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Abstract
A balance between the development and suppression of inflammation can always be found in the body. When this balance 
is disturbed, a strong inflammatory response can damage the body. It sometimes is necessary to use drugs with a significant 
anti-inflammatory effect, such as nonsteroidal anti-inflammatory drugs and steroid hormones, to control inflammation in 
the body. However, the existing anti-inflammatory drugs have many adverse effects, which can be deadly in severe cases, 
making research into new safer and more effective anti-inflammatory drugs necessary. Currently, numerous types of natural 
products with anti-inflammatory activity and distinct structural features are available, and these natural products have great 
potential for the development of novel anti-inflammatory drugs. This review summarizes 260 natural products and their 
derivatives with anti-inflammatory activities in the last two decades, classified by their active ingredients, and focuses on their 
structure–activity relationships in anti-inflammation to lay the foundation for subsequent new drug development. We also 
elucidate the mechanisms and pathways of natural products that exert anti-inflammatory effects via network pharmacology 
predictions, providing direction for identifying subsequent targets of anti-inflammatory natural products.
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Introduction

Inflammation is the first response of the body’s immune sys-
tem to external stress and injury and serves as a protective 
mechanism for the body (Hou et al. 2020a; Camba-Gomez 

et al. 2021). Inflammation is usually accompanied by local-
ized redness, swelling, heat, and pain, even becoming fatal in 
extreme cases. The external factors triggering inflammation 
usually include blood clots, disorders of the immune system, 
cancer, infection, chemical agents, physical damage, or neu-
rological disorders such as Alzheimer’s disease or depres-
sion (Roe 2021). Inflammation generally occurs through the 
activation of the body’s pro-inflammatory mechanisms as a 
result of damage caused by external stimuli. Inflammation 
involves the accumulation and activation of immunosuppres-
sive cells, proinflammatory factors, chemokines, and growth 
and angiogenic factors (Kanterman et al. 2012). A general 
hallmark of inflammation is the production and secretion of 
proinflammatory factors such as interleukin-6 (IL-6), tumor 
necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), nitric 
oxide (NO), and prostaglandin E2 (PGE2) (Fu et al. 2020). 
Most of the currently developed anti-inflammatory drugs 
have been designed for the production and secretion process 
of these pro-inflammatory factors (Dinarello 2010).

Currently, anti-inflammatory drugs mainly consist of 
glucocorticoids and nonsteroidal anti-inflammatory drugs 
(NSAIDs) (Bacchi et al. 2012; Song and Feng 2023). With 
their extensive clinical use, it was discovered that adverse 
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reactions could cause damage to the body. These impair-
ments decreased the quality of patients’ lives and detracted 
value from the original purpose of using the drugs to treat 
inflammation. Glucocorticoids can inhibit the expression of 
proinflammatory genes but risk triggering and exacerbating 
infections (Fan and Morand 2012). In addition, long-term 
high doses of glucocorticoids might lead to Cushing’s syn-
drome in clinical practice, as well as cause sodium and water 
retention and an increased risk of hypertension (Decani 
et al. 2014; Üstyol et al. 2017). On this basis, NSAIDs were 
selected for anti-inflammatory treatment. NSAIDs can 
inhibit the body’s production of prostaglandins by suppress-
ing the activity of cyclooxygenase (COX), thereby achieving 
antipyretic and analgesic effects. Due to the protective effect 
of prostaglandins on the gastric mucosa, the use of NSAIDs 
caused several gastrointestinal reactions, including anorexia, 
abdominal pain, and possibly severe myocardial infarction, 
stroke, etc. In a survey of 61,971 patients with first myo-
cardial infarction, Olsen et al. (2015) found an increased 
incidence of combined cardiovascular events (cardiovascu-
lar death, nonfatal recurrent myocardial infarction, ischemic 
stroke, transient ischemic attack, and systemic arterial embo-
lism) in patients treated with NSAIDs.

Natural products originate from a wide variety of 
sources and show great potential in the field of new drug 
development. It was discovered that natural products 
isolated from some plants, animals, or microorganisms, 
such as phenylpropanoids, quinones, alkaloids, terpenoids, 
and flavonoids, possess good anti-inflammatory activity 
(Liu and Yu 2019). Then, some studies demonstrated the 
mechanism by which these isolated natural products exert 
anti-inflammatory activity (Aswad et al. 2018). In recent 
years, the emerging approach of network pharmacology has 
become an essential tool for identifying drug targets and 
exploring mechanisms of action. The application of network 
pharmacology could help to identify new targets and 
approaches for existing diseases and provide new avenues 
for drug discovery in complex diseases. Currently, several 
studies have predicted and validated the relevant targets 
of natural products with anti-inflammatory effects, such 
as TNF-α, IL-6 and interleukin-1β (IL-1β), as well as the 
mitogen-activated protein kinase (MAPK), c-Jun N-terminal 
kinase (JNK)/signal transducer and activator of transcription 
(STAT) and phosphatidylinositol-3-kinase (PI3K)/Akt 
signaling pathways, through network pharmacology, 
which lays the foundation for further development of 
lead compounds with anti-inflammatory activity (Song 
et al. 2020a, b; Aihaiti et al. 2021; Gan et al. 2021; Guo 
et al. 2022; To et al. 2022; Wang et al. 2022). Hence, this 
review attempts to summarize the research progress on 
the anti-inflammatory activity of natural products from 
structure–activity relationships and the application of 
network pharmacology, for over two decades, which is used 

to determine the anti-inflammatory mechanism. Network 
pharmacology focuses on the relationship between the 
structure of different active natural components and their 
anti-inflammatory activity, which is important in the search 
for new, efficient, and safe anti-inflammatory drugs as well 
as the redevelopment of existing anti-inflammatory drugs.

Phenylpropanoids

Phenylpropanoids refer to natural organic compounds 
containing one or several C6–C3 units, including simple 
phenylpropanoids, coumarins, lignans, and several other 
major categories, which contain most of the natural aromatic 
organic compounds. A large number of in vitro experiments 
have shown that certain phenylpropanoids have a well-
defined anti-inflammatory potency, which indicates great 
potential for the development of anti-inflammatory agents. 
However, there is a lack of large-scale experimental data 
and structure-effect relationship studies based on validated 
evidence in human studies, which limits research on the anti-
inflammatory agents of phenylpropanoid natural product 
molecules (Korkina et al. 2011).

Network pharmacological studies 
on the anti‑inflammatory activity 
of phenylpropanoids

Zhu et al. (2022) explored the therapeutic mechanism of 
wuyao-danshen on endometrial inflammation and found that 
coumarin could bind to inflammation-associated proteins 
such as signal transducer and activator of transcription 3 
(STAT3), phosphoinositide-3-kinase regulatory subunit 
1 (PIK3R1), and mitogen-activated protein kinase 1 
(MAPK1) through network pharmacological prediction, 
which was demonstrated to be related to these proteins 
through subsequent experiments. Wei et al. (2019) revealed 
that the anti-inflammatory targets of lignans from S. 
chinensis were related to MAPK, tumor necrosis factor 
(TNF), and arachidonic acid metabolism through network 
pharmacological prediction, which was found to be the 
same as the prediction in the subsequent experimental 
validation. By constructing a protein–protein interaction 
(PPI) network, Yang et al. (2020a) reported that inositol-
trisphosphate 3-kinase C and tyrosyl—deoxyriboNucleic 
acid (DNA) phosphodiesterase 1 might be the key 
targets of heptaphyllum lactone in pudilan xiaoyan oral 
liquid for the treatment of tonsillitis. Duan et al. (2022) 
performed a network pharmacological prediction study 
on the dichloromethane extract of chamomile containing 
coumarin and concluded that their anti-inflammatory targets 
were IL-6, the nuclear factor kappa-B (NF-κB) pathway, 
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extracellular regulated protein kinases 1 (ERK1) and 
extracellular regulated protein kinases 2 (ERK2) cascade 
reactions, and TNF. These targets were confirmed to be 
important for the anti-inflammatory activity of coumarins 
in the following studies. Ma et al. (2022b) identified STAT3, 
MAPK1, and phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha (PIK3CA) as the targets of 
ferulic acid, caffeic acid, and other coumarin-like extracts 
based on network pharmacology in a biomarker study of 
shaoyao gancao decoction, which was validated by in vitro 
cellular experiments. Yuan et al. (2021) determined that 
the PI3K/AKT pathway associated with anti-inflammation 
in the network pharmacological prediction of the target of 
scopolamine’s action on small-cell lung cancer and verified 
this association by molecular docking. Signaling pathways 
such as NF-κB, STAT3, PI3K/AKT and MAPK might be 
associated with the exertion of anti-inflammatory activity 
by phenylpropanoid analogs, as predicted by network 
pharmacology and verified experimentally.

