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Abstract 
In modern building design, engineers are constantly facing challenging to find an optimal design 
to maintain a high level of thermal comfort and indoor air quality for occupants while minimizing 
the system energy consumption. Over the past decades, several algorithms have been proposed 
and developed for optimizing the heating, ventilation and air conditioning (HVAC) system for 
indoor environment. Nevertheless, majority of these optimization algorithms are focused on single 
objective optimization procedures and require large training sample for surrogate modelling. For 
multi-objective HVAC design problems, previous studies introduced an arbitrary weighting factor 
to combine all design objectives into one single objective function. The near optimal solutions were 
however sensitive to the chosen value of the weighting factor. Aiming to develop a multi-objective 
optimization platform with minimal computational cost, this paper presents a nondominated 
sorting-based particle swarm optimization (NSPSO) algorithm together with the Kriging method 
to perform optimization for the HVAC system design of a typical office room. In addition, an 
adaptive sampling procedure is also proposed to enable the optimization platform to adjust the 
sampling point and resolution in constructing the training sample. Significant computational cost 
could be reduced without sacrificing the accuracy of the optimal solution. The proposed methods 
are applied and assessed in a typical HVAC system and the results indicate that comparing to 
traditional methods, the presented approach can handle multi-objective optimization in ventilation 
system with up to 46.6% saving of computational time. 
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1 Introduction 

In the modern indoor environment design, driven by the 
higher expectation of occupants and soaring energy cost, 
indoor thermal comfort and energy efficiency are the two 
main concerns in the heating, ventilation and air conditioning 
(HVAC) systems. To achieve a higher system performance, 
computational fluid dynamics (CFD) simulation tools  
such as ANSYS Fluent, StarCCM+ and OpenFOAM have 
been widely adopted to analyze air distribution and flow 
characteristics and their relationship in thermal comfort 
and energy consumption (Ravikumar and Prakash 2009; 
Cardinale et al. 2010; Hiyama et al. 2010; Kochetov et al. 
2015; Gangisetti et al. 2016). 

In comparison to the traditional design cycle, CFD 

simulations offer a faster and more economical way for 
engineers to carry out parametric studies, leading towards a 
more desirable system design. According to our previous 
works (Tu et al. 2008), CFD has been proved to be a reliable 
prediction tool which has been widely adopted in industrial 
applications and academia research. Albeit a near-optimum 
solution could be obtained, the parametric analysis using 
CFD technique is inherently discrete in the design space 
with pre-selected design variable values. The best optimum 
solution could be “hidden” in the discretized domain 
(Stavrakakis et al. 2011). Furthermore, the accuracy of a 
near-optimum solution depends largely on the “resolution” 
of the test matrix where significant computational costs are 
required. To enhance the accuracy of the near-optimum 
solution with practical computational time and resource, 
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artificial neural network (ANN) (Varol et al. 2007; Zhou 
and Haghighat 2009a,b; Stavrakakis et al. 2011; He et al. 
2014) or other surrogate techniques (Li et al. 2013a,b) are 
employed as an alternative approach to approximate the 
nonlinearity and complex behaviour of the multidimensional 
systems. One of the first studies using CFD-ANN coupled 
approach to assess the effect of architectural-designs on  
the thermal comfort can be found in (Krauss et al. 1997). In 
general, numerical results predicted by CFD modelling were 
adopted to establish a database for training the ANN or 
surrogate models. These CFD-trained ANN or surrogate 
models then captured the relationship between design 
parameters and objective function. Optimization procedures 
using gradient methods (Gyulai et al. 2007; Stavrakakis et al. 
2011; Welle et al. 2011) or evolutionary optimization 
algorithms (Luh and Lin 2011; Li et al. 2013b; Afrand et al. 
2015; Zhai et al. 2014) were then performed using the 
trained models for allocating the near-optimum solution 
within the continuous design space. Although significant 
computational time and resource can be reduced, a con-
siderably large amount of CFD results are still required for 
constructing a reliable database for the training of ANN or 
surrogate models. 

