic ARX model optimized by stepwise 
regression. 

As an additional option, an ARX model with cross 
products of all the inputs was also investigated. However, 
due to the very high number of inputs (and their delayed 
values) the computations became excessively long (they 
lasted for more than one day on a computer with an Intel 
i7-7700 processor and 16 GB of RAM), so that this approach 
was not considered as a practical solution for real buildings 
and larger databases. 

3.2 Neural networks 

Within the scope of the research several neural network (NN) 
models (Haykin 2009) were examined in order to estimate the 
possible benefits of intrinsically nonlinear model structures 
compared to ARX models. The different architectures of 
the NN models were defined as feed-forward networks 
containing one hidden layer with Nh sigmoid neurons, and 
an output layer with a linear activation function. The effect 
of selecting hidden layers of different sizes was explored, 
and the results are reported below. 

The predictor y of a neural network can be represented 
by a generic expression of the inputs x, e.g. for a network 
with a K-dimensional input x = {x1, x2, ..., xK}, Nh neurons 
in the single hidden layer, and a single output, the model 
can be described as: 

h

o h
0 0

N K

j ji i
j i

y f w f w x
= =

= å å( ))(                        (2) 

where fo represents the linear output layer activation function, 

and fh the sigmoid hidden layer activation function. If past 
outputs are also included as inputs to the model, then such 
a structure can be referred to as a nonlinear ARX model, or 
a “NARX” model. 

Two different training methods were used: the Levenberg– 
Marquardt training algorithm (LM) (Hagan and Menhaj 
1994), and the same algorithm with Bayesian regularization 
(BR) (Foresee and Hagan 1997). Whereas the first method 
is a standard training method for smaller NN models, the 
second often results in improved generalization properties 
due to regularization. For this reason two types of NN 
models were used, as follows (the numbers denote the size 
of the hidden layer): 
NNlm4 – A neural network with 4 hidden neurons, trained 
by the LM algorithm; 
NNbr6 – A neural network with 6 hidden neurons, trained 
by the BR algorithm. 

3.3 Extreme learning machines 

Extreme learning machines (ELM) represent a new fast- 
learning algorithm for single layer feed-forward networks 
(Huang et al. 2006). The ELM algorithm randomly chooses 
hidden layer nodes, and analytically determines the network’s 
output weights. It tends to provide good generalization 
performance at an extremely fast learning speed. A broad 
overview of various ELM applications has been summarized 
in Ding et al. (2014), and an extensive review of the current 
state of ELM has been presented in Huang et al. (2015). An 
ELM model can be defined by the following expression: 

( )
h

h
1

N

j
j

y w F x
=

=å                                 (3) 

where wj represents the output weights, and Fh the nonlinear 
feature mapping, which is defined as a nonlinear piecewise 
continuous function which satisfies the ELM universal 
approximation theorems. Commonly used ELM mapping 
functions include sigmoid, hyperbolic tangent, Gaussian, 
multiquadratic, and cosine functions. ELM train single-layer 
feed-forward networks in two main stages: 
1) random feature mapping, and  
2) solving the linear parameters.  

In the first stage, the ELM randomly initializes the hidden 
layer in order to map the input data into an ELM feature 
space by means of the nonlinear mapping functions (Fh). In 
the second stage of ELM learning, the weights wj which 
connect the hidden layer and the output layer are solved by 
minimizing the approximation error in the squared error 
sense which leads to a global solution. 

In comparison with NN models, ELM models generally 
require a larger number of hidden layer neurons in order to 
achieve good approximation and generalization properties. 
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In our study, sigmoidal mapping functions were used in the 
hidden layers, and the models were denoted like this: 
ELM300 – Extreme learning machine model with 300 
sigmoidal neurons. 

4 Identification procedures 

Based on the generated data sets as described in Section 2, 
and using the various data-driven models presented in 
Section 3, a series of numerical experiments were performed 
in order to explore specific aspects of the prediction of thermal 
response in buildings. Following the research objectives stated 
in Subsection 1.1, ARX, NN and ELM model structures were 
explored with respect to the effects of the availability of future 
weather data, embedding dimensions, and the required data 
lengths for the construction of predicting models.  