Anti‑inflammatory activity 
of phenylpropanoids

We have included a summary of the structures of phenylpro-
panoids and their derivatives with anti-inflammatory activity 
in Figs. 1 and 2. The two stronger anti-inflammatory phe-
nylpropanoid derivatives P1 and P2 were identified in the 
study of Croton velutinus extract by Abreu and coworkers. 
The concentration for 50% of maximal effect (EC50) values 
of P1 for NO and IL-1β were 4.3 ± 0.6 and 3.68 ± 0.2 µM, 
respectively, and those of P2 were 1.7 ± 0.4 and 1.6 ± 0.1 
µM, respectively, similar to the anti-inflammatory effect 
of dexamethasone on NO and IL-1β (Abreu et al. 2020). 
Cheng et al. (2017) demonstrated the anti-inflammatory 
activity of Compounds P3, P4, and P5 from the root extract 
of Ficus hirta Vahl. Compounds P3 and P4 showed weak 
inhibitory effects on NO release, while Compound P5 
(half maximal inhibitory concentration = 19.33 ± 2.41 µM) 
showed a stronger inhibitory effect on NO than indometha-
cin (IC50 = 48.26 ± 2.83 µM). Zhao and associates examined 
the fruits of Xanthium sibiricum and reported that the phe-
nylpropanoid P6 had a significant inhibitory effect on NO 
release in lipopolysaccharide (LPS)-activated RAW264.7 
cells, with a half maximal inhibitory concentration (IC50) 
value of 9.54 ± 0.57 µM (Xia et  al. 2022). Yang et  al. 
(2021) obtained Compounds P7 and P8 from the roots of 
Dendropanax dentiger with IC50 values of 6.25 ± 0.42 and 
7.87 ± 0.67 µM, respectively, which probably achieved their 
anti-inflammatory effects through inhibition of the NF-κB, 
Akt, and JNK signaling pathways. Zhang et al. (2019b) 
derived seven phenylpropanoids (P9-P15) from Canarium 
album Raeusch. that significantly dampened the expression 

of the pro-inflammatory mediators inducible nitric oxide 
synthase (iNOS) and COX-2 in BV-2 cells induced by LPS 
in a dose-dependent manner, which was comparable to the 
anti-inflammatory effect of the positive control drug mino-
cycline. Grover and Jachak (2015) identified the coumarin 
derivatives P16 and P17 as the most potent inhibitors of 
carrageenan gum-induced rat paw edema inhibition assay, 
with the potential to be exploited in acute inflammation stud-
ies. Son et al. (2022) developed the phenylpropanoid P18 
from the roots of Polygala tenuifolia Willd, which possessed 
considerable inhibitory effects on NO and PGE2 synthesis, 
with IC50 values of 32.92 and 4.57 µM, respectively. Qiu 
et al. (2021) obtained phenylpropanoid derivatives P19-P24 
from the roots of Oxybaphus himalaicus, which displayed 
some inhibitory effects on NO release and IL-6 secretion, 
with IC50 values of less than 50 μM, with P24 being the 
most potent and comparable to dexamethasone. Jackson’s 
team synthesized several derivatives based on coumarin 
matrices and examined their inhibitory effects on iNOS 
expression. Among them, compounds P25 (IC50 = 0.061 
μM), P26 (IC50 = 0.143 μM), and P27 (IC50 = 0.441 μM) 
showed excellent inhibitory activities relative to other simi-
lar compounds (Jackson et al. 2005). Tuohongerbieke et al. 
(2021) investigated the lignan amines P28-P32 in a study of 
Limonium gmelinii (Willd.) Kuntze, with inhibitory effects 
on COX-2 and IC50 values in the range of 15–23 µM. In 
a study of active coumarins in pomelo peel, Zhao et al. 
(2019) and equivalents yielded five coumarin analogs, P33-
P37, with strong inhibitory effects on the secretion of the 
inflammatory factors IL-1β, PGE2, and TNF-α, comparable 
to the effects of dexamethasone (10 µg/ml) at a concentra-
tion of 5 µg/ml. Buran et al. (2021) introduced piperazine 
and piperidine groups on 7-hydroxycoumarin and obtained 
Compounds P38 and P39, which produced the best inflam-
matory inhibitory effects. The nitrite inhibition percentages 
of these compounds were 55.18 and 50.29% and were better 
than that of the control indomethacin (33.50% inhibition). 
Kontogiorgis and Hadjipavlou-Litina (2005) synthesized a 
series of mannich base derivatives of coumarin in their study 
of the anti-inflammatory activity of coumarin, in which com-
pounds P40 and P41 had a significant inhibitory effect on 
carrageenan gum-induced edema in rats with inhibition rates 
of more than 75%, stronger than that of the positive drug 
indomethacin with an inhibitory rate of 45%. Nayeli et al. 
(2020) extracted Compound P42 from Tagetes lucida Cav, 
which yielded the best edema inhibition with 81.1%, and the 
anti-inflammatory effect was related to the 7-position substi-
tution of the parent nucleus. Al-Wabli et al. (2018) synthe-
sized five new coumarin analogs, P43-P47, which exhibited 
notable anti-inflammatory activity compared to that of the 
positive drug celecoxib, with 30 min edema inhibition rang-
ing from 72.59 to 91.75% in a formalin-induced edema assay 
in rats. Hamid and Salih (2022) synthesized four derivatives 
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Fig. 1   Structures of Phenylpropanoids (and their derivatives) P1–P33 with anti-inflammatory activity
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of the coumarin Schiff base, P48- P51, which showed anti-
inflammatory activity comparable to that of ibuprofen and 
had Ki values between 1.16 and 0.1 μM.

Structure–activity relationships 
for the anti‑inflammatory activity 
of phenylpropanoids

The anti-inflammatory effects of phenylpropanoids were 
reported mostly for coumarin derivatives, so the following 
section was devoted to coumarin parent nucleus substitu-
tions, and the structure-effect relationships are presented in 
Fig. 3. The modifications of coumarins were concentrated 
at the 3, 4, and 7 positions. In the study of the parent nuclei 
of coumarin molecules, it was determined that most of the 
synthetic products had C-3 and C-4 substituents, C-5 sub-
stituents were rare in plant-derived products, and the C-7 
and C-8 substituents generally had similar characteristics 
(Bansal et al. 2013). The introduction of a thiazole ring 
at the C-3 position of the parent nucleus potentiated anti-
inflammatory activity and had possible therapeutic poten-
tial in acute inflammation, moreover, the compound P16, 
which was unsubstituted at the C-7 position, had a better 

anti-inflammatory effect than the chlorine atom-containing 
compound P17 (Grover and Jachak 2015). Small aliphatic 
groups could be added at the C-4 position, and the intro-
duction of Schiff bases altered the anti-inflammatory activ-
ity of the products (Cheng et al. 2004), e.g., compounds 
P46-P49 increased their anti-inflammatory effect com-
pared to the original aldehyde activity after the introduc-
tion of Schiff bases (Hamid and Salih 2022). The reaction 
of 4-bromomethylcoumarin with 2,4-dihydroxyacetophe-
none synthesized 4-(4′-acetyl-3′-hydroxyphenoxymethyl)-
coumarin, which was less active, and it was found that the 
cyclization, of the portion with an o-hydroxyl structure 
to a chromone or a benzofuran, increased the analgesic 
and anti-inflammatory activity (Ghate et al. 2005). The 
substituent group at the C-5 position was often a hydroxyl 
group, and when halogen substitution was made at the C-6 
position, the Cl substitution was associated with greater 
anti-inflammatory activity than the fluorine and bromine 
atoms in comparison to compounds P45-P47 (Grover and 
Jachak 2015). The presence of N,N-dimethylcarbamate at 
the C-7 position resulted in stronger anti-inflammatory 
activity when replaced by N,N-dimethylthiocarbamate, 
N,N-diethylcarbamate, or isopentadienyl substituents. 

Fig. 2   Structures of Phenylpropanoids (and their derivatives) P34–P51 with anti-inflammatory activity
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However, the anti-inflammatory activity was observed to 
be significantly reduced when the position was replaced by 
methoxy substituents (Nayeli et al. 2020). Displacement 
of some Mannich bases at the C-8 position increased their 
inhibitory effect on inflammation, even exceeding that of 
indomethacin under the same conditions (Kontogiorgis 
and Hadjipavlou-Litina 2005), and the introduction of spe-
cific piperazine groups also boosted the anti-inflammatory 
activity. For example, compounds P40 and P41 C-8 intro-
duced piperazine and piperidine groups, which increased 
the anti-inflammatory activity and inhibited inflamma-
tion optimally (Buran et al. 2021). With further structural 
modifications on the introduced piperazine moiety, the 
anti-inflammatory activity of P39 containing a strongly 
conjugated naphthalene ring was superior to that of P38 
containing a nitroacyl group (Kontogiorgis and Hadjipav-
lou-Litina 2005). The more electron-withdrawing groups 
on the substituted benzene ring, the stronger the COX-2 
inhibition; for example, an electron-withdrawing group 
intensified the anti-inflammatory activity, and an electron-
donating group decreased the anti-inflammatory activity 
in the coumarin-benzimidazole system (Singh et al. 2019). 
Ma et al. (2022a) compared the anti-inflammatory activity 
of different coumarin parent compounds and showed that 
the introduction of quinuclidic acid or quinuclidinic acid 

groups at the 1-position of coumarin augmented the anti-
inflammatory activity of the molecules.