On the other hand, most of the HVAC system design 
normally involves multi-objective considerations. Design 
indices such as predicted mean vote (PMV), percentage 
dissatisfied of draft (PD), age of air, CO2 concentration and 
energy cost are commonly considered in literature. Especially, 
in terms of indoor thermal comfort evaluation, substantial 
research works have done by Ricciardi’s group (Buratti and 
Ricciardi 2009; Buratti et al. 2013, 2016; Nematchoua et al. 
2014; Ricciardi and Buratti 2015; Ricciardi et al. 2016).  
In most previous works, a single objective function was 
constructed by aggregating several design indices using 
pre-defined weighting factors (Laverge and Janssens 2013; 
Li et al. 2013b). One particular disadvantages of this method 
is that the optimal solution could be sensitive to the values 
of the weighting factors. In other words, different values  
of weighting factors could result in substantially different 
solutions. The weighting factors must be therefore chosen 
carefully based on subjective factors such as engineering or 
expert judgements. Furthermore, the optimization procedure 
gives only one near optimal solution where there is no 
flexibility for the designer to strike a balance or “trade-off” 
of the conflicting parameters. For example, a lower indoor 
temperature may be preferable in summer which is in conflict 
with the goal to minimize energy consumption. 

As an attempt to overcome the aforementioned 
shortcoming, in this study, we propose the use of a 
nondominated sorting-based particle swarm optimization 
(NSPSO) algorithm to achieve multi-objective optimization 
without having to use any weighting factors. This population- 

based algorithm, as an improved technique of the basic 
particle swarm optimization (PSO), is capable to obtain a 
set of nondominated solutions (i.e. approximated Pareto 
Front solutions); providing the engineers a set of optimal 
solutions where the most appropriate design solution 
based on professional judgment or end-user desire can be 
chosen (Carrese et al. 2011). Furthermore, to minimize the 
computational requirement for constructing a reliable 
training database, Kriging or Gaussian process regression 
together with adaptive sampling technique is also adopted 
to dynamically allocate additional CFD simulation dataset 
where there is a higher likelihood of having a near optimal 
solution. A case study is used to demonstrate the feasibility 
of the proposed optimization approach in a real-world 
HVAC application. 

2 Multi-objective optimization methods 

2.1 Basic principles of particle swarm optimization 

Traditional mathematical programming methods for solving 
both single- and multi-objective optimization problems have 
been successfully adopted in many science and engineering 
problems (Martínez 2013). Nevertheless, it is also well known 
that these methods have difficulty in solving non-convex and 
multimodal problems (Deb 2001). In contrast, population- 
based stochastic optimization methods such as evolutionary 
algorithms (EAs) have the advantage of not requiring 
gradient information in the optimization process which could 
provide remedy for this class of problems (Martínez 2013). 
Among existing population-based stochastic optimization 
methods, particle swarm optimization (PSO) has proven to 
be faster in convergence in comparison with standard EAs 
(Hassan et al. 2005). PSO was first introduced by Kennedy 
(2001) based on the inspiration drawn from observations 
of the social behaviours of insects including learning from 
previous experience and communicating with successful 
individuals. In PSO, each particle has its own position and 
velocity, which are represented by xi and vi, respectively. The 
position and velocity of the particle are updated according 
to the following equations: 

1 1 2 2 g(t 1) (t) ( (t)) ( (t))
(t 1) (t) (t 1)

i i i i i

i i i

v ωv c φ p x c φ p x
x x v

+ = + - + -

+ = + +
    

(1)
 

where pi and pg represent the personal best position and 
global best position, respectively, and the c1 and c2 are two 
uniform random numbers within the range [0, 1]. The φ1 
and φ2 are two constants which are usually set to 2. The para-
meter ω decreases with iterations within the range [0.4, 1.2]. 
To avoid going out of the search space, both the position 
and velocity are limited within boundaries, [xmin, xmax] and 
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[vmin, vmax], respectively. Nevertheless, it is worth noting that 
the original PSO can only provide solutions for single- 
objective optimization problems.  

