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Abstract
The oceans are rich in diverse microorganisms, animals, and plants. This vast biological complexity is a major source of 
unique secondary metabolites. In particular, marine fungi are a promising source of compounds with unique structures and 
potent antibacterial properties. Over the last decade, substantial progress has been made to identify these valuable antibacte-
rial agents. This review summarizes the chemical structures and antibacterial activities of 223 compounds identified between 
2012 and 2023. These compounds, effective against various bacteria including drug-resistant strains such as methicillin-
resistant Staphylococcus aureus, exhibit strong potential as antibacterial therapeutics. The review also highlights the relevant 
challenges in transitioning from drug discovery to product commercialization. Emerging technologies such as metagenomics 
and synthetic biology are proposed as viable solutions. This paper sets the stage for further research on antibacterial com-
pounds derived from marine fungi and advocates a multidisciplinary approach to combat drug-resistant bacteria.
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Introduction

Pathogenic bacteria are those capable of inducing harm-
ful infections. They can cause illness via various pathways, 
such as by producing toxic metabolites that trigger a host’s 
immune response and disrupting the function of healthy 
tissues. Common bacterial pathogens include Salmonella 
spp. (Guo et al. 2017), Staphylococcus aureus (Zafari et al. 
2021), Vibrio parahemolyticus (Bhowmik et  al. 2014), 
and Listeria monocytogenes (Jensen et al. 2016). S. aureus 
causes many diseases including the skin infection atopic 
dermatitis (Sasai-Takedatsu et al. 1997) and bacterial men-
ingitis, which occurs when bacteria breach the barriers of 
the central nervous system (Smetana et al. 2013). If bacteria 
enter the cerebrospinal fluid, they can cause a pronounced 
inflammatory response leading to headache, fever, and 

neurological impairment. The occurrence of bacteremia in 
cases of pneumonia may reportedly be related to chromo-
somally encoded EDIN-B derived from S. aureus (Courjon 
et al. 2015). Salmonella spp. can cause enteric fever, acute 
enteritis, sepsis, and other diseases. Penicillins (Lopez et al. 
2000) and cephalosporins (Cisneros-Farrar and Parsons 
2007) are the main antibacterial clinical treatments for such 
diseases, but the widespread use of antibiotics has led to a 
gradual increase in drug resistance (Nichol et al. 2015). For 
example, some S. aureus strains such as methicillin-resistant 
S. aureus (MRSA), can produce enzymes that hydrolyze 
β-lactam rings, thereby conferring resistance to penicil-
lin. The increasing drug resistance and the slow discovery 
of new antibacterial drugs pose a growing threat to public 
health (Hutchings et al. 2019).

As terrestrial resources dwindle, humankind is turning to 
the oceans that cover 71% of the planet. The oceans are vast 
and rich in resources, encompassing unique biological and 
abiotic environments. These environmental factors enable 
marine organisms, including bacteria, fungi, sponges, and 
ascidians, to produce unique secondary metabolites differ-
ent from those of terrestrial creatures. These chemically and 
biologically diverse marine compounds have been shown 
to have insecticidal, antibacterial, anticoagulant, antifungal, 
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antimalarial, antiplatelet, antituberculous, and antiviral 
activities (Mayer and Hamann 2005). The common cepha-
losporin antibiotics were initially isolated from the marine 
fungus Cephalosporium acremonium by Giuseppe Brotzu 
in 1948 (Bo 2000). However, despite the large number of 
compounds isolated from marine sources, only 15 have been 
approved as drugs, and around 40 compounds are currently 
undergoing clinical drug trials (Mayer et al. 2019). Thus, 
marine natural products (MNPs) are under-represented 
among approved or clinically tested compounds, and a sub-
stantial number of MNPs have yet to be comprehensively 
screened for bioactivity.

Marine fungi are a significant group of microorgan-
isms. Their secondary metabolites have become the focus 
of research in chemistry, biology, and pharmacy due to 
their diverse structures, rich biological activities, and high 
innovation index. These secondary metabolites can be cat-
egorized based on structure type, namely, terpenoids, ster-
ols, alkaloids, glycosides, peptides, polysaccharides, mac-
rolides, polyethers, and unsaturated fatty acids. From 2012 
to 2023, among all such antibacterial metabolites, alkaloids 
are consistently the most commonly reported; they have the 
highest number of compounds and the highest frequency of 
discovery. Quinones come a close second, whereas steroids 
yield the lowest number of compounds (Fig. 1). Antibac-
terial metabolites are the most commonly reported to be 
active against S. aureus and are predominantly derived from 

Aspergillus spp. or Penicillium spp. (Figs. 2 and 3). At the 
genus level, the second and third most numerous metabolites 
target Bacillus spp. (B. subtilis, B. thuringiensis, B. cereus, 
and B. amyloliquefaciens) and Escherichia coli (Fig. 3). 
This review highlights and summarizes 223 marine fungal 
metabolites exhibiting antibacterial activity, as reported in 
74 publications from 2012 to 2023 (Table 1).

Antibacterial compounds derived 
from marine fungi

Alkaloids

Nearly one-third of the marine fungal secondary metabolites 
exhibiting antibacterial activity listed in this review are alka-
loids, as shown in Figs. 4, 5, 6, 7, 8.

Trichodin A (1), an uncommon pyridone, and pyridox-
ine (2) have been isolated from the marine fungus, Tricho-
derma sp. strain MF106. These compounds display antibi-
otic activity against the clinically relevant microorganism 
S. epidermidis, with  IC50 of 24 and 4 μM, respectively (Wu 
et al. 2014). Cyclopiazonic acid (3) and brevianamide F 
(4) have been isolated from the marine-derived fungus P. 
vinaceum and exhibit different antibacterial activities: 4 is 
active against S. aureus, whereas 3 was only active against 
E. coli (Asiri et al. 2015). Nine diketopiperazines (5–13) 

Fig. 1  Antibacterial compounds 
from marine fungi by class/year; 
n = 223
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have been isolated from the marine fungus A. fumigatus and 
exhibit moderate to weak effects against Gram-positive bac-
teria (El-Gendy and Rateb 2015). Pyrrospirones C (14), F 
(15), and I (16) have been isolated from the marine-derived 
fungus Penicillium sp. ZZ380 and have antibacterial effects 
on MRSA and E. coli, having minimal inhibition concen-
tration (MIC) of 2.0–5.0 mg/mL (Song et al. 2018). Three 
compounds, penicillatide B (17), cyclo(R-Pro–S-Phe) (18), 
and cyclo(R-Pro–R-Phe) (19) have been isolated from a 
marine-derived Penicillium sp.. These compounds exhibit 
significant activity against V. anguillarum, producing inhi-
bition zones of 20, 24, and 25 mm, respectively. They also 
show moderate activity against S. aureus, with inhibition 
zones around 10 mm (Youssef and Alahdal 2018). Oxaline 
(20) and fumitremorgin B (21) have been isolated from the 
marine fungus Aspergillus sp. SCS-KFD66. Compound 20 
shows inhibitory activity against B. subtilis ATCC 6633, 
with an MIC of 128 µg/mL, whereas 21 inhibits S. aureus 
ATCC 6538, having an MIC of 128 µg/mL (An et al. 2018). 
16α-Methylaspochalasin J (22) and 16-hydroxymethylasp-
ergillin PZ (23) have been isolated from the marine-derived 
fungus W. dispera. Both compounds show moderate anti-
bacterial activity against B. subtilis, Micrococcus luteus, 
S. enterica, Proteus vulgaris, E. coli, and Enterobacter, 
with MICs in the range of 50–100 µg/mL (Xu et al. 2019). 
Asperteramide (24) has been isolated from marine-derived 
A. terreus BCC51799 and exhibits antibacterial activity 
against B. cereus and Colletrichum acutatum, with MICs of 
25 and 50 mg/mL, respectively (Bunbamrung et al. 2020). 
Emethacin C (25) has been isolated from the marine-derived 
fungus A. terreus RA2905 and inhibits Pseudomonas aer-
uginosa (MIC 32 µg/mL; Wu et al. 2020a). Four alkaloids 
(26–29) have been isolated from the marine-derived fungus 
A. fumigatus MF071 and display weak antibacterial activity 
(Han et al. 2020). Cyclopiamide (30), speradines H (31), 

G (32), B (33), and C (34), and cyclopiazonic acid (35) 
have been isolated from the fungus A. flavus SCSIO F025 
derived from deep-sea sediments of the South China Sea. 
These compounds exhibit weak antibacterial activity against 
E. coli, whereas compound 35 also inhibits B. thuringien-
sis, M. lutea, S. aureus, B. subtilis, and MRSA (Xiang et al. 
2021). Paxilline (36), 7-hydroxyl-13-dehydroxypaxilline 
(37), 7-hydroxypaxilline-13-ene (38), 4a-demethylpaspal-
ine-4a-carboxylic acid (39), PC-M6 (40), and emindole SB 
(41), with antibacterial activity against S. aureus ATCC 
6538 and B. subtilis ATCC 6633, have been isolated from 
the marine-derived fungus Penicillium sp. KFD28 (Dai et al. 
2021). Two dimeric alkaloids—fusaripyridines A (42) and 
B (43)—have been isolated from marine-derived Fusarium 
sp. LY019. They selectively inhibit the growth of C. albi-
cans, with MICs as low as 8.0 µM, and are moderately active 
against S. aureus and E. coli (MIC ≥ 32.0 µM; Shaala et al. 
2021). Four diketopiperazine alkaloids (44–47) with mod-
erate in vitro antibacterial activity against standard strains 
and drug-resistant clinical isolates of Helicobacter pylori 
have been isolated from the marine-derived fungus Penicil-
lium sp. TW58-16 (Tian et al. 2022). Novobenzomalvin A 
(48) and hydroxy-4-(3-hydroxyphenyl)-2(1H)-quinolinone 
(49) have been isolated from the marine-derived fungus 
Metarhizium sp. P2100. Compound 48 shows antibacterial 
activity against V. vulnificus MCCC E1758 (MIC 6.25 µg/
mL), whereas compound 49 inhibits the three aquatic patho-
genic bacteria V. vulnificus MCCC E1758, V. rotiferianus 
MCCC E385, and V. campbellii MCCC E333, exhibiting 
MICs of 12.5, 12.5 and 6.25 µg/mL, respectively (Yao et al. 
2022b). Pyrrospirones K (50), L (51), O (52), C (53), D (54), 
and F (55), along with FD7177CD6 (56) and GKK1032B 
(57), have been isolated from the marine-derived fungal 
strain Penicillium sp. SCSIO 41512. Compounds 52, 54, 
and 55 exhibit significant antibacterial activity against six 