4.1 Prediction horizons 

Short-term predictive models were investigated, meaning 
that the models were constructed for hourly predictions 
with prediction horizons h within the range from 1 hour to 
12 hours: h = {1, 2, …, 12} hours. A separate model was 
constructed for each prediction horizon h, so that each model 
structure, such as ARXsr1, refers to a set of 12 models 
constructed by the same method but for different prediction 
horizons. 

4.2 Selection of inputs 

Here some comments are given with regard to the composition 
of inputs and outputs for the predictive models from the 
data sets. This composition is illustrated by means of the 
data shown in Table 1, and for the following situation: 
predicting at time 8 PM for h = 5 hours ahead, and applying 
the embedding dimension De = 3. Table 2 illustrates the 
composition of the inputs and outputs for three future 
weather conditions. The time stamp at hd = 20 represents the 
moment of prediction – now (corresponding to 8 PM), and 
the data available at hd = 20 are the last available actual data. 
Since this example refers to the prediction at h = 5, the 
output for all cases is an indoor temperature (Tin) 5 hours 
ahead from now, i.e Tin at hd = 1, with a value of 22.8 °C. 
The output is marked in the table in yellow.  

Applying the embedding dimension De = 3 means that 
past inputs, up to 3 hours ago, are also used and are 
marked in blue. The heating temperature Theat is the control 
variable, and is therefore also available in the future until 
one step less than the prediction horizon (this would be a 
typical situation in a model predictive control application). 
The two additional inputs hd and wd are also available in 
the future because the moment of prediction is known. The 
past values of these two descriptors are not necessary, so they 
are not used as inputs. The three future weather condition 
cases are only differentiated by the availability of future 

Table 2 Composition of the inputs and outputs for three future weather conditions, and for a time of prediction hd = 20, a horizon h = 5, 
and an embedding dimension De = 3 

Case I: No future weather data  Case II: Available future Tout Case III: Available future Tout and SR 

 hd 

[—] 

wd 

[—] 

Tout 

[oC] 

SR 

[W/m2] 

Qin 

[W/m2] 

Theat 

[oC] 

Tin 

[oC]  

hd 

[—] 

wd 

[—]

Tout 

[oC]

SR 

[W/m2]

Qin 

[W/m2]

Theat

[oC]

Tin 

[oC]

hd 

[—]

wd 

[—]

Tout 

[oC] 

SR 

[W/m2] 

Qin 

[W/m2]

Theat

[oC]

Tin 

[oC]

15 0 19 250 0 21 23.3  15 0 19 250 0 21 23.3 15 0 19 250 0 21 23.3

16 0 19 180 5 21 23.6  16 0 19 180 5 21 23.6 16 0 19 180 5 21 23.6

17 0 18 81 5 21 23.7  17 0 18 81 5 21 23.7 17 0 18 81 5 21 23.7

18 0 17 2 5 21 23.4  18 0 17 2 5 21 23.4 18 0 17 2 5 21 23.4

19 0 16 0 5 21 23.4  19 0 16 0 5 21 23.4 19 0 16 0 5 21 23.4

20 0 15 0 5 21 23.3  20 0 15 0 5 21 23.3 20 0 15 0 5 21 23.3

21 0 14 0 5 26 23.2  21 0 14 0 5 26 23.2 21 0 14 0 5 26 23.2

22 0 14 0 5 26 23.1  22 0 14 0 5 26 23.1 22 0 14 0 5 26 23.1

23 0 13 0 5 30 23.1  23 0 13 0 5 30 23.1 23 0 13 0 5 30 23.1

0 1 12 0 5 27 22.9  0 1 12 0 5 27 22.9 0 1 12 0 5 27 22.9

1 1 10 0 5 27 22.8  1 1 10 0 5 27 22.8 1 1 10 0 5 27 22.8

2 1 9.4 0 5 20 22.7  2 1 9.4 0 5 20 22.7 2 1 9.4 0 5 20 22.7

3 1 8.6 0 5 22 22.6  3 1 8.6 0 5 22 22.6 3 1 8.6 0 5 22 22.6
 

Legend:   Past inputs;   Future inputs;   Output. 
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weather related values. Therefore, in comparison with case I, 
case II additionally includes also future outdoor temperatures 
Tout, and case III future solar radiation values SR. All the 
future inputs are marked in green. 