2.2 Nondominated sorting-based PSO 

Inspired by the works done by Deb et al. (2002), Li (2003) 
proposed a Nondominated Sorting Method to extend   
the original PSO to multi-objective optimization problems 
(MOP)—namely nondominated sorting-based particle swarm 
optimization (NSPSO). In NSPSO, the updating equations 
for particle position and velocity remain unchanged, but 
the selection of the personal best and global best has been 
re-designed. Two main mechanisms are used to determine 
the global best among the population — (1) nondominated 
sorting for identifying different fronts, and (2) crowding 
distance computed for particles within each front to encourage 
solution diversity. These kinds of information are used to 
select suitable leaders (i.e. global best) at each iteration to 
guide the particles moving towards the Pareto-optimal Front 
while still maintaining a good distribution of solutions along 
the Pareto Front. 

2.2.1 Nondominated Sorting 

Figure 1 shows an example of the nondominated sorting 
process. Considering 2 objectives (i.e. f1 and f2) to be optimized 
in the process, the entire population (i.e. the 10 particles 
that labelled as 1 to 10) is sorted into different levels of 
fronts according to the domination comparisons between 
particles. The particles in same front are nondominated with 
each other. As depicted in Fig. 1, Front 1 is the highest-level 
nondominated front because all particles in it are not 
dominated by any other particles in the entire population. 
The main goal of nondominated sorting is to classify the 
whole population into different levels of nondominated 
fronts. The global best particle (leader of the population) 
can be randomly selected from the highest-level front. This 
kind of selection process will push the whole population  

 
Fig. 1 An example of nondominated sorting process in NSPSO 

towards the true Pareto Front. More information regarding 
nondominated sorting can be found in (Li 2003). 

2.2.2 Crowding distance 

Unlike in single-objective optimization, maintaining the 
diversity in a set of solutions is vital in a multi-objective 
optimization (Deb et al. 2002; Li 2003). Throughout the 
optimization process, the leader must be selected properly 
to avoid local optimal aggregation of the whole population. 
In NSPSO, computing the crowding distance values among 
particles in the highest-level of nondominated front is used 
to select leaders that are both good and far apart from each 
other. Inspired by (Deb et al. 2002), we introduced a new 
way to calculate the crowding distance. Figure 2 shows an 
example of the crowding distance among particles. For each 
particle, the crowding distance is defined as the following: 

1

1,
1n

n n

n N
D d d n N-

¥ =ìïï= í + < <ïïî
                       (2) 

The particle with a higher crowding distance value  
will have a high probability to be selected as the leader. 
Consequently, particles in the top front are likely to maintain 
a good level of population diversity.  

2.3 Surrogate modelling 

Evolutionary optimization algorithms are efficient in obtaining 
a representation of the Pareto Front for the MOP (Carrese 
et al. 2011). However, generating all the elements in an 
objective array by simulations could still be computationally 
demanding. Previous studies have adopted surrogate 
modelling techniques (e.g. ANN (Varol et al. 2007; He et al. 
2014) and support vector machine (SVM) (Zhao 2009)) 
which is trained by computational simulated samples    
to achieve substantial saving in computational time and 
resources. However, to ensure its accuracy, ANN and SVM  

 
Fig. 2 Crowding distances among individuals in the highest-level 
nondominated front 
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require considerably large training samples which pose 
significant burden on the computational cost. Alternatively, 
other than the ANN and SVM algorithms, the Kriging 
method has aroused much attention due to its capability  
in achieving high prediction accuracy with relatively small 
training sample size. Aiming to minimize the computational 
cost for large training samples, Kriging method is therefore 
adopted and incorporated with NSPSO in the present study. 
A brief introduction to the Kriging method is presented in 
this section. More detailed derivation and formulation of 
the Kriging method can be found in (Forrester et al. 2008) 
and the references therein. The Kriging technique provides 
the best linear unbiased estimator of the unobserved fields 
based on the sampled data (Journel and Huijbregts 1978). 
The basic idea of Kriging is to predict the value of a function 
at a given point by computing a weighted average of the 
known values of the function in the neighborhood of the 
point, which is expressed as 

L
1

ˆ( ) ( )
N

α α
α

z λ z
=

=åx x                               (3) 

where Lˆ( )z x  represents a local estimation at the data 
location xL, z(xα) is the sampled value at the data location xα 
and λα represents the weighting coefficient which can be 
calculated by minimizing the estimation variance: 
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subjects to the unbiased condition: 

L Lˆ[ ( ) ( )] 0E z z- =x x                              (5) 

and the normalization condition: 

1
1

N

α
α

λ
=

=å                                      (6) 

The weighting coefficient λα in Eq. (3) can be solved using  
a quasi-Newton optimization method or other similar 
algorithm (Gano et al. 2006). Finally, the prediction value 
at the unobserved location can be given by Eq. (3). 