Quinones

Quinones are natural organic compounds that widely exist 
in nature and have various chemical structures. The com-
mon backbone structures were mainly categorized into four 
types: benzoquinone, naphthoquinone, anthraquinone, and 
phenanthrenequinone. Quinones and their derivatives with 
anti-inflammatory activity are summarized in Figs. 4 and 5.

Network pharmacological studies 
on the anti‑inflammatory activity 
of quinones

Wen et al. (2020) conducted a network pharmacological 
study on chaiqin chengqi decoction and discovered that 
its anthraquinone components could inhibit inflammation 
by affecting the regulation of toll‑like receptor 4 
(TLR4)/NOD-like receptor thermal protein domain 
associated protein 3 (NLRP3)—related proteins and the 
inhibition of NO production. Sun et al. (2022) predicted 
that dihydrotanshinone I, the active ingredient in the 
cyberpharmacological study of Huo Luo Xiao Ling Dan, 

Fig. 3   Structure–activity relationship for the anti-inflammatory activity of phenylpropanoids



383Potential of natural products in inflammation: biological activities, structure–activity…

Fig. 4   Structures of quinones (and their derivatives) Q1–Q42 with anti-inflammatory activity
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could target the STAT3, AKT1, and MAPK signaling 
pathways, and the predicted targets were confirmed to be 
accurate and effective in the further experiments. Zhou 
et al. (2021) predicted the anti-inflammatory-related targets 
PI3K-Akt, adenosine 5′-monophosphate-activated protein 
kinase (AMPK), and Janus tyrosine kinase (Jak)—STAT3 
of the active ingredient aloe-emodin in their network 
pharmacology-based anti-hepatic fibrosis study, as well as 
confirming that the targets mentioned above were indeed 
the targets of anti-inflammatory effects of aloe-emodin 
through in  vitro cellular experiments. Rhodopsin, as a 
homolog compound of aloe-emodin, was revealed to bind 
to anti-inflammatory-related targets such as TNF as well as 
the MAPK pathway in the network pharmacological study 
prediction (Liang et al. 2021). Yin et al. (2022) discovered 
that the main targets of anthraquinones might be the MAPK 
pathway, IL-6, and vascular endothelial growth factor 
(VEGF) in their network pharmacological prediction of 
the active ingredients of dachengqi decoction, which were 

confirmed to be truly related to the anti-inflammatory 
effects exerted by their anthraquinone constituents within 
a later study. Network pharmacological and experimental 
demonstration studies showed that the potential targets for 
quinones when exerting anti-inflammatory activity are IL-6, 
VEGF, TLR4/NLRP3, STAT3, PI3K-Akt, MAPK, etc.

Anti‑inflammatory activity 
of benzoquinones

Lin et al. (2013) obtained a quinone compound (Q1) from 
the cultured soft coral Sinularia flexibilis, which dramati-
cally injured the accumulation of pro-inflammatory iNOS 
and COX-2 proteins in an in vitro anti-inflammatory action 
assay, and the inhibition was more prominent within the 
concentration of 5–20 µM. Zhang et al. (2019a) isolated 
two compounds, Q2 and Q3, with anti-inflammatory activ-
ity from Eurotium cristatum, with quinone matrices and 

Fig. 5   Structures of quinones (and their derivatives) Q43–Q55 with anti-inflammatory activity
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IC50 values of 1.48 ± 1.08 and 2.26 ± 0.67 µM, respec-
tively. Long et al. (2019) obtained a new para-quinone 
flavane (Q4) from the leaves of Ilex chinensis Sims, and 
the compound dose-dependently inhibited NO and IL-1β 
production in the range of 1–8 µM, which indicated a ben-
eficial in vitro anti-inflammatory activity. Sagnou et al. 
(2009) synthesized three novel benzoquinone compounds, 
Q5, Q6 and Q7, which showed significant inhibition of 
horny goat gum-induced rat paw edema by 73%, 81%, and 
92%, respectively. The in vitro anti-inflammatory activ-
ity of Compounds Q8–Q10 from Nigella sativa seeds was 
investigated by Marsik et al. (2005) Q8 demonstrated a 
marked inhibitory effect on COX-1 (IC50 = 0.2 µM). Q9 
and Q10 presented potent COX-2 inhibition (IC50 = 0.1 
and 0.3 µM), which was stronger than the inhibitory effect 
of indomethacin. Lee et al. (2013) performed anti-inflam-
matory and cytotoxicity assays on Q11, a benzoquinone 
derivative obtained from Acorus gramineus, which showed 
a weak cell-killing effect and a stronger inhibitory effect 
on NO production than the positive control (IC50 = 10.30 
µM).

Anti‑inflammatory activity 
of naphthoquinones

Kozlovskiy et al. (2023) secured two 1,4-naphthoquinone 
derivatives of thioglucosides, Q12 and Q13, both of which 
exerted an inhibitory effect on TNF-α and COX-2, with 
Q12 having a stronger inhibitory effect on TNF-α than 
Q13. Compound Q14 was isolated from the roots of Juglans 
mandshurica by Park and colleagues as a naphthoquinone 
product with good anti-inflammatory activity, inhibiting 
NO production (IC50 = 27.03 ± 1.66 µM) and inhibiting the 
expression of TNF-α and IL-6 (Piao et al. 2022). Lohberger 
et al. (2022) found that purslane (Q15) blocked the expres-
sion of phorbol 12-myristate 13-acetate (PMA)-induced 
COX-2 mRNA and protein (IC50 = 1.2 ± 0.1 µM), thereby 
blocking PGE2 biosynthesis in human mammary epithe-
lial cells transfected with luciferase and achieving COX-2 
inhibition. The structural modification of 2-amino-3-aryl-
1,4-naphthoquinone by de Luna Martins et al. (2020) suc-
cessfully yielded three derivatives, Q16, Q17, and Q18, with 
inhibitory activity against the P2X7 receptor, IC50 values of 
0.347, 0.123, and 0.093 µM, and low cytotoxicity. Ju Woo 
et al. (2017) discovered that Q19, a naphthoquinone constit-
uent of R. cordifolia L., had a prominent anti-inflammatory 
effect, inhibiting NO and PGE2 synthesis in the range of 
3.5–14.0 µM. Compounds Q20–Q25 that Dong et al. (2017) 
developed from Onosma paniculatum possessed naphtho-
quinone matrices and had potent inhibitory effects on NO, 
with IC50 values below 17 µM. Lee et al. (2013) reported 

that the naphthoquinone derivatives Q26–Q28 not only pos-
sessed low cytotoxicity but also showed an inhibitory effect 
equivalent to that of the positive control in inhibiting NO 
release, with IC50 values all below 17.5 µM.

Anti‑inflammatory activity 
of anthraquinones

Piao et al. (2022) derived Compounds Q29–Q31 from 
the roots of Juglans mandshurica, which contained 
anthraquinones and possessed good anti-inflammatory 
activity, suppressing the release of inf lammatory 
mediators, such as NO, TNF-α, and IL-6, with an IC50 
value of less than 30 µM. Vanisree et al. (2020) extracted 
rhodopsin (Q32) from Aloe barbadensis, which exerted an 
inhibitory effect on NO, TNF-α, and IL-12 (interleukin-12) 
and did not affect cell viability at a concentration of 400 
µM (IC50 = 120 µM). Xin et al. (2022) studied the effect 
of anthraquinone on the immune response and found 
that rhubarbic acid (Q33) produced inhibitory effects on 
iNOS, TNF-α accumulation, and NF-κB activation in LPS-
induced RAW264.7 mouse macrophages at concentrations 
of 60–140 µM and inhibited the release of NO and IL-6 
when the concentration was in 35 µM. Whereas Hu 
et al. (2021) demonstrated some differences in the anti-
inflammatory effects of rhodopsin (Q32), rhubarbic acid 
(Q33), and aloe rhodopsin (Q34) obtained from Rhei Radix 
et Rhizoma, with Q34 having a stronger inhibitory effect 
on IL-6 as well as NO than both Q32 and Q33. Shang 
and his collaborators carried out a derivatization synthesis 
using rhodopsin (Q32) as the parent to obtain compounds 
Q35–Q38 and revealed that Q35 had the most prominent 
inhibitory activity for NO (IC50 = 3.15 μM), which held the 
potential for further development (Shang et al. 2022). Zhu 
et al. (2020) synthesized a series of imidazole derivatives 
Q39–Q47 based on Q32, of which Q46 displayed the 
strongest inhibitory activity against NO (IC50 = 1.35 μM), 
which was stronger than the positive drug dexamethasone 
(IC50 = 12.61 μM). The anthraquinone products Q48 
and Q49, secured by Du et  al. (2018) in the study of 
polyketide derivatives of the sponge-associated fungus 
Aspergillus europaeus, both inhibited NF-κB activation 
by 73.1 ± 12.7 and 75.9 ± 8.3%, respectively. Luo et al. 
(2017) yielded four anthraquinone products, Q50–Q53, 
in an amino acid-conjugated anthraquinone study of the 
marine fungus Penicillium sp. SCSIO sof101, which were 
inhibitory to interleukin-2 (IL-2) secretion (IC50 ≤ 12.0 
µM). Chitsaz et al. (2021) revealed that methylisocynarin 
(Q54) exhibited a significant anti-inflammatory effect 
and suppressed granuloma and inflammatory exudation 
in cotton ball-induced inflammation assays in rats with 
inhibition rates of 46.12% and 38.13%, respectively, which 
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were superior to those of indomethacin, a positive control 
drug. Luo et al. (2021) derived Compound Q55 from the 
rhizome of Morinda officinalis, which strongly inhibited 
NO with an IC50 value of 17.17 ± 4.13 μM.