4.3 Performance measure 

The root mean square error measure was used as the basic 
performance measure: 

2
RMS

1

1 ( )
N

k
e e k

N =

= å                               (4) 

where N denotes the number of samples and e(k) the error 
between the predicted and the actual indoor temperature 
(the output of TRNSYS emulation): in in

ˆ( ) ( ) ( )e k T k T k= - . 
The root mean square error is a suitable measure for use 
in building temperature predictions due to its quadratic 
sensitivity to prediction discrepancies: It is expressed in [°C] 
units and thus also can provide a good intuitive evaluation 
of the model performance. Since human sensitivity to 
temperature variations is in the order of ≈0.1 °C, this level 
represents a suitable basis for the evaluation of a model’s 
performance, since we are trying to construct models with 
a prediction accuracy that is close to human temperature 
sensitivity. 

The basic eRMS measure was calculated for each model, 
and for every prediction horizon h. In order to summarize 
a model’s performance, the basic measures were averaged 
across all the prediction horizons h = {1, 2, …, 12} and the 
averaged RMSE measure, expressed in [°C], was used as the 
final performance measure: 

12

RMS
1

1RMSE ( )
12 h

e h
=

= å                            (5) 

4.4 Cross-validation 

Since in this study the generalization performance of each 
model had to be evaluated, an intensive cross-validation 
method was applied in which only a single data set was used 
as a training data (data set 1), and all the other data sets (2, 
3, …, 6) were used as testing data. Using this procedure, it was 
possible to assess each model’s generalization performance 
across various heating regimes, so that a good estimation of 
the quality of each model could be obtained. 

Based on this strong cross-validation approach, the final 
model performance was determined by calculating the average 
performance measure RMSE across all 6 data sets (1 training 
data set, and 5 testing data sets). This averaged performance 
measure was applied, and reported in all the subsequent 
model evaluation results. 

4.5 Identification protocol 

The identification protocol can be summarized as follows: 
1. Define the model structure: 

ARXsr1, ARXsr2, NNlm, NNbr, ELM 
2. Define the future weather conditions: 

– no available future weather data,  
– future values of Tout are available, 
– future values of Tout and SR are available. 

3. Define the embedding dimension for past inputs: 
De = {0,3,6,…,33} 

4. Define the data length for model training (W denoting 
weeks, and M months): 
1W, 2W, 3W, 4W, 5W, 6W, 2M, 3M, 4M, 5M, 6M. 

5. For each prediction horizon h = {1, 2, …, 12}: 
– compose the model inputs and outputs (according to 

the above definitions), 
– construct and train the model using the training data 

(data set 1), 
– test the model with regard to all the data (data sets 1, 

2, …, 6), 
– calculate the basic error measure eRMS (for each prediction 

horizon, and for each data set). 
6. Average the basic error measures eRMS across all the 

prediction horizons, and all the data sets, in order to 
obtain the final averaged RMSE performance measure. 
The above-defined identification protocol was adapted 

in order to be able to include several specific investigation 
objectives of this paper, where usually only one parameter 
(such as an embedding dimension or a length of data) was 
left open, and the other parameters were fixed. In the next 
section of this paper the results of the performed research 
are presented. 