3 Case description 

3.1 CFD modelling and validation 

To assess the feasibility and performance of the aforementioned 
approach, this investigation focuses on a practical HVAC 
design optimization case study where the air quality, thermal 
comfort and energy consumption of a typical office room 

are optimized against the supply air velocity and supply air 
temperature (Zhou and Haghighat 2009a; Li et al. 2013b). 
The case study is constructed with a reference to a full-scale 
experimental measurements reported by Yuan et al. (1999). 
Figure 3 shows a three-dimensional representation of the 
typical office room. According to the experimental setup, 
the outside temperature is 26.7 °C, and room temperature is 
maintained between 23.3 °C and 26 °C using displacement 
ventilation system. The supply cooled air is discharged one 
side at the low level of the room (i.e. label 1 in the figure) 
and the return air leaves the room from the exhaust at the 
center of the ceiling (i.e. label 2). Two heat sources mincing 
two office workers were placed in the room (i.e. labels 3 
and 4). Computers and lightings were also dissipating heat 
to the room. In this study, all simulations are assumed to be 
steady state where ideal gas law was adopted for the air 
properties. More details of boundary conditions have been 
tabulated in Table 1. Based on the previous work by Yuan 
et al. (1999), experimental measurements were carried out 
within an environmental chamber where solar radiation 
contribution was neglected. To validate our CFD with the 
experimental data, no solar radiation is incorporated in the 
simulation. 

 

Fig. 3 The geometry layout of the typical office room 

Table 1 The boundary conditions adopted in the CFD simulations 

Number Name Boundary details Comments 

1 Air-conditioning Normal speed & static 
temperature 

Controlled 
variables 

2 Exhaust Average static pressure 0 Pa 

3,4 Occupant Temperature 37 °C 

5,6 Desktop Heat flux 108.5 W/m2 

7,8 Table Adiabatic — 

9 Partition window Heat transfer coefficient 3.7 W/(m2·K)

10,11 Furniture Adiabatic — 

12–17 Light Heat flux 34 W/m2 

 Room wall Heat transfer coefficient 0.19 W/(m2·K)
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A CFD model of the office room was built in ANSYS 
Workbench, which contains in total 1,043,811 nodes and 
2,849,852 elements. To ensure the validity of the CFD 
simulation, predictions of the CFD model were first validated 
against the full-scale experimental data reported by Yuan et al. 
(1999). In the experiment, a hot-sphere anemometer system 
was used for air velocity, velocity fluctuation measurements 
and a thermocouple system was used to measure surface 
and air temperatures. Figure 4 shows the comparisons 
between the measured and predicted air temperature and 
velocity along the vertical line at the center of the office 
room where supply air temperature and velocity were 
maintained at 17 °C and 0.09 m/s respectively.  

As depicted, the predicted temperature variation was 
successfully captured by the CFD model and compared 
well agreed with the measurements. Similarly, the velocity 
profile was also in good agreement with the experiment. 
These encouraging results show the reliability of the CFD 
predictions and its capability for providing sampling data 
for the design optimization procedures. 

3.2 Optimization objectives 

In the presented study, the predicted mean vote, CO2 
concentration, and energy consumption were adopted to 
quantitatively assess the performance of the HVAC system 
in terms of thermal comfort, air quality and energy efficiency 
respectively. The definition of the predicted mean vote, CO2 
concentration, and energy consumption are briefly discussed 
in the following sections.  