Structure–activity relationships 
for the anti‑inflammatory activity 
of quinones

Most of the quinones with anti-inflammatory activity were 
reported to have 1,4-naphthoquinone and anthraquinone 
matrices, and their anti-inflammatory conformational 

Fig. 6   Structure–activity relationship for the anti-inflammatory activity of naphthoquinones

Fig. 7   Structure–activity relationship for anti-inflammatory activity of anthraquinones
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relationships are outlined in Figs. 6 and 7. The compara-
tive study of four quinone matrices, 1,4-benzoquinone, 
1,4-naphthoquinone, 9,10-anthraquinone, and 5,12-naph-
thoquinone, suggested that the anti-inflammatory activity 
of 1,4-naphthoquinone was stronger than that of the other 
three matrices (Kobayashi et al. 2011). In the study of 
1,4-naphthoquinone thiosylation products, cyclic thiosides 
were more inhibitory for COX-2, and acyclic thiosides 
were more inhibitory for TNF-α. For instance, compound 
Q13 showed stronger inhibition of COX-2 than com-
pound Q12, however the effect on TNF-α was the oppo-
site (Kozlovskiy et al. 2023). The introduction of hydroxyl 
groups at the C-5 and 8 positions of 1,4-naphthoquinone 
and a 4-methylpent-3-en-1-ol group at the C-7 position 
resulted in shikonin (Q25), which inhibited inflammation 
less effectively than 1,4-naphthoquinone, but the differ-
ence was not significant (Mahmoud et al. 2021). Hydroxyl 
esterification of shikonin to introduce an alkyl group at 
the 5- or 8-position side chain yielded compounds Q23 
and Q24, both of which were greatly weakened in anti-
inflammatory tests compared to shikonin (Lohberger et al. 
2022); thus, hydroxyl esterification at the C-5 or C-8 posi-
tion introduced alkyl groups that were not suitable. Com-
paring the anti-inflammatory effects of compound Q26 as 
well as Q27, the introduction of 3,4,6-trimethoxyphenyl 
in 1,4-naphthoquinone at the C-5 or C-8 position might 
be a desirable derivatization direction (Lee et al. 2013).

The receptors of rhodopsin analogs had a hydrophobic 
pocket, and among rhodopsin (Q32), rhodopsinic acid 
(Q33), and aloe rhodopsin (Q34), aloe rhodopsin (Q34) was 
the most hydrophobic and notably more anti-inflammatory 
than the other two, so modification could be carried out to 
increase the hydrophobicity of the anthraquinone molecule 
by introducing a small polar group. With the introduction 
of a small polar group such as methoxy on the benzene 
ring, compound Q49 demonstrated a stronger inhibitory 
activity against NF-κB than Q48 (Hu et al. 2021). After the 
addition of chain aliphatic amino groups and heterocyclic 
amino groups by hydroxymethyl esterification at the C-3 
position of aloe rhodopsin, the anti-inflammatory activity 
of the compound 35–37 was greatly increased, with the 
highest activity being seen in the compound 35 with the 
introduction of the N-methylpiperazine moiety (Shang et al. 
2022). Moreover, the anti-inflammatory activity of Q34 
was increased by introducing diacetyl groups at C-1 and 8 
positions. Compound Q38, which was based on compound 
Q35 and introduced a benzyl group on its hydroxyl group, 
showed decreased or even no anti-inflammatory activity, 
hence it was desirable to enhance the anti-inflammatory 
activity with the introduction of small groups at the 
1-position and the 8-position (Shang et  al. 2022). By 
comparing the anti-inflammatory activities of compounds 
Q39–Q47, it could be noticed that the introduction of 

aliphatic chain-linked triazole or imidazole moiety by 
hydroxyl esterification at the C-3 position helped to improve 
the anti-inflammatory activity, and the four-carbon linked 
imidazole moiety had the highest anti-inflammatory activity. 
The introduction of benzazole moiety also contributed to 
the anti-inflammatory activity, and the anti-inflammatory 
activity of Q43 containing benzazole structure was 
significantly better than that of the parent compound (Zhu 
et al. 2020).

Anthraquinone was used as the parent nucleus for C-1,4-
N-alkylation and O-alkylation modifications bridged by 
propylamino groups. Among the products, N-alkylation 
side chain carbons of 11 and 13 carbons in length and 
linking pyrrole ring and phenyl were less cytotoxic, and 
O-alkylation cytotoxicity was lower for the 13-carbon 
linkage and pyrrole ring and phenyl modifications. The 
cytotoxicity after N-alkylation was smaller than that after 
O-alkylation, so the C-1,4-position might be unsuitable for 
alkylation modifications with intermediate elastic chain 
lengths, and phenyl substitution was relatively less cytotoxic 
in alkylation modifications (Oliveira et al. 2020).

Alkaloids

Alkaloids are a class of nitrogenous alkaline organic com-
pounds found in nature that originate from secondary plant 
metabolites and have significant pharmacological activity 
(Talib and Mahasneh 2010). Studies have demonstrated that 
alkaloids have great potential for anti-inflammatory activity, 
similar to sophocarpine (A1) and 5α-hydroxymatrine (A2), 
which proved to have favorable anti-inflammatory activity 
(He et al. 2019). This review covers alkaloids that have been 
tested for anti-inflammatory activity and are structurally 
classified as indole alkaloids, quinoline alkaloids, isoquino-
line alkaloids, etc. The structures and their anti-inflamma-
tory activities are depicted in Fig. 8.

Network pharmacological studies 
on the anti‑inflammatory activity 
of alkaloids

In recent years, network pharmacology has rapidly become 
a new method for mining and predicting natural product-tar-
get interrelationships (Liu and Du 2010; Wang et al. 2011). 
Through network pharmacology, Jin et al. (2022) predicted 
that the anti-inflammatory effects of Pingbeijian alkaloids 
might be related to targets such as caspase 3 (CASP3), IL-6, 
TNF-α, nuclear receptor subfamily 3, Group C, member 1 
(NR3C1), IL-1β and peroxisome proliferator-activated 
receptor gamma (PPARG) and might exert anti-inflam-
matory effects through signaling pathways such as C-type 
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Fig. 8   Structures of alkaloids (and their derivatives) with anti-inflammatory activity
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hemagglutinin receptors, interleukin-17 (IL-17), NF-κB and 
MAPK, as well as tested by in vitro cellular experiments, 
western blot, and molecular docking. Du et al. (2020) found 
that berboside could regulate the expression of inflammatory 
mediators such as TNF-α, IL-1β, and IL-6 and cause the 
NF-κB signaling pathway to exert anti-inflammatory effects. 
Xiao et al. (2021) determined that total alkaloids of Flos 
Daturae have nephroprotective effects, possibly related to the 
activation of advanced glycosylation end products (AGEs)—
receptor of AGEs (RAGE)—transforming growth factor-beta 
(TGF-β) / SMAD family member 2 (Smad2) and PI3K-Akt 
signaling pathways, via network pharmacology. Picrasi-
dine is a potent anti-inflammatory agent, but the underlying 
mechanisms of its anti-inflammatory properties are not clear. 
Wu et al. (2022) conducted network pharmacology analysis 
and cellular validation of bitter ginseng alkaloids, such as 
IL-6 and TNF-α, to identify their critical anti-inflammatory 
targets. Picrasma quassioides (D. Don) Benn was found to 
contain a variety of alkaloidal components, and Xu’s team 
determined that its anti-inflammatory effects were related 
to the MAPK signaling pathway, chemotaxis signaling 
pathway, and NF-κB signaling pathway through network 
pharmacological prediction, which was consistent with the 
results of anti-inflammatory experiments performed by his 
team previously (Jiao et al. 2011; Xu et al. 2023). Wang et al. 
(2022) discovered that Sipeimine, an alkaloid from Fritil-
laria roylei, could exert its anti-inflammatory effect through 
the PI3K/Akt pathway through a network pharmacological 
study, and subsequently confirmed it through cellular exper-
iments and Western blot. After network pharmacological 
prediction and experimental verifications, it was revealed 
that the pivotal anti-inflammatory targets of the alkaloids 
included IL-6, TNF-α, IL-1β, and IL-17, which mainly func-
tioned in signaling pathways with NF-κB and MAPK.