5 Results and discussion 

5.1 Prediction horizons 

The first result shown in Fig. 3 illustrates the prediction 
accuracy over all the prediction horizons h = {1, 2, …, 12} 
for two model structures (ARXsr1 and NNbr6). This result 
was obtained by using the second future weather condition 
case (available data about future outdoor temperatures), an  
embedding dimension De = 24, and a full data length (6M). 
The prediction accuracy is, as expected, the best for the 
nearest prediction horizon (h = 1), and decreases with the 
increasing distance of the horizon. Compared to the linear 
ARX model, the neural network model trained by the BR 
algorithm consistently generates more accurate predictions, 
and has comparable variance across the data sets. All the 
subsequent results are shown in compact form, averaged 
over all the prediction horizons and all the data sets, and are  
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therefore expressed by the averaged performance measure 
(RMSE). For the case shown in Fig. 3, the averaged 
performance measures amount to RMSE = 0.124 °C for 
the ARXsr1 model, and RMSE = 0.091 °C for the NNbr6 
model. 

5.2 The topology of the nonlinear models 

The construction of linear ARXsr models is relatively easy 
and does not require the selection or tuning of special 
parameters. On the other hand, nonlinear data-driven models 
usually require the definition of various structural parameters 
(e.g. about the topology, activation functions, and connections). 
In our study, NN and ELM models were implemented, both 
of which require the definition of hidden layer activation 
functions and the number Nh of hidden layer neurons. 
Standard sigmoid transfer functions were selected for both 
of the nonlinear models, and a suitable number Nh of hidden 
layer neurons was determined experimentally. In Fig. 4, the 
solutions for three sets of future weather conditions are 
shown, for the NNbr and ELM models. Due to the very 
different nature of these two model structures, the results, 
too, differed considerably. For the neural network models 
trained by BR, about 5 hidden neurons are enough for  
good quality predictions. The minima are very flat, which 
means that the number of hidden neurons is not a critical 
parameter, so that good NN models can be quite easily 
constructed by less experienced users. In the case of 

extreme learning machine models, many more neurons are 
required due to randomly distributed hidden layer weights. 
The results stabilize at around 200 units, with only small 
improvements when Nh is further increased. Based on these 
results, further experiments were performed with Nh = 6 for 
the NNbr models, and Nh = 300 for the ELM models. The NN 
trained by the LM algorithm requires even fewer hidden 
neurons, so that Nh = 4 was applied for the NNlm models. 
The corresponding models were denoted as NNbr6, ELM300, 
and NNlm4. 

5.3 Embedding dimension 

The embedding dimension De defines the time lag in 
hours between the moment of prediction and the oldest 
past inputs. Models with larger embedding dimensions can 
therefore provide greater expressive power which can be 
used to capture the dynamics of the predicted phenomena, 
but this also considerably increases the model’s complexity. 
Consequently, the definition of proper embedding dimensions 
is an important part of the design of predictive models. For 
this reason embedding dimensions within the range from 
0 to 33 hours, De = {0, 3, 6, …, 33}, were explored for 
different model types, and for the different availability of data 
about future weather conditions. The embedding dimension 
De = 0 corresponds to the situation where only present data 
are used, without consideration of any past inputs. 

Figure 5 shows the performance measures for two of  

 
Fig. 3 Prediction errors for the weather condition case where there are available data about the future values of Tout, for the ARXsr1 and 
NNbr6 models, and for all the prediction horizons h = 1, 2, ..., 12 
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the investigated models, i.e. the linear ARXsr1 model, and 
the nonlinear NNbr6 model. The linear model requires 
considerably larger embedding dimensions for accurate 
predictions. With respect to the availability of future weather 
data, the linear models converge to stable predictions at De = 
24 hours. The nonlinear NN models are not very sensitive 

to the utilization of past data, but still benefit if recent data 
obtained within the last day are included. Consequently, the 
embedding dimension De = 24 h was used in subsequent 
experiments when exploring the required data lengths, and 
comparing all the available predictive models in a uniform 
manner. 