3.2.1 Predicted mean vote 

The predicted mean vote (PMV) is a thermal comfort 
evaluation index which was first introduced by Fanger 

 

Fig. 4 Comparisons between the CFD simulation results and 
experimental data 

(1972). It is used to assess indoor thermal comfort based on 
heat balance and a set of experimental data collected from  
a given controlled climate chamber. The index represents 
the mean subjective satisfaction with the indoor thermal 
environment with a number between −3 (cold) and +3 
(hot). The zero value is defined as the ideal representation 
of thermal neutrality. The PMV index is evaluated based on 
an empirical equation which is correlated to the local air 
temperature, mean radiant temperature, relative humidity, 
air speed, metabolic rate, and clothing insulation (Fanger 
1972). In this study, we assume that the occupants are seated 
in quiet position (i.e. metabolic rate of 1.0 met) with a summer 
clothing (i.e. 0.2 clo), and we evaluated the average PMV 
based on the predicted field information obtained from CFD 
simulations. 

3.2.2 CO2 concentration 

To assess the air quality within the space, the concentration 
of CO2 emitted by occupants throughout the office room 
was also resolved in the CFD simulation. In the simulation, 
the CO2 is emitted from the occupants with the emission 
rate 0.87 L/min. Similar to the average PMV, the average 
CO2 concentration was extracted from the predicted CFD 
field information. 

3.2.3 Energy consumption 

Following the previous study (Zhou and Haghighat 2009a; 
Li et al. 2013b), the energy consumption of the air-conditioning 
system is divided into two parts: ventilation fan power and 
the cooling or heating load. Energy consumption in the two 
parts is determined as follows: 

air
fan

fan

cooling/heating supply p return supply outdoor outdoor return

total fan cooling/heating

( ) ( )

P VE
η

E m c T T m h h
E E E

⋅
=

= - + -

= +

  

(7) 

where P is the air pressure difference of the fan, ηfan is the fan 
efficiency which is assumed to be 0.75, V is the volume flow 
rate of supply air (m3/s), m represents the mass flow rate of the 
air (kg/s), cp is the specific heat capacity of air, T represents 
the temperature, h is the specific enthalpy of air (J/kg) which 
is related to air temperature and relative humidity. Similarly, 
we can get energy costs from the CFD-Post package. 

4 Optimization results and analysis 

4.1 Multi-objective optimization platform 

As mentioned earlier, the aim of this case study is to 
optimize the value of |PMV|, CO2 concentration and energy 
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consumption against a set of control design parameters (i.e. 
supply air velocity and temperature). However, these three 
indices are in conflict with each other, which means there 
does not exist an optimal solution where all indices are   
at the minimal value. Weighting factors were used to get 
trade-off solutions in previous research (Zhou and Haghighat 
2009a; Li et al. 2013b). In order to overcome the drawbacks 
of the weighting methods, we proposed a multi-objective 
optimization platform by integrating the CFD modelling 
technique, Kriging method and NSPSO algorithm to 
consider the three objectives simultaneously and obtain the 
corresponding Pareto Front of without any weighting factor. 
A schematic of the methodology is depicted in Fig. 5. 

As depicted in the flowchart, the CFD simulation 
technique is adopted to establish the sample data as the 
input of the Kriging method. Following the previous studies 
(Zhou and Haghighat 2009a; Li et al. 2013b), a total of 25 
CFD simulations with different combinations of controlled 
variables have been carried out (see also Fig. 6). Similar to 
the validation study, all simulations were carried out using 
the ANSYS CFX 14.5 with the identical mesh resolution and 
boundary conditions (except the supply air temperature 
and velocity). Based on the simulated results, local air velocity, 
temperature and associated parameters were extracted for 
evaluating the corresponding PMV, CO2 concentration and 
energy consumption value. All the obtained values (i.e. a 
total of 25 set of data) were then used to construct the 
sample data for the Kriging method. In terms of thermal 
comfort, we would like the PMV value to be as close to 0 as 
possible. At the same time, we also would like to minimize 

 

Fig. 5 CFD-based multi-objective optimization system framework 

CO2 concentration and energy consumption. In order to 
describe the conflicting relationships among these three 
objectives, we listed three groups of typical values in Table 2. 
The first row in Table 2 shows the point where the PMV is 
the closest to 0 while both the CO2 concentration and the 
energy consumption are quite large. Similarly, the second 
and the third rows show the points where the CO2 con-
centration and the energy consumption are minimum, 
respectively, while the other two objectives are quite large. 
Therefore, these three objectives are conflicting with each 
other. We cannot find a point where all the objectives are at 
their minimum value. As we mentioned before, traditional 
methods using weighting factors for solving MOP are 
inefficient. In this paper we developed a multi-objective 
optimization platform based on NSPSO to solve MOP 
efficiently. The details and results will be described in the 
following. 