Anti‑inflammatory activity of indole 
and terpenoid alkaloids

Indole alkaloids are a group of pentameric pyrrole ring 
alkaloids with a benzene ring structure that express 
remarkable anti-inflammatory activity (Marinho et al. 2016). 
Yang et  al. (2018a) isolated five monoterpenoid indole 
alkaloids, scholarisine S (A3), picrinine (A4) picralinal 
(A5), epischolaricine (A6), and aluammidine (A7), from the 
leaves of Alstonia scholaris, which inhibited TNF-α-induced 
NF-κB activation at a concentration of 25 μM. Nukulkit 
et al. (2022) elucidated five indole alkaloids from the roots of 
Maerua siamensis with anti-inflammatory activity to induce 
the production of NO. Among them, maeroxime C (A8), 
maeruabis indoles B (A9) and maeruabis indoles C (A10) 
showed better anti-inflammatory effects than indomethacin 
(IC50 = 150.0 ± 16.0 μM). The effect of maeruanitriles A 

(A11) and B (A12) on NO inhibition was comparable to 
that of indomethacin, with IC50 values of 186.4 ± 22.5 and 
186.8 ± 23.1 μM, respectively. Hu et al. (2016) extracted 
the indolizidine alkaloids (±)-homocrepidine A (A13, A14) 
and homocrepidine B (A15) from the stems of Dendrobium. 
(+)-homocrepidine A (A13) was able to restrain the 
production of NO (IC50 = 3.6 μM) and markedly reduced 
the expression of i-NOS. (−)-homocrepidine A (A14) and 
Compound A15 also showed medium anti-inflammatory 
activity with IC50 values below 30 µM. Ochienga et al. 
(2017) derived two terpene alkaloids, A16 (IC50 = 0.56 mM) 
and A17 (IC50 = 0.56 mM), which showed good inhibitory 
effects on COX-2, from the above-ground parts of the 
African plant Gymnosporia heterophylla.

Anti‑inflammatory activity of isoquinoline 
and quinoline alkaloids

Isoquinoline alkaloids are alkaloids with isoquinoline or 
tetrahydroisoquinoline as the parent nucleus. Berberine 
(A18, BBR) is an isoquinoline alkaloid originally 
isolated from the herb Coptidis rhizome (Mohammadian 
Haftcheshmeh and Momtazi-Borojeni 2021). Jia et  al. 
(2019) discovered that oral administration of BBR at a 
concentration of 120 mg/kg for 7 weeks could improve the 
resorption of alveolar bone in a rat model of periodontitis, 
which led to successful periodontitis suppression in rats. 
Gu et al. (2021) also found that BBR may exert its anti-
inflammatory influence by blocking the G protein-coupled 
estrogen receptor-mediated p38MAPK/NF-κB pathway. 
Oshima et al. (2018) analyzed the anti-inflammatory effects 
of raw herbal extracts from the Chinese herbal medicine 
orengedokuto, revealing that BBR was the main component 
of these raw herbs and exhibited inhibition of NO production 
(IC50 = 4.73 ± 1.46 μM). Litcubanine A (A19, LA), a novel 
isoquinoline alkaloid with anti-inflammatory activity, was 
derived from Litsea cubeba. Xia et  al. (2021) revealed 
that LA potently inactivated LPS-induced RAW264.7 
macrophages to produce NO and notably reduced the 
expression of iNOS, and attenuated the expression of TNF-α 
and IL-1β, resulting in anti-inflammatory effects. Lee et al. 
(2003) synthesized two alkyl derivatives, A20 and A21, 
using berberine as the parent, and found them to have good 
inhibitory effects on pro-inflammatory factors (IC50 = 11.64 
and 9.32 μM). Yang et al. (2019b) studied the quinoline 
alkaloid haplopine (A22) from Cortex Dictamni, which 
exhibited a potential inhibitory effect on NO production with 
a nitrite relative concentration (NRC) of 93.1 ± 0.3%. Zeng 
et al. (2017) chemically modified berberine and discovered 
that compounds A23 and A24 showed good inhibitory 
effects on IL-6 expression and STAT signaling pathway. 
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Gao et al. (2020) conducted a study on quinoline alkaloids 
derived from the root bark of Dictamnus dasycarpus and 
reported that Compounds A25, A26, and A27 had strong 
inhibitory effects on LPS-stimulated NO production in BV-2 
microglia with IC50 values below 5.0 μM. Wang et al. (2017) 
derivatized and modified berberine to obtain compounds 
A28 and A29, both of which had inhibitory effects on the 
inflammatory factor NF-κB, and the inhibitory activity of 
A28 was significantly stronger than that of A29.

Anti‑inflammatory activity of other alkaloids

Naucleoffieine H (A30) was an alkaloid dissociated from 
Nauclea officinalis, which Song et al. (2020a) detected to 
significantly inhibit the LPS-induced release of NO and 
tumor necrosis factor-α (TNF-α) from RAW 264.7 cells, 
and to decreased the expression of iNOS. In addition, 
Lind et  al. (2013) isolated the brominated alkaloid 
Barettin (A31) from Geodia barretti and discovered 
that Barettin was able to reduce the levels of TNF-α 
and IL-1β in LPS-stimulated THP-1 cells to combat 
inflammation. Lee et al. (2019) extracted pyrole alkaloid 
(10Z)-debromohymenialdisine (A32) from sponges of the 
genus Stylissa, showing its ability to reduce the expression 
of IL-1β, IL-6, TNF-α, iNOS, and COX-2 thereby 
exerting an anti-inflammatory effect. Jin and Yao (2019) 
summed up five organic amine alkaloids (A33-A37) from 
Amaryllidaceae and Sceletium with good inhibitory effects 
on LPS-induced NO release in RAW264.7 cells, which 
presented IC50 values between 7 and 24 μM and potential 

for deep exploitation. Liu et al. (2009b) revealed that the 
action of the pyrrolizidine alkaloid Wuzhuine (A38) from 
Evodia rutaecarpa on hypoxia-induced inflammation was 
capable of being therapeutic by multiple mechanisms and 
held great potency in counteracting hypoxic inflammation. 
Compound A39, an alkaloid containing a pyridazine 
structure, was recovered from Portulaca oleracea L., 
which dose-dependently inhibited NO release and 
suppressed IL-1β production (Liu et  al. 2022a). Silva 
et al. (2013) established that an alkaloid with an imidazole 
structure, A40, obtained from Pilocarpus microphyllus, 
exhibited good inhibitory effects when treated with it 
in carrageenan gum-induced edema in mice, as well as 
stronger inhibitory effects on TNF-α and IL-1β than the 
positive drug indomethacin. Di et al. (2020) identified an 
alkaloid A41 from Flustra foliacea with strong inhibitory 
effects on IL-12 (IC50 = 2.9 μM), which could offer 
potential as a lead compound in the development of novel 
anti-inflammatory drugs.

Structure–activity relationships 
for the anti‑inflammatory activity 
of alkaloids

Currently, alkaloids derived from anti-inflammatory aspects 
have focused on isoquinoline alkaloids, with nitrogen-con-
taining heterocycles exhibiting good anti-inflammatory 
activity. The study of the structure–activity relationship of 
alkaloids, regarding anti-inflammation, was mainly aban-
doned for berberine parent alkaloids (Fig. 9). The current 

Fig. 9   Structure–activity relationship for the anti-inflammatory activity of alkaloids
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anti-inflammatory modifications of berberine parent alka-
loids mainly focus on positions 8 and 13 of the C ring and 
positions 9 and 10 of the D ring. The introduction of elec-
tron-withdrawing or weakly electron-donating groups at 
the 8-position of the C-ring resulted in positive anti-inflam-
matory activity; however, when an acyl carbon chain was 
attached to the 8-position, an increase in the length of the 
acyl carbon chain or the number of branched chains led to 
a decrease in the anti-inflammatory activity. The introduc-
tion of only alkyl chains also caused increased cytotoxicity. 
Short-chain alkyl substitution at position 13 of the C ring 
resulted in compounds A20 and A21, which inhibited NO 
production and introduced ethyl better than methyl, but did 
not perform as well in inhibiting other inflammatory targets 
(Lee et al. 2003). Substitutions such as A23, which intro-
duced adamantane via an amino group at the 9-position of 
the D-ring, or A24, which inserted phenyl groups with sub-
stituents, as well as derivatives with 4-(N,N-dimethylamino)
pyridine, were found to have enhanced anti-inflammatory 
activity, so that rigid structural substituents at the C-9 posi-
tion favored anti-inflammatory activity, while substitutions 
such as those of aliphatic chains, phenyl groups, heterocy-
cles, etc., led to the reduction of the anti-inflammatory activ-
ity (Zeng et al. 2017). With the introduction of a sulfonyl 
phenyl group at C-9 of the D-ring, A28 and A29 inhibited 
NF-κB by more than 65%, which was stronger than that of 
the berberine prototype, and among the substituents on the 
phenyl group, the anti-inflammatory activity of trifluorome-
thyl group was stronger than that of the nitro group (Wang 
et al. 2017). Breaking the dioxygen bridge at the 2,3 position 
of the berberine nucleus, attaching a rigid structure at the 3 
position of the A-ring, and introducing an aromatic system 
at the 9 position of the D-ring, compound A24 exhibited an 
improved anti-inflammatory activity relative to the berber-
ine nucleus (Zeng et al. 2017). Liu et al. (2023) enhanced 
bioavailability and anti-inflammatory activity by disrupting 
the methylenedioxy or methoxy groups of the A and D rings 
of the proto-berberine skeleton and then attaching different 
groups. Compounds A21 and A22, by way of example, were 
those whose anti-inflammatory activity was enhanced by 
methylenedioxygenation of the A-ring of the proto-berber-
ine skeleton, followed by the attachment of other moieties. 
The type of substituent at position 10 was similar to that at 
position 9, and the rigid structure favored anti-inflammatory 
activity.