Fig. 2  Types of pathogenic bac-
teria studied and the amounts 
of antibacterial compounds 
targeting them
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pathogens (B. amyloliquefaciens, B. subtilis, E. coli, S. 
aureus, MRSA, and Streptococcus agalactiae), with MICs 
in the range of 5.0–20 μg/mL, whereas the other five com-
pounds displayed medium activity (MICs 20 − 50 μg/mL; 
Yao et al. 2022a). An antibiotic compound (3,1′-didehydro-
3[2″(3″,3‴-dimethyl-prop-2-enyl)-3″-indolylmethylene]-
6-methyl pipera-zine-2,5-dione) (58) containing an indole 
and a diketopiperazine moiety has been isolated from the 
marine-derived fungus P. chrysogenum MTCC 5108. Its 
antibacterial activity is comparable to the standard antibiotic 
streptomycin and it is selectively active against the human 
pathogen V. cholerae MCM B-322, producing an inhibition 
zone of 14–16 mm (Devi et al. 2012). One 2,5-diketopip-
erazine derivative (59) has been isolated from the marine 

fungus Penicillium sp. ZJUT-34 and exhibits antibacterial 
activity against Enterococcus faecalis FA2-2 (MIC = 96 μg/
mL) comparable with that of the positive control gentamicin 
(MIC = 80 μg/mL) (Wang et al. 2023). One emestrin-type 
thiodiketopiperazine, 2″-desmethyl-MPC1001F (60), along 
with three analogs emestrin (61), dethiosecoemestrin (62), 
and emestrin H (63), have been isolated and identified from 
a culture extract of the marine fungus A. nidulans SD-531. 
Compounds 60–63 show antimicrobial activity against some 
of the tested strains (Lv et al. 2023). Gliovictin (64) has 
been isolated from the obligate marine fungus Asteromyces 
cruciatus KMM 4696, and it is less effective with an  IC50 of 
58.2 µM (Zhuravleva et al. 2023).
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Table 1  Marine fungal-derived antibacterial compounds isolated from 2012 to 2022

Name Species Activities MIC References

Trichodin A (1) and pyri-
doxatin (2)

Trichoderma sp. strain 
MF106

S. epidermidis IC50 of 24 μM and 4 μM Wu et al. (2014)

Cyclopiazonic acid (3) P. vinaceum E. coli Undetermined Asiri et al. (2015)
Brevianamide F (4) P. vinaceum S. aureus Undetermined Asiri et al. (2015)
Diketopiperazines (5) and 

(6)
A. fumigatus MR2012 S. aureus, B. subtilis and 

E. coli
Weak to moderate El-Gendy and Rateb (2015)

Diketopiperazines (7–13) A. fumigatus MR2012 S. aureus 12.6–18.8 μg/mL El-Gendy and Rateb (2015)
Diketopiperazines (7–13) A. fumigatus MR2012 B. subtilis 8.7–18.2 μg/mL El-Gendy and Rateb (2015)
Diketopiperazines (7–13) A. fumigatus MR2012 E. coli > 18.5 μg/mL El-Gendy and Rateb (2015)
Pyrrospirones C (14), F 

(15) and I (16)
Penicillium sp. ZZ380 S. aureus and E. coli 2.0–5.0 mg/mL Song et al. (2018)

Penicillatide B (17), 
cyclo(R-Pro–S-Phe) (18) 
and cyclo(R-Pro–R-Phe) 
(19)

Penicillium sp. S. aureus Inhibition zones between 
10 and 19 mm

Youssef and Alahdal (2018)

Penicillatide B (17), 
cyclo(R-Pro–S-Phe) (18) 
and cyclo(R-Pro–R-Phe) 
(19)

Penicillium sp. V. anguillarum Inhibition zones of 20, 24, 
and 25 mm

Youssef and Alahdal (2018)

(E)-4-Oxonon-2- oxaline 
(20)

Aspergillus sp. SCS-
KFD66

B. subtilis ATCC 6633 128 µg/mL An et al. (2018)

Fumitremorgin B (21) Aspergillus sp. SCS-
KFD66

S. aureus ATCC 6538 128 µg/mL An et al. (2018)

16α-Methylaspochalasin J 
(22) and 16-hydroxym-
ethylaspergillin PZ (23)

W. dispera B. subtilis, M. luteus, 
S. enterica, Proteus 
vulgaris, E. coli, and E. 
aerogenes

50 to 100 μg/mL Xu et al. (2019)

Asperteramide (24) A. terreus BCC51799 B. cereus and C. acutatum 25 and 50 mg/mL Bunbamrung et al. 2020)
Emethacin C (25) A. terreus RA2905 P. aeruginosa 32 µg/mL Wu et al. (2020a)
13-Oxofumitremorgin B 

(26), fumitremorgin B 
(27)

 A. fumigatus MF071 S. aureu and E. coli  100 µg/mL  Han et al. (2020)

fumiquinazoline J (28) and 
9-deacetylfumigaclavine 
C (29)

A. fumigatus MF071 S. aureu and E. coli 100 µg/mL Han et al. (2020)

Cyclopiamide (30), spera-
dine H (31), speradine 
G (32), speradine B (33) 
and speradine C (34)

A. flavus SCSIO F025 E. coli Undetermined Xiang et al. (2021)

Cyclopiazonic acid (35) A. flavus SCSIO F025 B. thuringiensis, M. lutea, 
S. aureus, B. subtilis, 
MRSA, and E. coli

Undetermined Xiang et al. (2021)

Paxilline (36) Penicillium sp. KFD28 S. aureus ATCC 6538 and 
B. subtilis ATCC 6633

128 and 32 μg/mL Dai et al. (2021)

7-Hydroxyl-13-dehydroxy-
paxilline (37)

Penicillium sp. KFD28 S. aureus ATCC 6538 and 
B. subtilis ATCC 6633

64 and 16 μg/mL Dai et al. (2021)

7-Hydroxypaxilline-13-ene 
(38)

Penicillium sp. KFD28 S. aureus ATCC 6538 and 
B. subtilis ATCC 6633

64 and 64 μg/mL Dai et al. (2021)

4a-Demethylpaspaline-
4a-carboxylic acid (39)

Penicillium sp. KFD28 S. aureus ATCC 6538 and 
B. subtilis ATCC 6633

64 and 128 μg/mL Dai et al. (2021)

PC-M6 (40) Penicillium sp. KFD28 S. aureus ATCC 6538 and 
B. subtilis ATCC 6633

64 and 128 μg/mL Dai et al. (2021)

Emindole SB (41) Penicillium sp. KFD28 S. aureus ATCC 6538 and 
B. subtilis ATCC 6633

32 and 128 μg/mL Dai et al. (2021)

Fusaripyridines A (42) and 
B (43)

Fusarium sp. LY019 S. Aureus and E. coli  ≥ 32.0 µM Shaala et al. (2021)
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Table 1  (continued)

Name Species Activities MIC References

Four diketopiperazine alka-
loids (44–47)

Penicillium sp. TW58-16 H. pylori Undetermined Tian et al. (2022)

Novobenzomalvin A (48) Metarhizium sp. P2100 V. vulnificus MCCC E1758 6.25 µg/mL Yao et al. (2022b)
Hydroxy‐4‐(3‐

hydroxyphenyl)‐2(1H)‐
quinolinone (49)

Metarhizium sp. P2100 V. vulnificus MCCC 
E1758, V. rotiferianus 
MCCC E385 and V. 
campbellii MCCC E333

12.5, 12.5 and 6.25 µg/mL Yao et al. (2022b)

Pyrrospirone K (50), 
pyrrospirone L (51), 
pyrrospirone O (52), 
pyrrospirone D (53) and 
GKK1032B (54)

Penicillium sp. SCSIO 
41512

B. amyloliquefaciens, 
B. subtilis, E. coli, S. 
aureus, MRSA, and S. 
agalactiae

20 to 50 μg/mL Yao et al. (2022a)

Pyrrospirone C (55), 
pyrrospirone F (56) and 
FD7177CD6 (57)

Penicillium sp. SCSIO 
41512

B. amyloliquefaciens, 
B. subtilis, E. coli, S. 
aureus, MRSA, and S. 
agalactiae

5.0 to 20 μg/mL Yao et al. (2022a)

3,1′-Didehydro-
3[2″(3′″,3′″-dimethyl-
prop-2-enyl)-3″-
indolylmethylene]-
6-methyl 
pipera-zine-2,5-dione 
(58)

P. chrysogenum MTCC 
5108

V. cholerae MCM B-322 Inhibition zone of 
14–16 mm

Devi et al. (2012)

(−)-Isoroquefortine C (59) Penicillium sp. ZJUT-34 E. faecalis FA2-2 96 μg/mL Wang et al. (2023)
2″-Desmethyl-MPC1001F 

(60)
A. nidulans SD-531 A. hydrophilia, E. tarda, 

P. aeruginosa, and V. 
alginolyticus

0.5–32 μg/mL Lv et al. (2023)

Emestrin (61) A. nidulans SD-531 A. hydrophilia, E. tarda, 
E. ictarda, E. coli, M. 
luteus, P. aeruginosa, V. 
alginolyticus, V. harveyi, 
V. parahaemolyticus, 
V. vulnificus, Bipolaris 
sorokiniana and Cerato-
basidium

0.5–16 μg/mL Lv et al. (2023)

Dethiosecoemestrin (62) A. nidulans SD-531 A. hydrophilia, E. tarda, 
E. ictarda, E. coli, P. 
aeruginosa and V. algi-
nolyticus

4–16 μg/mL Lv et al. (2023)

Emestrin H (63) A. nidulans SD-531 A. hydrophilia, E. tarda, 
E. ictarda, E. coli, P. 
aeruginosa, V. algino-
lyticus, V. harveyi and V. 
parahaemolyticus

4–16 μg/mL Lv et al. (2023)

Gliovictin (64) A. cruciatus KMM 4696 S. aureus IC50 of 58.2 µM Zhuravleva et al. (2023)
Pleosporallin E (65) Pleosporales sp. C. michiganense subsp. 