 
Fig. 4 RMSE performance measures for the neural network models (NNbr) and extreme learning machines models (ELM), for a different
number of hidden neurons Nh 

 
Fig. 5 RMSE performance measures for the ARXsr1 and NNbr6 models, for different embedding dimensions De = {0,3,…,33} hours 
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5.4 Data length 

The expression “required data length” means how long do 
we need to collect data for a particular building in order  
to train suitable predictive models. The experiments were 
performed for all the model structures and for all the different 
availabilities of future weather data. The performance measures 
for the models trained by various amounts of training data 
are shown in Fig. 6. The lengths of training data are labelled 
as: 1W, 2W, 3W, 4W, 5W, 6W, 2M, 3M, 4M, 5M, 6M, 
where W denotes weeks, and M months. Clearly the linear 
models require shorter training periods (approximately   
6 weeks), whereas, due to their higher complexity, the 
nonlinear models require about 3 months of training data 
to reach a good performance. This seems to suggest that, 
when fitting a predictive model to a new building, linear 
models may be the first choice in order to obtain useful 
results already within a month, and later, after several 
months, more elaborate nonlinear models can be reliably 
constructed.  

5.5 Model structures 

Based on the insight obtained from the above-described 
results regarding the choice of suitable parameters for 
constructing predictive models, this subsection presents 
and compares the results for different model structures. The 
results were obtained by using the embedding dimension 
De = 24 h for all the models, as well as a data length of  
6M (six months). They are summarized for all the model 
structures (ARXsr1, ARXsr2, NNlm, NNbr, ELM) and for 

all the possible future weather conditions in Table 3, and 
presented in Fig. 7. 

A number of observations can be made from these 
results regarding the model structures: 
 Available future weather data considerably improved the 

predictive performance of all the tested models. Besides 
the outdoor temperature (Tout), the availability of data about 
solar radiation (SR) significantly improves predictions of 
the future temperature in buildings (Tin). 

 The ARXsr2 model with quadratic terms shows slightly 
better performance than that of the linear ARXsr1 model, 
but it is more complex and requires significantly longer 
computation time. 

 Nonlinear models consistently outperform linear models 
in both fitting and generalization performance, and are 
therefore the best choice for predictive models. Whereas 
the ELM model is an easy-to-use, fast and reliable tool, 
properly designed neural network models can further 
improve the predictive performance.  

Table 3 RMSE performance measures for different model structures, 
and three different sets of possible future weather conditions 

 RMSE [oC] 

Model 
No future  

weather data 
Future Tout 
available 

Future Tout and 
SR available 

ARXsr1 0.155 0.124 0.101 

ARXsr2 0.148 0.113 0.088 

ELM300 0.139 0.099 0.073 

NNlm4 0.138 0.094 0.069 

NNbr6 0.137 0.091 0.065  

 
Fig. 6 RMSE performance measures for the ARXsr1, NNbr6 and ELM300 models, trained by data of various lengths 
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 The choice of the NN structure is not critical, so that 
already a few hidden layer neurons (Nh = 4 in the case  
of the LM algorithm, and Nh = 6 in the case of the BR 
algorithm) define excellent NN models which consistently 
generate good predictions. Adding regularization to 
learning (i.e. in the case of the NNbr6 model) is highly 
recommended, and results in overall the best predictive 
performance presented in this study. 

5.6 Prediction examples 

The results section is concluded by some prediction 
examples which practically illustrate the performance of 
the constructed models. Figures 8 and 9 show predictions 
of indoor temperature Tin for the linear ARXsr1 model and 
for the neural NNbr6 model, at various prediction horizons 
h = {1, 6, 12} hours, and for a selected four weeks interval 
chosen from the 5th data set representing heating optimized 
with respect to outdoor temperature Tout. The results are based 
on weather conditions taking into account the availability 
of future Tout and SR values. The upper plot in both figures 
shows the weather variables (Tout, SR) and the control 
variable (Theat) for this period, and the lower three plots 
present the measured and predicted values of Tin and the 
corresponding errors (e) for each prediction horizon. Tin 
measured represents the average indoor air temperature, as 
calculated by the TRNSYS emulation. Compared to the 
linear ARXsr1 model, the neural network model NNbr6  
visually generates significantly better predictions, and very 
good prediction accuracy can be seen especially at the lower 

prediction horizons, which are also the most relevant for 
the application in model predictive control schemes. 