Terpenoids

Terpenoids are a class of compounds whose molecular skel-
eton is based on the isoprene unit with the formula (C5H8)n, 
and their derivatives are derived from methylenedihydroxy 

acids. In terms of structure, terpenoids are mainly classified 
into monoterpenes, sesquiterpenes, diterpenes, triterpenes, 
and tetraterpenes (Ge et al. 2022). As one of the most abun-
dant and diverse natural products in recent years, terpenoids 
have attracted much attention due to their anticancer, anti-
oxidant, antiviral, and anti-inflammatory biological activi-
ties (Pichersky and Raguso 2018; Harmange Magnani et al. 
2020; Zielińska-Błajet and Feder-Kubis 2020). Terpenoids 
with anti-inflammatory activity mentioned in the text are 
displayed in Figs. 10 and 11.

Network pharmacological studies 
of terpenoids exerting anti‑inflammatory 
activity

Terpenoids share a unique anti-inflammatory mechanism 
of action (Souza et al. 2014), and network pharmacology 
revealed that terpenoids mainly suppressed inflammation-
related diseases by inhibiting the NF-κB, MAPK1, IL-6, 
and STAT3 pathways (Salminen et al. 2008; Zhang et al. 
2019d; Dai et al. 2021; Niu et al. 2021; Zhao et al. 2022). 
Shan’s colleagues conducted a network pharmacological 
analysis of cyclic enol ether terpenoids, which is called 
geniposide in Gardenia jasminoides J. Ellis, and verified 
that the key anti-inflammatory target genes were vascu-
lar endothelial growth factor A (VEGFA), Rho-associ-
ated protein kinase 2 (ROCK2), nitric oxide synthase 3 
(NOS3), and C–C motif chemokine ligand 2 (CCL2), with 
validation experiments suggesting that geniposide modu-
lated the NF-κB pathway, increased the level of cellular 
tight junctions, and alleviated inflammation (Shan et al. 
2023). Karthikkeyan et al. (2020) demonstrated that liq-
uorice could mediate anti-inflammatory effects by modu-
lating the cell cycle, MAPK1/3, and PI3K/AKT pathways 
through network pharmacological analyses and in vitro 
experiments.

Anti‑inflammatory activity 
of sesquiterpenes, monoterpenes 
and diterpenoid

Sesquiterpenes are natural terpenoids with 15 carbon 
atoms in the molecule, containing three isoprenoid 
units and having a variety of backbone structures, such 
as chains and rings, which are widely found in plants, 
insects, and marine organisms in nature (Guo et al. 2018). 
Queiroz’s group isolated eight sesquiterpene lactones 
(T1–T8) from leaves and flowers of the plant Chresta 
martii, which manifested excellent NF-κB pathway 
inhibitory activity, all with IC50 values below 14 µM 
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Fig. 10   Structures of terpenoids (and their derivatives) T1–T37 with anti-inflammatory activity
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Fig. 11   Structures of terpenoids (and their derivatives) T38–T70 with anti-inflammatory activity
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(Queiroz et al. 2018). Formisano et al. (2017) assigned 
six sesquiterpene lactones (T9–T14) from the ground 
of the plant Onopordum illyricum L. They also showed 
significant anti-inf lammatory effects and exhibited 
significant activity against NF-κB, with IC50 values 
ranging from 3.6 to 50.0 μM. Tang et al. (2014) isolated 
five terpenoids (T15–T19) from Inula japonica, of which 
T19 showed the strongest inhibition of NO production at 
25 μM, and the inhibition rate was 68.9%. Zhang et al. 
(2017) derived cyclonerodiol B (T20) and Compound T21 
from endophytic fungi, which showed positive inhibitory 
effects on LPS-induced NO production in BV2 cells, 
with inhibitory rates of 75.0 and 39.2%, respectively. 
Monoterpenes are terpenoids consisting of two isoprene 
units with 10 carbon atoms. They are widely distributed 
in the secretory tissues of higher plants, such as glands, 
oil chambers, and resin tracts, and constitute the main 
components of plant volatile oils (de Cássia da Silveira 
e Sá et  al. 2013). Hou et  al. (2017) isolated Illigerate 
A (T22) from the stems of Illigera aromatica, which 
displayed a favorable suppression of LPS-induced NO 
production, with an IC50 value of 48.0 μM. They also 
obtained the novel polyol monoterpene T23, which showed 
moderate inhibition of LPS-induced NO production with 
an IC50 value of 16.83 μM. Wang et al. (2018a) identified 
a perillaketone monoterpene, T24, from the medicinal 
herb Perilla frutescens var. crispa, which was capable of 
inhibiting NO production, with an IC50 value of 14.4 μM.

Diterpenoids are compounds consisting of 4 molecules 
of isoprene polymerized with 20 carbon atoms in the 
molecule, which are widely found in plants, insects, fungi, 
and marine organisms, with anti-inflammatory, antitumor, 
antibacterial, and antiviral effects (Liu et al. 2009a; Wang 
et al. 2021). Zhang et al. (2019c) found that Compounds 
T25 and T26 from the traditional plant M. conspurcatus had 
strong anti-inflammatory activity and were able to inhibit 
NO production with IC50 values of 10.47 and 9.32 μM, 
respectively. Marginaol B (T27), an isopimarane diterpene 
derived from the rhizomes of Kaempferia marginata, 
exhibited modest inhibitory effects on LPS-induced NO 
production in RAW 264.7 cells (IC50 = 28.1 μM), suggesting 
moderate anti-inflammatory activity (Chokchaisiri et al. 
2020).

Anti‑inflammatory activity of tetracyclic 
triterpenoids

Tetracyclic triterpenoids were a class of natural products 
with a wide range of biological activities, consisting of 
six isoprene units and containing four cyclic structures. 
Cucurbitacin B (T28) produced a class of tetracyclic 
triterpenoids isolated from Cucurbitaceae (Dai et al. 2023), it 

was studied that T28 could effectively inhibit the production 
of reactive oxygen species (ROS) in macrophage cells and 
release of inflammatory factors in animals at a concentration 
of 5 mg/kg to achieve anti-inflammatory effects (Kim 
et al. 2015; Aljohani 2020). Chou et al. (2022) obtained 
compound T29 from Momordica charantia L. and achieved 
a dose-dependent inhibition of LPS-induced IL-6, TNF-α, 
and NO release and iNOS expression at concentrations of 
20–50 μM. Sun et al. (2018) and his collaborators derived 
three compounds T30–T42 from Euphorbia maculata L. and 
determined their inhibitory effects on tissue plasminogen 
activator  (TPA)-induced inflammatory ear edema using 
indomethacin as a positive control (ID50 = 838.0 nM/ear), 
which exhibited ID50 values of 87.1, 363.1 and 204.0 nM/
ear, all of which showed superior inflammatory inhibition to 
the positive drug. Choi et al. (2014) got the compound T33 
from Ganoderma lucidum (Curtis) P. Karst and achieved 
70% inhibition of LPS-induced NO release in RAW264.7 
cells, which possessed a promising anti-inflammatory 
potential.

Anti‑inflammatory activity of pentacyclic 
triterpenoids

Pentacyclic triterpenoids are common triterpenoids 
consisting of six isoprene units linked into five closed rings, 
with the closed ring as the parent body. Shi et al. (2017) 
obtained three pentacyclic triterpenoids T34-36 from Ilex 
dunniana H. Lév. that showed moderate inhibitory effects on 
LPS-induced NO production in BV2 microglial cells, with 
IC50 values all below 13 μM. In exploring the inhibitory 
effect of oleanolic acid on IL-1β-induced inflammation 
in SW982 cells, Lian and colleagues discovered that 
oleanolic acid (T37) could inhibit the production of a 
variety of inflammatory factors between concentrations of 
5–20 μM (Lian et al. 2016). Nkeh-Chungag et al. (2015) 
synthesized two esterified derivatives of oleanolic acid, 
T38 as well as T39, and revealed that the anti-inflammatory 
inflammatory activity of T38 and T39 was stronger than 
that of oleanolic acid and comparable to that of the positive 
control indomethacin. Krajka-Kuźniak et al. (2019) prepared 
four oleanane-type compounds with an oxime structure and 
identified compound T40 having a low cytotoxicity relative 
action concentration (IC50 = 46 μM) and a good inhibitory 
effect on the STAT inflammatory pathway by cellular 
experiments. Bhandari’s team analyzed four derivatives 
T41–T44 with good anti-inflammatory activity using 
oleanolic acid as a parent, which inhibited LPS-induced 
NO production in RAW264.7 cells, with IC50 values of 
less than 17 μM for all of them, which was stronger than 
the positive drug (IC50 = 69.21 μM) (Bhandari et al. 2014). 
Chen et al. (2014) isolated three oleanane-type triterpenes 
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T45–T48 from Microtropis fokienensis, which displayed 
remarkable inhibitory activities in the inhibition assay 
of elastase release from human neutrophils, and the IC50 
values of all three were lower than 3.5 μM. Ba Vinh and 
equivalents derived the compound eleutheroside E (T49) 
and compound kalopanaxsaponin A (T50) from the fruits 
of Stauntonia hexaphylla(Thunb.)Decne. By determining 
the changes in NO release in LPS-induced RAW264.7 cells 
after administration of the compounds, it was noticed that 
both of them had good anti-inflammatory effects, with IC50 
values of 1.33 and 1.10 μM (Ba Vinh et al. 2019). Xue 
et al. (2020) yielded a triterpenoid compound, T51, of the 
lupine alkane type from Centipeda minima, which was 
detected to have good anti-inflammatory activity with an 
IC50 value of 11.9 μM. Villar-Lorenzo et al. (2016) revealed 
that the corkypane-type pentacyclic triterpenoids T52 and 
T53 significantly inhibited the release of intracellular NO 
and reduced the mRNA expression of proinflammatory 
cytokines at concentrations of 50 and 25 μM, respectively. 
Zhang et al. (2022a) found that four terpenoids, T54–T57, 
from Pterocephalus hookeri (Dipsacaceae) could restrain 
NO production (IC50 = 12.4–63.7 μM). Banno et al. (2004) 
identified eight triterpenoids isolated from Perilla frutescens 
(T58-65) and found significant anti-inflammatory properties 
in TPA-induced ear edema in mice, with ID50 values in the 
range of 0.09–0.3 mg/ear. Zhang et al. (2023) identified 
that the presence of Compounds T66-69 in the ethanolic 
extract of Lyonia doyonensis significantly decreased NO 
production to 72.0%, 31.5%, 41.9%, and 27.1%, respectively, 
compared with that in the LPS group. Ding et al. (2010) 
separated a pentacyclic triterpene, T70, from the plant Acer 
mandshuricum, which displayed a good anti-inflammatory 