Sepedonicus
7.44 μg/mL Chen et al. (2015)

Questin (66) A. fumigatus MF071 S. aureu and E. coli 100 µg/mL Han et al. (2020)
Aspergiloxathene A (67) Aspergillus sp. 

IMCASMF180035
E. coli, E. faecium, P. aer-

uginosa and H. pylori
Undetermined Song et al. (2021)

Aspergiloxathene A (67) Aspergillus sp. 
IMCASMF180035

S. aureus and MRSA 5.60 and 22.40 µM Song et al. (2021)

6,8-Di-O-methylversicol-
orin A (68), 6,8,1’-tri-
O-methylaverantin (69) 
and 6,8-di-O-methylaver-
antin (70)

Aspergillus sp. 
WHUF05236

H. pylori 20.00– 43.47 μM Lv et al. (2022)

(+)-Scleroderolide (71) Penicillium sp. ZZ901 MRSA and E. coli 7.0 and 9.0 mg/mL Li et al. (2018))
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Table 1  (continued)

Name Species Activities MIC References

(+)-Sclerodione (72) Penicillium sp. ZZ901 MRSA and E. coli 23.0 and 35.0 mg/mL Li et al. (2018))
Three peniciphenalenins 

(73–75), coniosclerodi-
one (76) and (-)-sclerodi-
nol (77)

Pleosporales sp. 
HDN1811400

MRSA 6.25–50 µM Han et al. (2021)

Asperphenone A (78) and 
B (79)

Aspergillus sp. YHZ-1 S. aureus, B. subtilis, S. 
pyogenes and M. luteus

32–64 μM Guo et al. (2018)

Depsidone-based ana-
logues (80–94)

Spiromastix sp. S. aureus, B. thuringiensis 
and B. subtilis

0.125–8.0 μg/mL Niu et al. (2012)

Bisvertinolone (95) A. protuberus MUT 3638 S. aureus 30 μg/mL Corral et al. (2018)
1,6-Dihydroxy-3-methoxy-

8-methyl-9H-xanthen-
9-one (96)

P. arabicum ZH3-9 S. aureus 50 μg/mL Yang et al. (2023a)

Norlichexanthone (97) P. arabicum ZH3-9 S. aureus 12.5 μg/mL Yang et al. (2023a)
Acruciquinone C (98) A. cruciatus KMM 4696 S. aureus IC50 near 100 µM Zhuravleva et al. (2023)
Rubrumol (99) A. cruciatus KMM 4696 S. aureus IC50 of 35.4 µm Zhuravleva et al. (2023)
ω-Hydroxypachybasin 

(100)
A. cruciatus KMM 4696 S. aureus IC50 of 45.3 µM Zhuravleva et al. (2023)

Aspergillusidone C (101) P. oxalicum M893 E. faecalis, S. aureus, B. 
cereus and S. enterica

2, 2, 2, and 2 μg/mL Nguyen et al. (2023)

Nidulin (102) P. oxalicum M893 E. faecalis, S. aureus, B. 
cereus, E. coli and P. 
aeruginosa

2–16 μg/mL Nguyen et al. (2023)

Emeguisin B (103) P. oxalicum M893 E. faecalis, S. aureus and 
B. cereus

16–32 μg/mL Nguyen et al. (2023)

Penicitrinol J (104) and 
penicitrinol K (105)

Penicillium sp. ML226 S. aureus Inhibition zones of 10 and 
9 mm

Wang et al. (2013)

(12R,13R)-Dihydrox-
ylanomycinol (106), 
(12S,13S)-dihydrox-
ylanomycinol (107), 
(12R,13S)-dihydrox-
ylanomycinol (108), 
(12S,13R)-dihydrox-
ylanomycinol (109), 
(12S,13R)-N-acetyl-dihy-
droxylanomycin (110) 
and (12S,13S)-N-acetyl-
dihydroxylanomycin 
(111)

W. dispersa M. lysodeikticus, B. subti-
lis, B. cereus, M. luteus, 
S. aureus, B. megaterium, 
B. anthraci, B. paraty-
phosum B, P. vulgaris, 
S. typhi, P. aeruginosa, 
E. coli, E. aerogenes

100 μg/mL Xu et al. (2017)

Pleosporalone G (112) Pleosporales sp. CF09-1 V. anguillarum and V. 
parahemolyticus

13 and 6.3 μg/mL Cao et al. (2019)

Pleosporalone H (113) Pleosporales sp. CF09-1 V. anguillarum and V. 
parahemolyticus

6.3 and 25 μg/mL Cao et al. (2019)

Karimunone B (114) Fusarium sp. KJMT.FP.4.3 Salmonella enterica ser. 
Typhi

125 µg/mL Sibero et al. (2019)

Enalin A (115) V. enalia BCC 22226 E. faecium and B. cereus 50 and 25 μg/mL Bunyapaiboonsri et al. 
(2020)

Pseudophenone A (116) Pseudogymnoascus sp. 
HSX2#-11

X. citri pv. malvacearum, 
S. aureus, P. fulva, A. 
salmonicida and X. citri

35.64 ± 3.78–
47.44 ± 7.21 µM

Shi et al. (b)

Polyketide 117 Trichoderma sp. JWM29-
10-1

H. pylori, S. aureus, 
MRSA, vancomycin-
resistant E. faecium and 
E. faecalis

2–16 µg/mL Lai et al. (2022)
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Table 1  (continued)

Name Species Activities MIC References

Polyketide 118 Trichoderma sp. JWM29-
10-1

H. pylori G27, H. pylori 
159, H. pylori JIGC360 
and H. pylori 511

2–8 µg/mL Lai et al. (2022)

Acrucipentyn A (119) A. cruciatus KMM 4696 S. aureus IC50 of 12.5 μM Zhuravleva et al. (2022)
Acrucipentyn C (120) A. cruciatus KMM 4696 S. aureus IC50 of 100 μM Zhuravleva et al. (2022)
Acrucipentyn B (121), 

Acrucipentyn D (122) 
and Acrucipentyn E 
(123)

A. cruciatus KMM 4696 S. aureus IC50 > 100 μM Zhuravleva et al. (2022)

Acrucipentyn F (124) A. cruciatus KMM 4696 S. aureus 100 μM Zhuravleva et al. (2022)
5-Sulfonic acid (125) H. avellanea E. faecalis, S. aureus, B. 

cereus and E. coli
64–128 μg/mL Minh et al. (2023)

Monomethylsulochrin 
(126)

H. avellanea E. faecalis and S. aeureus 16 and 16 μg/mL Minh et al. (2023)

Fusarisolin H (127) F. solani 8388 MRSA NCTC 10442 6 µg/mL Lin et al. (2023b)
Fusarisolin I (128) F. solani 8388 MRSA n315 3 µg/mL Lin et al. (2023a)
Fusarisolin J (129) F. solani 8388 MRSA n315 and MRSA 

NCTC 10442
3 and 6 µg/mL Lin et al. (2023a)

5-Deoxybostrycoidin (130) F. solani 8388 MRSA n315 6 µg/mL Lin et al. (2023a)
Bacillisporin A (131) T. pinophilus KUFA 1767 S. aureus ATCC 29213 and 

MRSA
4 and 4 µg/mL Machado et al. (2023)

Bacillisporin B (132) T. pinophilus KUFA 1767 S. aureus ATCC 29213 and 
MRSA

8 and 16 µg/mL Machado et al. (2023)

Isoquinocitrinin B (133) Penicillium sp. TW131-64 H. pylori, S. aureus, B. 
subtilis and E. faecium

1–16 μg/mL Lai et al. (2023)

Isoquinocitrinin C (134) Penicillium sp. TW131-64 H. pylori 4 μg/mL Lai et al. (2023)
Isoquinocitrinin D (135) Penicillium sp. TW131-64 H. pylori 8 μg/mL Lai et al. (2023)
Penicyrones A and B (136) P. cyclopium E. ictaluri 16 μg/mL Li et al. (2023a)
9-O-Methylpenicyrones A 

and B (137)
P. cyclopium E. coli, P. aeruginosa, and 

E. ictaluri
4–16 μg/mL Li et al. (2023c)

9-O-Ethylpenicyrones A 
and B (138)

P. cyclopium E. coli, P. aeruginosa, and 
E. ictaluri

8–16 μg/mL Li et al. (2023c)

Aspergillusene E (139) A. versicolor 
XS-20090066

S. epidermidis and S. 
aureus

8–16 µg/mL Wu et al. (2020c)