In order to study the accuracy of the Kriging prediction, 
16 more CFD simulations were added, which are located in 
the center of each sampling grid. We compared the values 
of the three objectives exported from the CFD-Post with 
the values predicted by the fully Kriging surrogate model 
(i.e. the Kriging model using all the 25 CFD sample data 
defined in Fig. 6). The percentage errors between the CFD 
results and the Kriging prediction are shown in Fig. 7. From 
Fig. 7, we can see that the maximum errors of prediction for 
PMV and CO2 are less than 5.2% and the maximum error 
of prediction for energy is less than 0.6%, which indicates 
the Kriging prediction has achieved a good accuracy. 

 
Fig. 6 Definitions of inlet boundary conditions in CFD simulations 

Table 2 Three typical groups of values minimizing PMV, CO2, 
energy, respectively 

T (°C) V (m/s) PMV CO2 (mg/L) Energy (W)

19.5 0.19 −0.063 0.078 863.6 

21 0.5 −0.964 0.028 1671.8 

21 0.1 0.327 0.083 334.4 
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Fig. 7 Percentage errors of Kriging prediction for the three 
objectives—PMV, CO2 and energy, respectively 

Afterward, a three-objective optimizer based on the 
NSPSO algorithm was implemented using the MATLAB 
R2013b. In the optimization procedure, the Kriging surrogate 
method was used to calculate the fitness values for each 
particle in the population. The initial size of the swarm 
population was 200 and the maximum iteration number 
was set to be 100. Figure 8 shows the trade-off solutions 
given by the NSPSO algorithm. The blue dots represent  
the finally reserved particles in the objective space, which 
constitute a set of solutions approximating the Pareto Front.  

 

Fig. 8 Comparison of solutions given by NSPSO and solutions 
given by Weighting method in 3D objective space 

In order to compare our results with the results given by 
weighted method introduced in (Li et al. 2013b), the previous 
results are also plotted in Fig. 8 (shown as red stars). Each 
red star in Fig. 8 represents a solution given by a set of fixed 
weighting factors. From the comparison, we can notice that 
the solutions given by previous method (red stars) are only 
a small subset of the Pareto Front given by our approach. It 
is also noted that our approach does not depend on any 
weighting factor, and after only one simulation run, a set  
of trade-off solutions can be found in the objective space, 
providing the designers with the choices of a range of 
trade-off solutions. 

4.2 Adaptive sampling for Kriging  

The above section has clearly demonstrated the capacity  
of the proposed multi-objective optimization platform. By 
replacing the CFD simulations with the Kriging method, 
the optimization process could reduce significantly the 
computational time. Nevertheless, in constructing the sample 
data, CFD simulations are uniformly distributed within the 
design range (see Fig. 6). The main disadvantage of uniform 
sampling is its high cost, because the sampling density 
must be uniformly high everywhere in order to meet the 
sampling requirements in some particular area. Nevertheless, 
in most practical cases, the final optimal solutions are 
normally concentrated in a certain region within the design 
space. Therefore, substantial computational time could be 
wasted in constructing the sample data for some virtually 
redundant samples which are far away from the optimal 
solution. To strike a balance between accuracy and com-
putational cost, the sampling points should be strategically 
placed in the region where has a higher likelihood of 
getting optimal solutions rather than uniformly distributed 
throughout the design space. To achieve this, we introduced 
an adaptive sampling procedure to determine sampling 
point. Adaptive sampling designs, also known as response- 
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adaptive designs, are ones where the accruing data (i.e., the 
observations) are used to adjust the experiment as it is 
being run (Hardwick and Stout 2016). The adaptive sampling 
method is then adopted to govern the construction of the 
sample data where sampling points are allocated based on 
the likelihood of having optimal solution within the region. 
A flowchart showing the procedures in constructing the 
sample data for Kriging and its integration with the multi- 
objective optimization platform is also shown in Fig. 9. 