effect by inhibiting LPS-induced TNF-α secretion in 
RAW264.7 cells at nanomolar concentrations.

Structure–activity relationships 
for the anti‑inflammatory activity 
of pentacyclic triterpenoids

Currently, the derivatization of terpenoids for anti-inflam-
matory purposes has focused on pentacyclic triterpenoids, 
with the parent types broadly classified as oleanocarpane-
type, ursane-type, and lupulane-type. Studies indicated that 
the modification sites of pentacyclic triterpenoids affecting 
anti-inflammatory activity were mainly concentrated at the 
C-1, C-3, C-5, C-7, C-15, C-21, C-24, C-28, and C-30 posi-
tions (Fig. 12) (Zhao et al. 2021). Acetylation of C-1 or 
hydroxylation of C-7, C-15, C-21, and C-24 as well as the 
introduction of glycosidic bonds at C3, C28, and C30 could 
increase the anti-inflammatory activity of pentacyclic trit-
erpenoids (Villar-Lorenzo et al. 2016; Zhang et al. 2019a, 
b, c, d; Chokchaisiri et al. 2020; Zhang et al. 2022a, b). The 
free hydroxyl group at the C-3 position and the free car-
boxyl group at the end of the side chain at the C-28 position 
were essential groups for the anti-inflammatory activity of 
triterpenoids (Liu et al. 2022b). Pentacyclic triterpenoids 
such as oleanolic acid (T37), corosolic acid, and cumaric 
acid displayed good anti-inflammatory activity (He et al. 
2023). Oleanolanes were reported to be more commonly 
modified than ursanes and lupinanes due to their rich back-
bone and diverse biological activities. Currently, the struc-
tural modification sites of oleanolic acid (T37) are mainly 
concentrated at the C-3 position and the C-28 position (Liu 

Fig. 12   Structure–activity relationship of the anti-inflammatory activity of pentacyclic triterpenoids
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et al. 2022a, b). Compounds A42 and A43, which acetylated 
the hydroxyl group at the C-3 position of oleanolic acid, 
presented stronger anti-inflammatory activity compared to 
oleanolic acid (T37) (Nkeh-Chungag et al. 2015), and the 
oxidation of the hydroxyl group to a carbonyl group had 
less impact on the anti-inflammatory activity of the mol-
ecule (Bhandari et al. 2014). The oximide group at C-3 and 
morpholine group at C-28 of compound T40 appeared to 
be a good inhibitor of the inflammatory pathway in cellular 
experiments (Krajka-Kuźniak et al. 2019), but the introduc-
tion of isoxazole or triazole at the C-28 position increased 
the cytotoxicity of the molecule (Chouaïb et al. 2016). In 
addition, compounds T43 and T44, which combined the 
introduction of a heterocyclic ring in the A ring with an 
amide group at the C-28 position, both exerted an inhibitory 
activity on NO production equivalent to ten times that of 
oleanolic acid, which greatly enhanced the anti-inflamma-
tory activity (Bhandari et al. 2014). The ring expansion of 
the oleanolane A ring at 2,3 position led to compound T47, 
which possessed more significant anti-inflammatory activ-
ity as compared with the oleanolane parent nucleus as well 
as compounds of the same type, T45, and T46, indicating 
that the ring expansion of the A ring at the 2,3 position was 
a good strategy to improve the anti-inflammatory activity 
(Chen et al. 2014).

Flavonoids

Flavonoid is a general term for a type of compound derived 
from the skeleton of 2-phenylchromone. According to their 
chemical structure, these compounds can be classified as 
flavonoids, flavonols, isoflavones, etc. (Panche et al. 2016). 
They have a variety of pharmacological activities, such as 
anticancer, antioxidant, anti-infective, anti-inflammatory, 
and antiviral activities (Middleton et al. 2000; Rathee et al. 
2009; Pan et al. 2010; Vinayagam and Xu 2015; Al-Ishaq 
et al. 2019; Maleki et al. 2019; Ferraz et al. 2020; Šudomová 
et al. 2022). The structures of flavonoids with anti-inflamma-
tory activity, that were mentioned in the text, are sketched 
in Fig. 13.

Network pharmacological studies 
of flavonoids exerting anti‑inflammatory 
activity

In recent years, network pharmacological studies indicated 
that flavonoids could inhibit the TNF pathway, activator 
protein-1 (AP-1), MAPK, PI3K/AKT, and NF-κB signaling 
pathways, thereby suppressing the inflammatory response 
(Al-Khayri et al. 2022; Chen et al. 2022; Long et al. 2022; 
Motallebi et al. 2022).

Zhang et  al. (2022b) found that IL-6, IL-1β, and 
TNF-α were potential targets of quercetin in the treatment 
of ulcerative colitis through network pharmacological 
prediction, and the results of protein blotting experiments 
were consistent with the network pharmacological 
prediction. Chen et  al. (2022) conducted a network 
pharmacological analysis to predict the mechanism of action 
of total flavonoids of crushed tonic (TFRD) in the treatment 
of rheumatoid arthritis (RA) and later verified that its anti-
inflammatory effects involved the T-cell receptor, helper T 
cell 17 (Th17) cell differentiation, IL-17, TNF, MAPK, and 
PI3K/AKT signaling pathways through cellular experiments. 
Wu et al. (2023) predicted that seven proteins, including 
TNF-α, IL-6, and AKT1, were the main anti-inflammatory 
targets of baicalein by performing network pharmacological 
analyses and cellular experiments on baicalein. Alamri and 
associates used network pharmacology predictive screening 
to find that flavonoids from Dodonea angustifolia played 
a role in inflammation by affecting AKT1, VEGFA, and 
epidermal growth factor receptor (EGFR), and molecular 
docking and integrated molecular dynamics simulations 
were in agreement with the network pharmacology 
predictions (Alamri and Qamar 2023). Liu’s research team 
discovered that quercetin was the key component in the 
anti-inflammatory effect, and the main target might be the 
PI3K/AKT signaling pathway, using network pharmacology 
to study the active ingredients and core targets in Sophora 
Huai Hua San. Therefore, they carried out molecular 
docking on quercetin and the results were consistent with 
the predicted results, and subsequent cellular experiments 
showed that quercetin could indeed inhibit the release of 
inflammatory factors and the PI3K/AKT signaling pathway 
in LPS-induced RAW264.7 cells (Liu et al. 2021). Zou and 
other researchers investigated the therapeutic targets and 
molecular mechanisms of Si-Miao-Yong-An decoction in 
thromboembolic vasculitis using a network pharmacology 
approach and revealed that quercetin, the active ingredient, 
was mainly targeted at IL-6, Matrix metalloproteinase-9 
(MMP9), and VEGFA. The molecular docking results 
demonstrated that the target molecules were well bound to 
the target and the expression of IL-6 and MMP9 was reduced 
in vivo as well as in vitro (Zou et al. 2023). Sun et al (2023) 
used network pharmacology to predict naringenin’s targets 
on chronic skin wounds and identified AKT1, MAPK1, 
and MAPK3 as potential targets. Molecular docking and 
in vitro cellular assays were consistent with the network 
pharmacology prediction that naringenin promoted wound 
healing by inhibiting inflammation. To date, the main anti-
inflammatory targets of flavonoids, identified by network 
pharmacological studies, include TNF-α, IL-6, AKT1, 
VEGFA, EGFR, IL-1β, and so on, and the main anti-
inflammatory pathways are the TNF, AP-1, MAPK, PI3K/
AKT, and NF-κB signaling pathways.
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Anti‑inflammatory activity of flavonoids