(Z)-12-Acetoxybisabol-
1-one (140)

T. asperellum EN-764 M. luteus, P. aeruginosa, 
V. alginolyticus and V. 
harveyi

16, 32, 4, and 64 μg/mL Li et al. (2023a)

Bisabolen-1,12-diol (141) T. asperellum EN-764 E. coli, M. luteus, V. algi-
nolyticus and V. harveyi

16, 32, 16, and 16 μg/mL Li et al. (2023a)

12-Acetoxybisabolen-1-ol 
(142)

T. asperellum EN-764 E. coli, M. luteus, P. 
aeruginosa, V. algino-
lyticus, V. harveyi and V. 
parahemolyticus

4–64 μg/mL Li et al. (2023a)

12-Nor-11-acetoxybisab-
olan-1-ol (143)

T. asperellum EN-764 E. coli, M. luteus, P. aer-
uginosa, V. alginolyticus, 
M. luteus, P. aeruginosa, 
V. alginolyticus, V. har-
veyi and V. parahemo-
lyticus

8–64 μg/mL Li et al. (2023a)

(7S,11S)-( +)-12-Hydrox-
ysydonic acid (144)

A. sydowii LW09 P. syringae 32 µg/mL Yang et al. (2023a)

Oxaliterpenoid (145) P. oxalicum M893 S. aureus, B. cereus and 
E. coli

32, 32, and 32 μg/mL Nguyen et al. (2023)

Dendryphiellin I (146) C. lunatus SCSIO4 S. aureus, E. rhusiopathiae 
and P. multocida

1.5, 13, and 13 μg/mL Fang et al. (2018)
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Table 1  (continued)

Name Species Activities MIC References

Pleosporallin D (147) Pleosporales sp. Clavibacter michiganense 
subsp. Sepedonicus

9.48 μg/mL Chen et al. (2015)

Purpuride E (148) P. minioluteum ZZ1657 S. aureus and E. coli 6–12 µg/mL Ma et al. (2020)
Purpuride F (149) P. minioluteum ZZ1657 S. aureus and E. coli 3–6 µg/mL Ma et al. (2020)
Asperbrunneo acid (150) A. brunneoviolaceus 

MF180246
S. aureus 200 µg/mL Xu et al. (2022)

16-O-Propionyl-16-O-dea-
cetylhelvolic acid (151)

A. fumigatus HNMF0047 S. agalactiae 16 μg/mL Kong et al. (2018)

6-O-Propionyl-6-O-dea-
cetylhelvolic acid (152)

A. fumigatus HNMF0047 S. agalactiae 2 μg/mL Kong et al. (2018)

Helvolic acid (153) A. fumigatus HNMF0047 S. agalactiae 8 μg/mL Kong et al. (2018)
Helvolinic acid (154) A. fumigatus MF071 S. aureu and E. coli 6.25 and 6.25 µg/mL Han et al. (2020)
Helvolic acid (155) A. fumigatus MF071 S. aureu and E. coli 3.31and 3.13 µg/mL Han et al. (2020)
Hemiacetalmeroterpenoid 

A (156), citreohybridone 
A (157) and andrastin B 
(158)

Penicillium sp. N-5 Colletrichum gloeospori-
oides

1.56–6.25 µg/mL Chen et al. (2022)

Taladrimanin A (159) Talaromyces sp. HM6-1-1 S. aureus 6538P 15.2 μg/mL Hong et al. (2022)
Asperpyranones A (160) A. terreus RA2905 P. aeruginosa 32 µg/mL Li et al. (2023a)
Citreoisocoumarin (161) Penicillium vinaceum S. aureus Undetermined Asiri et al. 2015)
(+)-Neocitreoviridin (162) Penicillium sp. IMB17-046 H. pylori G27, and H. 

pylori 159
4 and 1 μg/mL Li et al. (2019)

Naphtho-γ-pyrones, peni-
naphones A–C (163–165)

Penicillium sp. HK1-22 S. aureus (ATCC 43300, 
33591, 29213, and 
25923)

12.5–50 µg/mL Zheng et al. (2019)

Nipyrone A (166) A. niger S. aureus, E. coli, B. 
subtilis, MRSA, and M. 
tuberculosis

32–128 µg/mL Ding et al. (2019)

Nipyrone B (167) A. niger S. aureus, E. coli, B. 
subtilis, MRSA, and M. 
tuberculosis

64–128 µg/mL Ding et al. (2019)

Nipyrone C (168) A. niger S. aureus, E. coli, B. 
subtilis, MRSA, and M. 
tuberculosis

8–128 µg/mL Ding et al. (2019)

Germicidin C (169) A. niger S. aureus, E. coli, B. 
subtilis, MRSA, and M. 
tuberculosis

32–128 µg/mL Ding et al. (2019)

Enalin A (170) V. enalia BCC 22226 E. faecium and B. cereus 50 and 25 μg/mL Bunyapaiboonsri et al. 
(2020)

Aspergillactone (171) Aspergillus sp. CSYZ-1 H. pylori and S. aureus 1–4 and 2–16 μg/mL Cen et al. (2020)
7-Hydroxyoospolactone 

(172) and parapholactone 
(173)

Paraphoma sp. CUG-
BMF180003

S. aureus 12.5 µg/mL Xu et al. (2021)

Lulworthinone (174) Lulworthiaceae S. aureus and S. agalactiae 1.56–6.25 µg/mL Jenssen et al. (2021)
Aspergimarin G (175) Aspergillus sp. NBUF87 S. aureus and S. enteritidis 16–64 μg/mL Lin et al. (2023b)
Purpureone (176) C. lunatus SCSIO4 E. rhusiopathiae, S. aureus 

and P. multocida
25, 50, and 13 μg/mL Fang et al. (2018)

Secalonic acid F1 (177) A. brunneoviolaceus 
MF180246

S. aureus 25 mg/ml Xu et al. (2022)

Secalonic acid H (178) A. brunneoviolaceus 
MF180246

S. aureus 50 mg/ml Xu et al. (2022)

Penicillixanthone A (179) A. brunneoviolaceus 
MF180246

S. aureus 6.25 mg/ml Xu et al. (2022)

Chrysoxanthone C (180) A. brunneoviolaceus 
MF180246

S. aureus 50 mg/ml Xu et al. (2022)
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Table 1  (continued)

Name Species Activities MIC References

Asperdichrome (181) A. brunneoviolaceus 
MF180246

S. aureus 25 mg/ml Xu et al. (2022)

Homodimeric tetrahydrox-
anthone secalonic acid 
D (182)

A. aculeatinus WHUF0198 H. pylori G27, H. pylori 
26,695, H. pylori 129, 
H. pylori 159, S. aureus 
USA300, and B. subtilis 
168

1.0–2.0 μg/mL Wu et al. (2023)

Ergosta-5,7,22-triene-3β-ol 
(183)

Aspergillus sp. SCS-
KFD66

B. subtilis ATCC 6633 128 µg/mL An et al. (2018)

Volemolide (184) Aspergillus sp. SCS-
KFD66

B. subtilis ATCC 6633 128 µg/mL An et al. (2018)

Aspergillsteroid A (185) Aspergillus sp. LS116 V. harveyi 16 μg/mL Xu et al. (2020)
Ganodermaside B (186) Pseudogymnoascus sp. 

HSX2#-11
A. salmonicida 30 µM Shi et al. (2021a)

Ganodermaside D (187) Pseudogymnoascus sp. 
HSX2#-11

A. salmonicida 36 µM Shi et al. (2021a)

4α-Hydroxy-17-
methylincisterol (188)

Trametes sp. ZYX-Z-16 S. aureus ATCC 6538 and 
B. subtilis ATCC 6633

32 and 16 µg/mL Ren et al. (2022)

3β-Hydroxy-5α,6β-
methoxyergosta-7,22-
dien-15-one (189)

Aspergillus sp. S. aureus 64 μg/mL Wen et al. (2023)

(E)-4-oxonon-2-enoic acid 
(190)

Aspergillus sp. SCS-
KFD66

B. subtilis ATCC 6633 and 
S. aureus ATCC 6538

4 and 16 µg/mL An et al. (2018)

Kipukasin K (191) A. versicolor 
XS-20090066

S. epidermidis and S. 
aureus

8–16 µg/mL Wu et al. (2020c)

Benzoic acid derivative 
(192)

Pseudogymnoascus sp. 
HSX2#-11

X. citri pv. malvacearum, 
S. aureus, P. fulva and A. 
salmonicida

29.86 ± 2.68–
56.93 ± 6.69 µM

Shi et al. (2021a)

Verruculin (193) V. enalia BCC 22226 E. faecium and B. cereus 50 and 25 μg/mL Bunyapaiboonsri et al. 
(2020)

Emerimicin IV (194) E. minima S. aureus and vancomycin-
resistant E. faecalis

100 and 12.5 μg/mL Inostroza et al. (2018)

Salicylaldehyde derivative 
(195)

Z. marina BCC 18240 (or 
NBRC 30420)

B. cereus 12.5 μg/mL Chokpaiboon et al. (2018)

Trypilepyrazinol (196) Penicillium sp. IMB17-046 H. pylori G27 and H. 
pylori 159

4 and 16 μg/mL Li et al. (2019)

Verruculinone (197) V. enalia BCC 22226 E. faecium and B. cereus 50 and 25 μg/mL Bunyapaiboonsri et al. 
(2020)

∆ 2’ -1’-Dehydropenicil-
lide (198), and 1’-dehy-
dropenicillide (199)

Aspergillus sp. 
IMCASMF180035

S. aureus, methicillin-
resistant S. aureus 
(MRSA), E. coli, E. fae-
cium, and P. aeruginosa

Undetermined Song et al. (2021)