To assess the potential computational saving, the adaptive 
sampling procedure will be applied to the same HVAC 
design optimization case study and compared against the 
results from uniform sample data (i.e. as presented in 
previous section). To make a comparison with the previous 
result, instead of locating the sampling point in any point 
within the design space, the adaptive sampling method is 
applied to determine the next sampling location based on 
halving method. This is to ensure the sampling locations 
are consistent with the uniform sampling method. To 
initialize the process, four sampling locations (red stars in 
Fig. 13) were firstly specified at all corners of the design 
space (i.e. corner at the minimum and the maximum value 
of supply air temperature and velocity, which are (17, 0.1), 
(17, 0.5), (21, 0.1), (21, 0.5)). Based on the four sampling 
locations, Kriging method was then applied to evaluate the 
response surface. The NSPSO algorithm was then performed 
to evaluate the distribution of optimal particles throughout 
the design space.  

After the CFD simulations are finished, we generate the 
response surfaces using Kriging prediction. Then we run 
the NSPSO for 100 times and calculate the distribution density 
of optimal particles in design space. The distribution 

density contour is shown in Fig. 10(a) and the column 
charts in Figs. 10(b) and (c) indicate the projections of the 
density contour in temperature plane and velocity plane, 
respectively. As mentioned before, in order to make a 
comparison with the case described in Section 4.1, we want 
the sampling locations in this adaptive case would be a 
subset of the locations described in Fig. 6. It is easy to reach 
this goal by using halving method. Therefore, in Figs. 10(b) 
and (c), the red line in the middle cuts the plane into two 
sides and for each side, reserving or removing depends on 
the distribution density of the optimal solutions in the areas. 
For example, in Fig. 10(b), the right side (i.e. T > 19 °C) 
should be reserved for adding more sampling points rather 
than the left side (i.e. T < 19 °C), because there located much 
more optimal solutions (98%) on the right segment than the 
optimal solutions on the left segment (only 2%). Differently, 
in Fig. 10(c), both sides are required to add more sampling 
points, because the results show that there are almost as 
many optimal solutions on both sides (57% vs 43%). The 
promising area after first halving process has been determined 
which is shown in Fig. 12(a) (green shadow) and accordingly, 
the green points in Fig. 13 are inserted to be simulated   
in next iteration. The first iteration of process described in 
Fig. 9 has been finished. The next iteration process is almost 
same except with 4 more CFD sample data used in the 
Kriging prediction. The distribution density contour and 
having analysis are shown in Fig. 11. The acquired promising 
area in the second iteration process is indicated in Fig. 12(b) 
(red shadow) and the blue points in Fig. 13 are added, 
accordingly. Since the minimum sampling resolution has been 
reached, we stop adding more sampling points. Figure 13 
illustrates the final CFD sampling locations. 

 

Fig. 9 Framework of the CFD-based multi-objective optimization approach with adaptive sampling procedure 
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Fig. 10 Probability density of optimal solutions in the design space 
(initial 4 CFD sampling locations). (a) Contour of probability 
density in 2D design space. (b) Projected probability density on 
the temperature design space. (c) Projected probability density on 
the velocity design space 

 
Fig. 12 Halving process in design space. (a) Halving process in 
first iteration of adaptive sampling procedure cutting the whole 
design space into 4 parts. (b) Halving process in second iteration 
of adaptive sampling procedure cutting the promising areas (green 
shaded in (a)) into 4 parts 

 
Fig. 11 Probability density of optimal solutions in design space 
(initial 4 CFD sampling locations + 4 new adding sampling locations). 
(a) Contour of probability density in 2D design space. (b) Projected 
probability density on the temperature design space. (c) Projected 
probability density on the velocity design space 

 
Fig. 13 Final CFD sampling locations in the adaptive sampling case 
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With the adaptive sampling procedure, one can notice 
that the final sample data only constructed with 13 sampling 
points. Therefore, only 13 CFD simulations were required 
in constructing the sample database. Table 3 shows a com-
parison of the required total computational time (i.e. the total 
of CFD simulation and the optimization computational 
time) for both cases. The table clearly shows that the adaptive 
sampling procedure could reduce up to 46.6% of the total 
computational time. 