6 Conclusions 

In this paper various possibilities for the development of 
machine learning based data-driven models for the short-term 
prediction of indoor temperature in buildings have been 
investigated. Short-term predictive horizons within the 
range from 1 hour to 12 hours were considered with the 
aim of constructing models which can be applied in model 
predictive control applications. The study was based on a 
TRNSYS emulation of a residential building heated by a heat 
pump, combined with measured weather data for a typical 
winter season in Ljubljana, Slovenia. The study investigated 
various aspects of the construction of predictive models,  
i.e. a comparison of various data-driven machine learning 
models, the effect and relevance of the availability of future 
weather data, embedding dimensions for past inputs, and 
the required data lengths for the construction of the models. 
The conclusions addressing our research objectives can be 
summarized as follows: 
 Model structures: the nonlinear models consistently 

outperformed the linear models in both their fitting and 
generalization performance, and are therefore recom-
mended as good predictive models. The best results were 
obtained by using properly designed neural network 
models, with only a few hidden layer neurons. Adding 
regularization to neural learning is highly recommended, 
and results in overall the best predictive performance in 
this study (the NNbr6 model). 

 
Fig. 7 RMSE performance measures for different model structures, and three different sets of future weather conditions 
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 Availability of weather data: the availability of future 
weather data considerably improved the predictive per-
formance of all the tested models. Besides data about the 
future outdoor temperature (Tout), data about future 
expected solar radiation (SR) can significantly improve 
predictions of temperature in buildings. 

 Embedding dimensions: compared to the nonlinear models, 
the linear models required longer embedding dimensions 
for accurate predictions. The linear models converged to 
stable predictions at De = 24 hours, whereas the nonlinear 
NN models were not very sensitive to the use of past data 
although they still benefited by the inclusion of recent 
data obtained within the last day.  

 Training data length: the linear models converged to 
accurate predictions in shorter training periods (of 
approximately 6 weeks), whereas, due to their higher 
complexity, the nonlinear models require about 3 months 
of training data in order to reach a suitable performance. 
Thus linear models can be used for the rapid generation 

of predictive models, and a few months later more 
advanced nonlinear models can be reliably constructed. 

 Prediction errors: The results summarized in Table 3 
show that the RMSE prediction errors, averaged across all 
the data sets and all the prediction horizons, are within 
the range between 0.155 °C for the linear ARXsr1 model 
(in the case of no availability of future weather data), and 
0.065 °C for the neural NNbr6 model (in the case of 
available future data about Tout and SR). The neural model 
trained in the case of available future data about Tout (but 
without future data about SR) performed with an RMSE 
error of 0.091 °C. In a realistic case with less than accurate 
future outdoor temperature forecasts, this accuracy can 
be estimated around ≈0.1 °C which can be considered as 
high accuracy and is therefore appropriate for including 
such a model in a model predictive control scheme.  

The results of this study systematically address and 
bring new insights into the construction of machine learning 
based predictive models for the predictive control of heating  

 
Fig. 8 Prediction examples of indoor temperature Tin for a linear model ARXsr1, for prediction horizons h = {1, 6, 12} hours 
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systems in buildings. They describe the important construction 
parameters which can be directly implemented in the 
development of predictive models for different types of 
buildings.  

In future research, more building types and different 
heating systems will be considered and combined with the 
operational data of real buildings. An adaptive modelling 
approach will also be explored, which is mostly suited  
to more “dynamic” buildings, which may include building 
renovation, a variable number or residents, changing of the 
behavior of occupants, etc. Combined heating/cooling systems 
will also be considered in future research. The limitations 
of the suggested methodology are mostly based on the 
inaccuracy of available weather forecasts which influences 
the predictive accuracy (as summarized in Fig. 7). The results 
of this research are relevant for further improvement of 
thermal comfort in modern intelligent buildings operated 
by model predictive controlled heating systems.  
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