∆2’-1’-Dehydropenicillide 
(198) and 1’-dehydro-
penicillide (199)

Aspergillus sp. 
IMCASMF180035

H. pylori 21.73 and 21.61 µM Song et al. (2021)

Three diphenyl ethers 
(200–202)

Spiromastix sp. SCSIO 
F190

S. aureus, E. faecalis 
ATCC 29212, and B. 
subtilis BS01

0.25–32 μg/mL Cai et al. (2022)

Peniprenylphenol A (203) P. chrysogenum ZZ1151 MRSA, E. coli 6 and 13 µg/mL Newaz et al. (2022)
Alternariol (204) P. arabicum ZH3-9 S. aureus 50 μg/mL Yang et al. (2023a, )
3-Ethylcyclopen-t-3-ene-

1,2-diol (205)
Trichoderma asperellum 

EN-767
P. aeruginosa and V. algi-

nolyticus
32, and 8 μg/mL Li et al. (2023a)

3-(3-Hydroxypropyl)
cyclopent-2-en-1-one 
(206)

Trichoderma asperellum 
EN-767

E. coli and V. alginolyticus 64, and 16 μg/mL Li et al. (2023a)

Asperbutenolide A (207) A. terreus MRSA 4.0–8.0 μg/mL Jiang et al. (2023)
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Quinones

Fifteen compounds were reported in 2012, all of which are 
quinones exhibiting strong inhibitory effects against Gram-
positive bacteria. Figures 9 and 10 illustrate the structures 
of quinones and ketones.

Pleosporallin E (65) has been isolated from a marine-
derived fungus Pleosporales sp. and exhibits antibacterial 
activity with an MIC of 7.44 μg/mL against Clavibacter 
michiganense subsp. Sepedonicus (Chen et  al. 2015). 
Compound 66 has been isolated from the marine-derived 
fungus A. fumigatus MF071 and displayed weak antibac-
terial activity (Han et al. 2020). Aspergiloxathene A (67) 
has been isolated from marine-derived Aspergillus sp. 
IMCASMF180035 and exhibits activity against S. aureus, 

MRSA, E. coli, E. faecium, P. aeruginosa, and H. pylori 
(Song et al. 2021). 6,8-Di-O-methylversicolorin A (68), 
6,8,1’-tri-O-methylaverantin (69), and 6,8-di-O-methylav-
erantin (70) have been isolated from a fermentation extract 
of Aspergillus sp. WHUF05236 and display antibacterial 
activity against H. pylori with MICs ranging from 20.0 to 
43.47 μM (Lv et al. 2022). (+)-Scleroderolide (71) and 
(+)-sclerodione (72) show antiproliferative activity against 
MRSA (MICs 7.0 and 23.0 mg/mL, respectively) and E. 
coli (MICs 9.0 and 35.0 mg/mL, respectively). They have 
been isolated from the marine-derived fungus Penicillium 
sp. ZZ901 (Li et al. 2018). Three peniciphenalenins (73–75) 
are phenalenone derivatives isolated from marine Pleospo-
rales sp. HDN1811400, along with two related compounds, 
coniosclerodione (76) and (−)-sclerodinol (77). Compounds 

Table 1  (continued)

Name Species Activities MIC References

Aspergetherin A (208) A. terreus 164018 MRSA 128 μg/mL Li et al. (2023b)
Aspergetherin C (209) A. terreus 164018 MRSA 64 μg/mL Li et al. (2023b)
Methyl 3,5-dichloroasterric 

acid (210)
A. terreus 164028 MRSA 1–16 μg/mL Li et al. (2023b)

Methyl chloroasterrate 
(211)

A. terreus 164028 MRSA 64 μg/Ml Li et al. (2023b)

Aspertide D (212) Aspergillus sp. E. tarda, V. alginolyticus, 
V. anguillarum, and V. 
vulnificus

8–32 μg/mL Chi et al. (2023)

Aspertide E (213) Aspergillus sp. E. tarda and S. aureus 16 and 8 μg/mL Chi et al. (2023)
Trans-3,4-dihydroxy-

3,4-dihydroanofinic acid 
(214)

A. cruciatus KMM 4696 S. aureus IC50 of 49.7 µM Zhuravleva et al. (2023)

7-Hydroxymethyl-
1,2-naphthalenediol 
(215)

A. cruciatus KMM 4696 S. aureus IC50 of 52.1 µM Zhuravleva et al. (2023)

Antaketide A (216) P. antarcticum KMM 4670 S. aureus IC50 near 100 µM Yurchenko et al. (2023)
2-((2R,6S)-6-Methyltet-

rahydro-2H-pyran-2-yl)
acetic acid (217)

P. antarcticum KMM 4670 S. aureus and E. coli IC50 of 100 and 84.9 µM Yurchenko et al. (2023)

Aspergillusether A (218) P. oxalicum M893 E. faecalis, S. aureus, B. 
cereus, E. coli and P. 
aeruginosa

16–64 μg/mL Nguyen et al. (2023)

Aspergillusether J (219) P. oxalicum M893 E. faecalis, S. aureus and 
B. cereus

4–8 μg/mL Nguyen et al. (2023)

Guisinol (220) P. oxalicum M893 E. faecalis, S. aureus, B. 
cereus, and S. enterica

4, 4, 4, and 4 μg/mL Nguyen et al. (2023)

3-Chloro-2,5-dihydroxy-
benzyl acetate (221)

E. sorghinum MRSE, S. epidermidis, S. 
aureus, M. luteus and B. 
subtilis

7.81–31.25 μg/mL Xing et al. (2023)

3-Chlorogentisyl alcohol 
(222)

E. sorghinum MRSE, S. epidermidis, 
S. aureus, Actinomyces 
viscosus, M. luteus, B. 
subtilis and E. coli

7.81–31.25 μg/mL Xing et al. (2023)

2-Chloro-6-
(methoxymethyl)
benzene-1,4-diol (223)

E. sorghinum MRSE, S. epidermidis, S. 
aureus, M. luteus and B. 
subtilis

7.81–31.25 μg/mL Xing et al. (2023)
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73, 74, 76, and 77 show broad antibacterial activity, the low-
est MIC being 6.25 µM against MRSA (Han et al. 2021). 
Asperphenones A (78) and B (79) have been isolated from 
Aspergillus sp. YHZ-1, an endophytic fungus of mangrove 
plants on Hainan Island, China. They exhibit weak antibacte-
rial activity against S. aureus, B. subtilis, S. pyogenes, and 
M. luteus, with MICs ranging from 32 to 64 μM (Guo et al. 
2018). Fifteen depsidone-based analogs (80−94) have been 
isolated from a marine sediment-derived fungal Spiromastix 
sp. and all exhibit significant inhibition of Gram-positive 

bacteria, including S. aureus, B. thuringiensis, and B. subti-
lis, with MICs ranging from 0.125 to 8.0 μg/mL (Niu et al. 
2014). Bisvertinolone (95), a member of the sorbicillonoid 
family, has been isolated from A. protuberus MUT 3638 and 
exhibits significant antibacterial activity against S. aureus 
(MIC 30 μg/mL; Corral et al. 2018). Compounds 96 and 97 
have been isolated from a marine-derived fungus strain of P. 
arabicum ZH3-9. These compounds display antibiotic activ-
ity against S. aureus with MICs of 50 and 12.5 μg/mL (Yang 
et al. 2023a). One anthraquinone derivative acruciquinone C 
(98), together with rubrumol (99) and ω-hydroxypachybasin 
(100), have been isolated from the obligate marine fungus 

Fig. 4  Structures of compounds 1–16 
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A. cruciatus KMM 4696. Compounds 99 and 100 show the 
best effect on S. aureus growth, with calculated  IC50 of 35.4 
and 45.3 µM, respectively. Acruciquinone C has an  IC50 near 
100 µM (Zhuravleva et al. 2023). Nidulin (101), emeguisin 
B (102), and aspergillusether A (103) have been isolated 

from the methanol extract of the culture broth of the marine 
fungus P. oxalicum M893. All compounds have potent anti-
bacterial activities against Gram-positive bacteria, E. faeca-
lis (ATCC299212), S. aureus (ATCC25923), and B. cereus 

Fig. 5  Structures of compounds 17–32 
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(ATCC14579), with MICs ranging from 2 µg/mL to 32 µg/
mL (Nguyen et al. 2023).

Polyketides

Polyketides are derived from the polymerization of acetyl 
and propionyl groups, and their structure is illustrated in 
Figs. 11 and 12.

Two citrinin derivatives, penicitrinols J (104) and K 
(105), have been isolated from the marine-derived fungal 
strain Penicillium sp. ML226. They exhibit weak anti-
bacterial activity against S. aureus (Wang et al. 2013). 

Six alkenylated tetrahydropyran derivatives, designated 
as (12R,13R)-dihydroxylanomycinol (106), (12S,13S)-
dihydroxylanomycinol (107), (12R,13S)-dihydroxy-
lanomycinol (108), (12S,13R)-dihydroxylanomycinol 
(109), (12S,13R)-N-acetyl-dihydroxylanomycin (110), 
and (12S,13S)-N-acetyl-dihydroxylanomycin (111) have 
been isolated from the marine sediment-derived fungus 
Westerdykella dispersa and found to have weak antibac-
terial activity (Xu et al. 2017). Pleosporalones G (112) 
and H (113) have been isolated from the marine-derived 
fungus Pleosporales sp. CF09-1 and display moder-
ate anti-Vibrio activity against V. anguillarum and V. 