Although a significant saving has been achieved, it is 
essential to verify the accuracy of the optimal results with 
less sample data. Figure 14 shows the comparison of the 
predicted Pareto Front with the uniform sample data and 
the adaptive sampling procedure. As depicted, the blue 
dots are the solutions obtained from the uniform sample 

data; while solutions for adaptive sampling are represented 
in red dots. The figure clearly shows a good agreement of 
the Pareto Front obtained from both cases; demonstrating 
that the NSPSO algorithm together with the Kriging method 
are capable to maintain the accuracy of the optimal solution 
while achieving significant saving with less sample data. 

A closer examination on the Kriging method in both 
cases is also presented here. Figure 15 shows the comparisons 
of the prediction design objectives (i.e. PMV, CO2 con-
centrations and energy consumption) based on the uniform 
sampling data and the 13 sample data from adaptive sampling. 
As depicted, prediction differences between both cases  
are represented in the contour plot; while the probability 
distributions of the optimal solutions were also presented 
in while contour lines. As depicted, majority of difference 

Table 3 Comparisons of CPU time consumptions (500 particles in the optimization process) 

Approach Procedure CPU time (s) Iterations Total CPU time (s) 

CFD simulation 7.904E+04 25 1.976E+06 
Traditional 

Single objective PSO 1.168 ~ 500 ~ 5.840E+02 

CFD simulation 7.904E+04 13 1.028E+06 
NSPSO + Kriging 

NSPSO 1.372E+02 200 2.744E+04 

Total saved CPU time 9.211E+05 (s) (46.6%) 

 

 
Fig. 14 Comparisons of Pareto Fronts between using traditional CFD sampling and using adaptive CFD sampling (blue—traditional, 
red—adaptive) 
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between both cases are located on the left half of the design 
space where most of the sampling points were eliminated 
by adaptive sampling procedure. This clearly exemplifies 
that the adaptive sampling procedure has strategically allocated 
the sampling points where the optimal solutions are highly 
likely to be found. While relative error could be higher in 
other region, the lack of sampling data did not affect the 
accuracy of the final optimal solutions. 

5 Conclusions 

A multi-objective optimization platform has been proposed 
and developed by incorporating the nondominated sorting- 
based particle swarm optimization (NSPSO) algorithm 
with the Kriging method. To remedy the drawback of some 
previous studies, the NSPSO algorithm removes the necessity 
of using weighting factors in constructing the objective 
function and obtains the corresponding trade-off solutions 
(i.e. Pareto Front) for the given objective space. With the 
visualization of solutions in objective space, designers could 
easily pick up the most appropriate design solution according 
to their own judgments and preferences, rather than being 
struggled to decide the value of weighting factor in advance. 

Special attention is also taken to minimize the com-
putational cost where considerably large training sample 
based on computational fluid dynamics (CFD) simulations 
are usually required for the surrogate modelling. The Kriging 
method where the best linear unbiased value of the unobserved 
fields is estimated based on the known sampled data is 
adopted in the present study. One particular advantage   
of the Kriging method is its capability in achieving high 
prediction accuracy with relatively small training sample 
size. Predictions from the Kriging method are compared and 
assessed with the CFD predictions. The comparison has 
shown that the Kriging method provides excellent accuracy 
in prediction with the maximum error of 5.12%. In addition, 
with the proposed adaptive sampling procedure, further 
reduction of computational cost could be realized. Based on 
the given case study, the optimization platform achieves a 
saving of 46.6% of CPU time without sacrificing the accuracy 
of the optimal solution. 

In this study, for assessing the performance of the 
proposed optimization algorithm, a benchmark case study 
that has been validated by many researchers (Yuan et al. 
1999; Zhou and Haghighat 2009a,b; Li et al. 2013a,b) was 
selected. To further examine the capacity of the algorithm, 

 
Fig. 15 Contours of Kriging prediction differences between using 13 CFD samples and 25 CFD samples (PMV, CO2, energy, respectively)
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research work is currently carrying out to adopt and assess 
the proposed method with a more complex optimization 
case in related to the HVAC design of an airliner cabin 
occupied with passengers (Yan et al. 2014). 
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