Fig. 6  Structures of compounds 33–46 
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parahemolyticus, with MICs of 13 and 6.3 μg/mL (112), 
and 6.3 and 25 μg/mL (113), respectively (Cao et  al. 
2019). An aromatic polyketide named karimunone B 
(114) has been isolated from the marine-derived fun-
gus Fusarium sp. KJMT.FP.4.3. It displays antibacte-
rial activity against multidrug-resistant S. enterica ser. 

Typhi, having an MIC of 125 µg/mL (Sibero et al. 2019). 
Nine compounds have been isolated from the marine fun-
gus V. enalia (Kohlm.) Kohlm. & Volkm-Kohlm. BCC 
22226, one of which, (-)-cercosporamide (115), exhibits 
weak antituberculous and antibacterial activities, with 
MICs of 25–50 mg/mL (Bunyapaiboonsri et al. 2020). 

Fig. 7  Structures of compounds 47–61 
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A polyketide, pseudophenone A (116), has been isolated 
from marine-derived Pseudogymnoascus sp. HSX2#-11 
and displays antibacterial activity against a panel of bac-
teria (Shi et al. 2021b). Two polyketides, 117 and 118, 
have been obtained from the culture of the marine-derived 
fungus Trichoderma sp. JWM29-10-1. They display anti-
bacterial activity against H. pylori standard strains and 
clinical isolates, including three multidrug-resistant 
strains, with MICs ranging from 2 to 8 µg/mL. Interest-
ingly, compound 117 also exhibits significant inhibition 
of the growth of Gram-positive pathogens, including S. 
aureus, MRSA, vancomycin-resistant E. faecium (VRE), 
and E. faecalis, with MICs of 2 to 16 µg/mL (Lai et al. 
2022). Six polyketides, acrucipentyns A–F (118–124), 
have been isolated from the algae-derived fungus A. cru-
ciatus KMM 4696 and exhibit pronounced antibacterial 
effects against Gram-positive S. aureus. Compound 120 
almost completely inhibits the growth of S. aureus at a 
concentration of 100 μM, whereas 100 μM compound 
119 reduces growth by 60%. Dropping the concentration 
to 12.5 μM reduces antibacterial activity by up to 50%. 
Compound 121 at 100 μM inhibits S. aureus growth by 
50%, but 120, 122, and 123 did not achieve 50% inhi-
bition, even at 100 μM (Zhuravleva et al. 2022). 5-Sul-
fonic acid (125) and monomethylsulochrin (126), have 
been isolated from the marine sponge-associated fungus 
Hamigera avellanea. Compound 125 selectively inhibits 
E. faecalis, S. aureus, B. cereus, and E. coli with MICs 
ranging within 32–256 μg/mL, compound 126 displays 
moderate antibacterial activity against E. faecalis and 
S. aureus, with MICs of 16 and 16 μg/mL, respectively 
(Minh et al. 2023). Three polyketides named fusarisolins 
H–J (127–129) and 5-deoxybostrycoidin (130) have been 
isolated from the marine-derived fungus F. solani 8388. 
In the bioassays, fusarisolins I (127) and J (129), and 
5-deoxybostrycoidin (130) exhibit obvious antibacterial 
activities against MRSA n315, with MICs of 3, 3, and 
6 µg/mL, respectively. Fusarisolins H (127) and J (129) 
show inhibitory effects against MRSA NCTC 10442 with 

the same MIC of 6 µg/mL (Lin et al. 2023a). Bacillispor-
ins A (131) and B (132) have been isolated from the ethyl 
acetate extract of the culture of a marine sponge-derived 
fungus, Talaromyces pinophilus KUFA 1767, and exhib-
ited significant antibacterial activity against S. aureus 
ATCC 29213 and MRSA (Machado et al. 2023). Three 
citrinin derivatives (133–135), are acquired from Penicil-
lium sp. TW131-64, a marine-derived fungus strain. Cit-
rinin derivatives 133–135 and their corresponding enanti-
omers (133a, 134a, 135a, 133b, 134b, and 135b) exhibit 
potent antimicrobial activities toward H. pylori standard 
strains and multidrug-resistant strains (MICs ranging 
within 0.25–8 μg/mL), which are comparable with or even 
better than those of metronidazole (Lai et al. 2023). Three 
pairs of C-9 epimeric verrucosidin derivatives, namely, 
the known compounds penicyrones A and B (136a/136b) 
and 9-O-methylpenicyrones A and B (137a/137b) and the 
compounds 9-O-ethylpenicyrones A and B (138a/138b), 
have been isolated and identified from the culture extract 
of P. cyclopium SD-413. They exhibit growth inhibition 
against some pathogenic bacteria (Li et al. 2023c).

Terpenoids

Among the 223 antibacterial compounds listed in this 
review, 21 are terpenoids. Most of them are sesquiterpenes 
and tetracyclic triterpenes (Figs. 13 and 14).

Aspergillusene E (139) has been isolated from the 
marine-derived fungus A. versicolor XS-20090066. It exhib-
its antibacterial activity against S. epidermidis and S. aureus 
(MICs 8–16 µg/mL; Wu et al. 2020c). Four bisabolane ses-
quiterpenes (140–143), have been isolated from the cul-
ture of the endophytic fungus T. asperellum EN-764. They 
exhibit inhibitory activity against some aquatic pathogens 
with MICs ranging within 4–64 μg/mL (Li et al. 2023a). One 
sulfoxide-containing bisabolane sesquiterpenoid analogs 
(144) has been isolated from the marine-derived A. sydowii 
LW09 and shows inhibitory activity against P. syringae, with 
a MIC of 32 µg/mL (Yang et al. 2023b). One sesterterpenoid, 

Fig. 8  Structures of compounds 62–64 
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oxaliterpenoid (145) has been isolated from the methanol 
extract of the culture broth of the marine fungus P. oxalicum 
M893. It shows potent antibacterial activities against Gram-
positive bacteria, E. faecalis (ATCC299212), S. aureus 
(ATCC25923), and B. cereus (ATCC14579), with MICs of 
32, 32, and 32 μg/mL, respectively (Nguyen et al. 2023). 
Dendryphiellin I (146) has been isolated from the marine-
derived fungus Cochliobolus lunatus SCSIO41401 and is 
active against S. aureus, with an MIC of 1.5 µg/mL. It is also 

active against two pathogenic bacteria of swine disease, Ery-
sipelothrix rhusiopathiae and Pasteurella multocida (MICs 
13 μg/mL; Fang et al. 2018). Pleosporallin D (147), has been 
isolated from a marine-derived fungus Pleosporales sp. 
and exhibits antibacterial activity against C. michiganense 
subsp. Sepedonicus (MIC 9.48 μg/mL; Chen et al. 2015). 
Two N-acetyl-L-valine-conjugated drimane sesquiterpe-
noids, named purpurides E (148) and F (149), have been 
isolated from the marine fungus P. minioluteum ZZ1657. 

Fig. 9  Structures of compounds 65–79 
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Both exhibit antibacterial activity against MRSA and E. coli, 
with MICs of 6–12 and 3–6 µg/mL, respectively (Ma et al. 
2020). One asperbrunneo acid (150) has been isolated from 
the marine-derived fungus A. brunneoviolaceus MF180246 
and showed antibacterial activity against S. aureus (MIC 

200 µg/mL; Xu et al. 2022). 16-O-propionyl-16-O-deacetyl-
helvolic acid (151), 6-O-propionyl-6-O-deacetylhelvolic acid 
(152), and helvolic acid (153) have been isolated from A. 
fumigatus HNMF0047. These compounds exhibit stronger 
antibacterial activity than a tobramycin control against S. 

Fig. 10  Structures of compounds 80–103 
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agalactiae, producing MICs of 16, 2, and 8 μg/mL, respec-
tively (Kong et al. 2018). Compounds 154 and 155 have 
been isolated from the marine-derived fungus A. fumiga-
tus MF071. They exhibit strong activity against S. aureus 

and E. coli (MIC 6.25 and 3.13 µg/mL, respectively, in both 
cases) (Han et al. 2020). An andrastin-type meroterpenoid, 
hemiacetalmeroterpenoid A (156), together with citreohy-
bridone A (157) and andrastin B (158), have been isolated 

Fig. 11  Structures of compounds 104–124 
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from the marine-derived fungus Penicillium sp. N-5. These 
compounds exhibit significant antibacterial activity against 
P. italicum and C. gloeosporioides (MICs 1.56–6.25 µg/mL; 
Chen et al. 2022). A meroterpenoid, taladrimanin A (159), 
has been isolated from the marine-derived fungus Talaromy-
ces sp. HM6-1-1. It displays selective antibacterial activity 
against S. aureus 6538P and lower activity against strains of 
V. parahaemolyticus and E. coli (Hong et al. 2022).

Coumarins

Among the 16 coumarin analogs described below, 13 exhibit 
antibacterial activity against S. aureus (Fig. 15).

Asperpyranones A (160) has been isolated from the 
marine-derived fungus A. terreus RA2905 and displays 

activity against P. aeruginosa (MIC 32 µg/mL; Wu et al. 
2020a). Citreoisocoumarin (161) has been isolated from 
the marine-derived fungus P. vinaceum and is active against 
S. aureus (Yamamura et  al. 1991; Asiri et  al. 2015). A 
α-pyrone polyketide, (+)-neocitreoviridin (162), has been 
isolated from the marine fungus Penicillium sp. IMB17-
046 and exhibits antibacterial activity against the causative 
pathogens of various gastric diseases (Li et al. 2019). Three 
novel monomeric naphtho-γ-pyrones, peninaphones A–C 
(163–165), have been isolated from marine-derived Peni-
cillium sp. HK1-22 and show antibacterial activity against 
S. aureus (ATCC 43300, 33591, 29213, and 25923) with 
MICs in the range of 12.5–50 µg/mL (Zheng et al. 2019). 
Four 4-hydroxy-α-pyrones, including three compounds 
named nipyrones A–C (166–168), together with the analog 

Fig. 12  Structures of compounds 125–138 
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germicidin C (169), have been extracted from the marine-
derived fungus A. niger. Compound 168 shows promising 
activity against S. aureus and B. subtilis, with MICs of 8 and 
16 µg/mL, respectively, whereas 166, 167, and 168 exhibit 
moderate antibacterial effects against S. aureus, E. coli, 

and B. subtilis, having MICs in the range of 32–64 μg/mL. 
Compounds 167–169 also displayed weak antibiotic activ-
ity against MRSA (Ding et al. 2019). Nine compounds have 
been isolated from Verruculina enalia (Kohlm.) Kohlm. 
& Volkm-Kohlm. BCC 22226 included enalin A (170), 

Fig. 13  Structures of compounds 139–156 
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which has weak antituberculous and antibacterial proper-
ties (Bunyapaiboonsri et al. 2020). A 3,5-dimethylorsellinic 
acid-based meroterpenoid (171) with powerful antibacte-
rial activity against H. pylori and S. aureus has been iso-
lated from the marine fungus Aspergillus sp. CSYZ-1 (Cen 
et al.2020). 7-Hydroxyoospolactone (172) and parapholac-
tone (173) have been isolated from the marine fungus Para-
phoma sp. CUGBMF180003 and inhibit S. aureus (Xu et al. 
2021). Lulworthinone (174), which has been isolated from 
the marine-derived fungus Lulworthiaceae, has antibacterial 
effects on reference strains of S. aureus and S. agalactiae 
and on several clinical MRSA isolates (MICs 1.56–6.25 µg/
mL; Jenssen et al. 2021). A dihydroisocoumarin, aspergima-
rin G (175), has been isolated from the sponge-associated 
fungus Aspergillus sp. NBUF87. It shows moderate antibac-
terial activity toward S. aureus and S. enteritidis, with MICs 
ranging from 16 to 64 μg/mL (Lin et al. 2023b).

Xanthones

Only three reports of xanthones were identified by this 
review (Fig. 16).

Purpureone (176) has been isolated from the marine-
derived fungus C. lunatus SCSIO41401 and displays anti-
bacterial activity against two swine disease pathogenic bac-
teria, S. aureus, E. rhusiopathiae, and P. multocida, with 
MICs of 13 to 50 μg/mL (Fang et al. 2018). Five bistetrahy-
droxanthone analogs—secalonic acid F1 (177), secalonic 
acid H (178), penicillixanthone A (179), chrysoxanthone C 
(180), and asperdichrome (181)—have been isolated from 
the marine-derived fungus A. brunneoviolaceus MF180246. 
All display antibacterial activity against S. aureus, with 
MICs of 25, 50, 6.25, 50, and 25 μg/mL, respectively (Xu 
et al. 2022). Homodimeric tetrahydroxanthone secalonic 
acid D (182) has been isolated from the marine-derived fun-
gus A. aculeatinus WHUF0198. Compound 182 is found to 
be active against H. pylori G27, H. pylori 26,695, H. pylori 
129, H. pylori 159, S. aureus USA300, and B. subtilis 168, 

with MICs of 4.0, 4.0, 2.0, 2.0, 2.0, and 1.0 µg/mL, respec-
tively (Wu et al. 2023).

Steroids

This review identified four publications reporting a total of 
six steroids (structures illustrated in Fig. 17).

Ergosta-5,7,22-triene-3β-ol (183) and volemolide (184) 
have been isolated from the marine fungus Aspergillus sp. 
SCS-KFD66 and inhibit B. subtilis ATCC 6633, with MICs 
of 128 µg/mL. Compound 183 also inhibited S. aureus 
ATCC 6538 (MIC 128 µg/mL; An et al. 2018). Aspergill-
steroid A (185) has been isolated from the marine fungus 
Aspergillus sp. LS116. It is a novel aquatic pathogen inhibi-
tor displaying significant antibacterial activity against V. 
harveyi (MIC 16 μg/mL; Xu et al. 2020). Two steroids, 
ganodermasides B (186) and D (187) have been isolated 
from Pseudogymnoascus sp. HSX2#-11 and display antibac-
terial activity against the marine-fouling bacteria Aeromonas 
salmonicida, with MICs of 30 and 36 µM, respectively (Shi 
et al. 2021a). An ergostane steroid analog, 4α-hydroxy-17-
methylincisterol (188), has been isolated from the marine-
derived fungus Trametes sp. ZYX-Z-16. It displays antibac-
terial activity against S. aureus ATCC 6538 (MIC 32 µg/
mL) and B. subtilis ATCC 6633 (MIC 16 µg/mL) (Ren et al. 
2022). One oxygenated ergostane-type steroid, 3β-hydroxy-
5α,6β-methoxyergosta-7,22-dien-15-one (189), has been 
isolated from the crude extract of the marine sponge-derived 
fungus Aspergillus sp.. They exhibit significant antibacterial 
activity against S. aureus, with a MIC of 64 μg/mL (Wen 
et al. 2023).

Other compounds

Benzoic acid derivatives, penicillin analogs, diphenyl ethers, 
glycosides, peptides, fatty acids, and other compounds 
account for a relatively small proportion of the secondary 
metabolites of marine fungi exhibiting antibacterial activity 
(Figs. 18, 19, 20).

Fig. 14  Structures of compounds 157–159 
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(E)-4-Oxonon-2-enoic acid (190) has been isolated 
from the marine fungus Aspergillus sp. SCS-KFD66. It 
shows inhibitory activity against B. subtilis ATCC 6633 
and S. aureus ATCC 6538, with MICs of 4 and 16 µg/

mL, respectively (An et al. 2018). A nucleoside derivative, 
kipukasin K (191), exhibits antibacterial activity against S. 
epidermidis and S. aureus (MICs 8–16 µg/mL) after being 
isolated from the marine-derived fungus A. versicolor 

Fig. 15  Structures of compounds 160–175 (Absolute configurations of compounds 170, 173 and 174 are undetermined)
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XS-20090066 (Wu et al. 2020c). A benzoic acid deriva-
tive (192) has been isolated from Pseudogymnoascus sp. 
HSX2#-11 and exhibits antibacterial activity against a 
panel of bacteria (Shi et al. 2021b). Among the nine com-
pounds have been isolated from V. enalia (Kohlm.) Kohlm. 
& Volkm-Kohlm. BCC 22226, one is the cyclic lipodepsi-
peptide verruculin (193), which shows weak antituberculous 
and antibacterial activities (Bunyapaiboonsri et al. 2020). 
Emerimicin IV (194) has been isolated from the marine 
sediment-derived fungus Emericellopsis minima. It shows 
bacteriostatic activity against clinical isolates of MRSA and 
vancomycin-resistant E. faecalis (MICs 12.5–100 μg/mL; 
Inostroza et al. 2018). A salicylaldehyde derivative (195) 
has been isolated from the marine fungus Zopfiella marina 
BCC 18240 (or NBRC 30420) and exhibits antibacterial 
activity against B. cereus (MIC 12.5 μg/mL; Chokpaiboon 
et al. 2018). A pyrazine derivative, trypilepyrazinol (196), 
has been isolated from the marine fungus Penicillium sp. 

IMB17-046 and exhibits antibacterial activity against causa-
tive pathogens of various gastric diseases (Li et al. 2019). 
Among the nine compounds isolated from V. enalia (Kohlm.) 
Kohlm. & Volkm-Kohlm. BCC 22226, one is verruculinone 
(197), which shows weak antituberculous and antibacterial 
activities (Bunyapaiboonsri et al. 2020). Two penicillin 
analogs, ∆2’-1’-dehydropenicillide (198) and 1’-dehydro-
penicillide (199), have been isolated from marine-derived 
Aspergillus sp. IMCASMF180035. They are active against 
S. aureus, MRSA, E. coli, E. faecium, P. aeruginosa, and H. 
pylori (Song et al. 2021). Three diphenyl ethers (200 − 202) 
have been isolated from marine sediment-derived Spiro-
mastix sp. SCSIO F190. All three, particularly compound 
200, exhibit strong activity against Gram-positive bacteria, 
including methicillin-resistant strains of S. aureus, E. fae-
calis ATCC 29212, and B. subtilis BS01 (MICs 0.5–4.0 μg/
mL; Cai et al. 2022). A tetrasubstituted benzene derivative, 
peniprenylphenol A (203), has been isolated from the marine 

Fig. 16  Structures of compounds 176–182 
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sediment-derived fungus P. chrysogenum ZZ1151 and 
exhibits activity against MRSA and E. coli, with MICs of 6 
and 13 µg/mL, respectively (Newaz et al. 2022). Alternariol 
(204) has been isolated from a marine-derived fungus strain 
of P. arabicum ZH3-9. This compound displays antibiotic 
activity against S. aureus, with a MIC of 50 μg/mL (Yang 
et al. 2023a). A cyclopentene derivative (205), together with 
one naturally occurring cyclopentenone derivative (206), has 
been isolated from the culture of the endophytic fungus T. 
asperellum EN-764. They exhibit inhibitory activity against 
some aquatic pathogens, with MICs ranging within 4–64 μg/
mL (Li et al. 2023a). Asperbutenolide A (207) has been 
isolated from the marine fungus A. terreus. It displays anti-
bacterial activity against MRSA, with MICs of 4.0–8.0 μg/
mL (Jiang et al. 2023). Aspergetherins A (208) and C (209), 
two chlorinated biphenyls, have been isolated from the rice 
fermentation of a marine sponge symbiotic fungus A. terreus 
164018, along with two biphenyl derivatives (210 and 211). 
They show anti-MRSA activity with MICs of 1.0–128 μg/
mL (Li et al. 2023b). Two pentadepsipeptides, aspertides 
D (212) and E (213), have been isolated from the marine 
fungus Aspergillus sp.. They exhibit antibacterial activities 
against aquatic-pathogenic bacteria, including Edwardsiella 
tarda, V. alginolyticus, V. anguillarum, V. vulnificus, and S. 
aureus, with MICs of 8 − 32 μg/mL. (Chi et al. 2023). Trans-
3,4-dihydroxy-3,4-dihydroanofinic acid (214) and 7-hydrox-
ymethyl-1,2-naphthalenediol (215) have been isolated from 
the obligate marine fungus A. cruciatus KMM 4696. Com-
pound 214 shows the best effect on S. aureus growth, with 

a calculated  IC50 of 49.7 µM, respectively. Compound 215 
is less effective, with  IC50 of 52.1 and 58.2 µM, respectively 
(Zhuravleva et al. 2023). From P. antarcticum KMM 4670, 
pentaketide derivative antaketide A (216) and 2-((2R,6S)-
6-methyltetrahydro-2H-pyran-2-yl)acetic acid (217) have 
been isolated. Antaketide A (216) inhibits S. aureus growth 
by 48.5% at 100 µM and does not influence S. aureus growth 
at 12.5 µM. Compound 217 inhibits S. aureus growth by 
46.5% at 100 µM and E. coli growth by 56.9% at 100 µM. 
 IC50 is calculated as 84.9 µM (Yurchenko et  al. 2023). 
Aspergillusethers A (218) and J (219), and guisinol (220) 
have been isolated from the methanol extract of the culture 
broth of the marine fungus P. oxalicum M893. All com-
pounds show potent antibacterial activities against Gram-
positive bacteria, E. faecalis (ATCC299212), S. aureus 
(ATCC25923), and B. cereus (ATCC14579), with MICs 
ranging within 4–64 µg/mL (Nguyen et al. 2023). 3-Chloro-
2,5-dihydroxybenzyl acetate (221), 3-chlorogentisyl alcohol 
(222), and 2-chloro-6-(methoxymethyl)benzene-1,4-diol 
(223) have been isolated from the marine-derived fungus 
Epicoccum sorghinum GXIMD02001. They exhibit weak 
antibacterial activity, with MICs of 7.81–125 μg/mL (Xing 
et al. 2023).

Overview

A few reviews, akin to the forefront of antibacterial agents 
derived from marine fungi, can be accessed through data-
bases. Wang et al. (2021) reviewed 272 compounds with 

Fig. 17  Structures of compounds 183–189 
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antimicrobial properties from marine fungi from 1998 to 
2019. This review highlights the source of fungi, includ-
ing Penicillium sp., Aspergillus sp., and other fungi, from 
animals, plants, sediments, and seawater. Herein, we con-
duct a comprehensive overview with varying time spans 
(2010 to 2023), encompassing all marine-derived fungi as 

producers of antimicrobial natural products. Wang et al. 
(2022) highlighted the natural bioactive compounds from 
marine fungi, ranging from 2017 to 2020. We focus on 
antibacterial compounds from marine fungi, placing par-
ticular emphasis on the types of pathogens investigated and 
quantifying the amounts of bioactive compounds toward 

Fig. 18  Structures of compounds 190–197 (Absolute configurations of compounds 194, and 195 are undetermined)
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the targeted strains. Hasan et al. (2015) conducted a review 
of significant bioactive metabolites from marine fungi that 
were reported before 2015. Conversely, antibacterial prod-
ucts constitute a minor portion of the overall content. The 
present review updates these works and spans from 2012 

to 2023, showcasing marine fungal metabolites exhibiting 
antibacterial activity. Their antibacterial efficacy, biological 
sources, and MICs are summarized (Table 1). Our findings 
enable readers to identify classes of fungal metabolites, the 
pathogenic bacteria they impact, and the fungal strains that 

Fig. 19  Structures of compounds 198–211 (Absolute configuration of compound 207 is undetermined)
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produce them (Figs. 1, 2, 3). The Simplified Molecular Input 
Line Entry System (SMILES) notation is used to search for 
specific compounds. This review provides useful guidance 
for screening compounds for desired antibacterial properties 
while highlighting the challenges faced from discovery to 
commercialization, particularly regarding structural synthe-
sis. It also highlights emerging approaches such as metagen-
omics, semi-synthesis, and heterologous gene expression as 
potential strategies to overcome these challenges.

Conclusions and outlook

Infections caused by pathogenic bacteria can lead to inflam-
mation and, in severe cases, sepsis, which can be fatal. The 
conventional treatment for bacterial infections involves anti-
biotics, but this strategy has been undermined by the rise in 
bacterial resistance due to the increased use of these diverse 
drugs. Thus, developing new antibacterial agents to combat 
resistant bacteria is urgent, and related research has recently 
accelerated the evaluation of marine fungi-derived com-
pounds. This paper reviews 223 antibacterial compounds 

derived from marine fungi and reported between 2012 and 
2023, highlighting their diverse sources and chemical struc-
tures. Antibacterial compounds account for over one-third 
of the compounds identified, which highlights the potential 
of this natural source in future drug discovery research. The 
majority of the reported antibacterial compounds primarily 
target 10 species of bacteria, namely, S. aureus, B. subtilis, 
E. coli, B. cereus, H. pylori, B. thuringiensis, E. faecalis, 
M. Luteus, S. agalactiae, and P. aeruginosa, among oth-
ers (Fig. 2). Nearly half of the compounds inhibit Staphylo-
cocci, including 36 active molecules against MRSA. Some 
compounds such as O-propionyl-16-O-deacetylhelvolic acid 
and 6-O-propionyl-6-O-deacetylhelvolic acid, exhibit excel-
lent activity that surpasses positive controls. These findings 
emphasize the potential of marine fungi as a valuable source 
of potent antibacterial agents. Many are capable of combat-
ing a range of bacteria, including drug-resistant strains.

Antibacterial metabolites from marine fungi are a poten-
tial source for the development of antibacterial drugs. 
Marine fungal secondary metabolites, with their remark-
able chemical structural diversity and complexity, serve as 

Fig. 20  Structures of compounds 212–223 
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a bountiful reservoir for the discovery and design of novel 
antibacterial drugs. Their potent antibacterial activity, dem-
onstrated by many of these metabolites, positions them as 
compelling candidates in the field of antibacterial drug 
development. Furthermore, the unique biosynthesis path-
ways used by marine fungi, which often diverge significantly 
from those of terrestrial fungi and other microorganisms, 
open up exciting prospects for identifying new targets in 
antibacterial drug discovery.

However, efforts to develop antibacterial agents from 
marine fungal secondary metabolites are fraught with their 
own set of challenges. Marine fungi predominantly reside 
in the deep sea or other inaccessible marine environments, 
making their collection a formidable task. These organisms' 
unique habitats demand specific conditions such as tempera-
ture, pressure, and nutrients, which complicate their cultiva-
tion in laboratory settings. Marine fungi also typically pro-
duce secondary metabolites in minute quantities, posing a 
significant challenge in obtaining sufficient amounts for drug 
development (Liang et al. 2019). Lastly, the intricate chem-
ical structures of these secondary metabolites make their 
structural identification and functional research a daunting 
endeavor. Therefore, to overcome these challenges, innovat-
ing new collection methodologies, fine-tuning cultivation 
conditions, and enhancing product yields for functional stud-
ies are essential.

Current advancements in research on deep-sea submersi-
bles, remote sensing, automated underwater samplers, and 
marine drilling technologies have made the collection of 
sediments, plankton samples, and seawater easier and safer. 
Deep-diving technology can also operate at depths of up 
to 100 m underwater. Metagenomics aims to elucidate the 
physiology and genetics of uncultured organisms by isolat-
ing organismal DNA directly from the environment and 
cloning it in microbial cultures. This technique enables the 
exploitation of the bioactive potential of the targeted fungi’s 
genome (Handelsman 2004). The heterologous expression 
of biosynthetic gene clusters is another emerging approach 
to alleviating material-supply issues. It involves deleting, 
inserting, or replacing key genes or biosynthetic modules in 
genetically susceptible hosts to generate new biosynthetic 
pathways and analogs (Zhang et al. 2016). The successful 
heterologous expression of various compounds has been 
reported, including those of polyketides, non-ribosomal pep-
tides, and isoprenoids (Zhang et al. 2011), thereby highlight-
ing the potential of this approach for producing sufficient 
fungal metabolites for drug development. Semi-synthesis is 
also a solution to the limited supply of natural products. 
Pettit et al. (1982) reported the structure of a remarkable 
anticancer constituent of Bugula neritina designated bry-
ostatin 1, which was found to prolong the lifespan of dis-
eased mice (P388 lymphoblastic leukemia) in a bioactivity 
assay. The first total synthesis of this agent was described by 

Keck et al. (2011). Marshall et al. reported in (1998) the total 
synthesis of (+)-discodermolide, a polyketide marine natu-
ral product with potent immunosuppressive and potential 
antitumor activity. The above-described innovative strategies 
are essential for overcoming the supply shortages of marine 
fungal metabolites with desirable antibacterial properties.

The journey from discovering a natural active substance 
to bringing it to clinical trial, and ultimately to clinical appli-
cation, is long. A multidisciplinary approach encompassing 
metabonomics, natural pharmaceutical chemistry, and phar-
macology must be adopted. Such an integrated approach can 
lead to the discovery of more potent marine fungi-derived 
products with robust antibacterial activity. The untapped 
potential of marine fungi also offers an exciting avenue for 
future research in combating drug-resistant bacteria.
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tary material available at https:// doi. org/ 10. 1007/ s12272- 024- 01500-6.
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