Quercetin (F1) is a common flavonol compound in nature 
with potent anti-inflammatory effects (Li et al. 2016; Salehi 

et al. 2020; Yang et al. 2020b). In an experimental model 
of acetic acid-induced gastric ulcers in rats, quercetin 
isolated from Madhuca indica J. F. Gmel achieved anti-
inflammatory effects by repressing IL-1β, TNF-α, NO, and 

Fig. 13   Structures of flavonoids (and their derivatives) with anti-inflammatory activity
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prostaglandin production by decreasing COX-2 expression 
(Mohod et al. 2016). Shamsudin et al (2022) identified an 
analog of quercetin, myricetin (F2), which differed from 
quercetin’s significant inhibitory activity against COX-2 
and had little or no inhibitory activity against COX-2. 
Matsuda et al. (2003) methylated and modified myricetin 
to obtain compound F26, which enhanced the inhibitory 
effect on NO by more than tenfold with an IC50 value of 
7.4 μM. Yang et al. (2019a) isolated a new flavonol acyl 
glycoside (F3) from Lindera akoensis Hayata that inhibited 
NO production with an IC50 value of 36.3 ± 3.2 μM. Yang’s 
team found that two flavonoids derived from H. plantaginea, 
kaempferol (F4) and dihydrokaempferol (F5), were able to 
potently control the overproduction of NO at a concentration 
of 40 μM, with IC50 values of 18 µM. In addition, these 
two flavonoids effectively inhibited the secretion of TNF-α, 
PGE2, IL-1β, and IL-6, indicating that they could be used to 
treat inflammatory diseases by blocking the NF-κB signaling 
pathway and repressing the overproduction of inflammatory 
mediators (Yang and He 2022). Gong et al. (2012) also found 
that 10 and 20 μmol/L kaempferol (F4) were able to prohibit 
the adhesion of eosinophilic granulocytes to TNF-α-exposed 
epithelial cells. Kim et al. (1999) demonstrated that apigenin 
(F6) and luteolin (F7) had strong inhibitory effects on NO 
production with IC50 values of 23 and 27 μM, respectively. 
Baicalin (F8), one of the main bioactive components of 
Scutellaria baicalensis, is a glycoside flavonoid. Baicalin 
was shown to reduce the production of IL-6, IL-8, and TNF-
α, while it could inactivate the NF-κB pathway and inhibit 
chondrocyte apoptosis, resulting in an anti-inflammatory 
effect (Chen et al. 2017; Yang et al. 2018b). Bello et al. 
(2019) isolated three flavonoids from Vitex grandifolia, 

isoorientin (F9), orientin (F10), and isovitexin (F11), all 
of which had good inhibitory effects on NF-κB, with IC50 
values of 8.9, 12, and 18 μg/mL, respectively. In addition, 
F11 showed moderate activity for iNOS inhibition, whereas 
F9 and F10 showed poor iNOS inhibition.

Tewtrakul’s team identified an isoflavone F12 from 
Eclipta prostrata and exhibited good performance 
(IC50 = 4.6 μM) in the LPS-induced NO release assay of 
RAW264.7 cells, which had good potential for development 
(Tewtrakul et al. 2011). Liu et al. (2019) extracted four 
isoflavone derivatives (F13–16) from the fruits of Ficus 
carica, and these four compounds exerted a good inhibitory 
effect on LPS-induced NO production in RAW264.7 cells, 
and the IC50 values ranged from 0.89 to 2.06 μM, with 
significant anti-inflammatory activity. Yao et al. (2021) 
discovered in the presence of two isoflavone derivatives 
F17 and F18 derived from Ficus altissima extracts with 
strong anti-inflammatory activity, showed stronger than 
positive drug indomethacin inhibitory activity, with IC50 
values of 28.16 and 26.25 μM, in the assay of the amount of 
NO produced by LPS-induced RAW264.7 cells. Wang and 
associates developed two chalcone-isoflavone dimers, F19 
and F20, from Caragana jubata and achieved effective anti-
inflammatory effects (IC50 = 4.1 and 5.2 μM), with potential 
for anti-inflammatory development (Wang et al. 2019a). 
Two chalcone derivatives, F21 and F22, were extracted 
from Lysimachia baviensis by Hung’s team and expressed 
strong anti-inflammatory activity in an assay to determine 
LPS-induced NO production by RAW264.7 cells, with IC50 
of both below 4 μM (Hung et al. 2023). Wen et al. (2018) 
obtained three chalcone compounds (F23–F25) with good 
inhibitory effects on LPS-induced NO production in BV-2 

Fig. 14   Structure–activity 
relationship of the anti-inflam-
matory activity of flavonoids
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cells in their study of extracts of Pongamia pinnata (L.) 
Pierre, and all of them showed stronger inhibitory activities 
than the positive drug for NO release.

Structure–activity relationships 
for the anti‑inflammatory activity 
of flavonoids

To date, the modification of flavonoids for anti-inflammatory 
purposes has been centered around the parent nucleus. Most 
flavonoids have a C6–C3–C6 backbone structure and the 
types and positions of substituent groups influence their 
anti-inflammatory activities. The specific conformational 
relationships were already simplified in Fig. 14. The posi-
tion and number of substituents of hydroxyl groups on the 
B-ring were one of the important factors affecting the anti-
inflammatory activity of flavonoids. In the case of myricetin 
(F2), which carried three hydroxyl groups on the B ring, the 
position and number of substituents showed little inhibitory 
effect on inflammatory mediators (Shamsudin et al. 2022), 
whereas quercetin (F1) had two hydroxyl groups present at 
the C3′ and C4′ positions on the B ring and significantly 
inhibited the expression of COX-2. However, the loss of 
hydroxyl groups results in the loss of the anti-inflamma-
tory activity of the compound (Choy et al. 2019). Hydroxyl 
groups at the C-5 and C-4′ positions of the A ring and the 
B ring potentiated their anti-inflammatory activity, whereas 
hydroxyl groups at the C-6, C-7, C-8, and C-3′ positions 
inhibited their anti-inflammatory activity. For example, com-
pounds F4, F6, and F7 were linked with –OH at the A-ring 
C-5 and B-ring C-4′ positions, increasing their anti-inflam-
matory activity. In comparison with compounds F2 and F26, 
methylation of hydroxymethylated F26 resulted in enhanced 
inhibition of NO production, thus methylation was a pos-
sible direction for structural modifications (Matsuda et al. 
2003). In a review article on flavonoids, it was mentioned 
that quercetin (F1) and lignans (F7) could exert anti-inflam-
matory effects by inhibiting LOX and that the unsaturated 
double bond at C2–C3 of the C-ring was an important factor 
influencing the activity (Shamsudin et al. 2022). Therefore, 
the disruption of the double bond at C2–C3 and the presence 
of hydroxyl groups at the C-3 position in the B-ring weaken 
the anti-inflammatory activity of flavonoid glycosides.

Others

In addition to the mentioned natural products and their 
derivatives, there were some other natural products with 
anti-inflammatory activity with different parent structures, 
which could be equally valuable for the development of anti-
inflammatory agents, and their structures are summarized 

in Fig. 15. Tan et al. (2020) yielded Compounds O1 and 
O2 from the endophytic fungus Edenia gomezpompae with 
strong anti-inflammatory activity, and the IC50 values for 
NO were 2.61 and 1.32 mmol/L, respectively. Raju and 
his colleagues received two phytosterols from the Austral-
ian rainforest plant Alphitonia petriei and examined their 
anti-inflammatory factor inhibitory effects. Compounds O3 
and O4 showed the strongest anti-inflammatory activity 
with IC50 values of 1.7 ± 0.3 and 3.5 ± 0.5 µM, respectively 
(Raju et al. 2016). Luo et al. (2021) separated Compound O5 
from the rhizome of Morinda officinalis, which possessed 
a pronounced inhibitory effect on NO (IC50 = 34.32 ± 4.87 
µM). Susana and her colleagues purified the marine sponge 
Neopetrosia compacta extract to form two compounds, O6 
and O7, which displayed better anti-inflammatory activ-
ity and were able to significantly inhibit NO production 
(IC50 = 2.5 ± 0.39, 4.0 ± 2.4 µM) (Susana and Salvador-
Reyes 2022). Tuan Anh et al. (2021) achieved Compounds 
O8 and O9 from Physalis angulata with IC50 values ranging 
from 0.30 to 1.06 µM for NO inhibition, similar to the posi-
tive control. Wang et al. (2018b) obtained Compound O10 
from Forsythia, which had strong anti-inflammatory activity 
(IC50 = 1.30 µM), comparable to the effect of dexamethasone 
(IC50 = 2.09 µM). Xu and his associates separated an anti-
inflammatory natural product, O11, from Reineckia carnea 
herbs, which was a newly discovered natural product with 
an IC50 value of 56.1 µM for NO inhibition and belonged to 
the steroidal parent nucleus group, with some modification 
value (Xu et al. 2020). Compound O12 and Compound O13, 
derived from the fungus Aspergillus rugulosa by Xu’s team, 
displayed outstanding anti-inflammatory activity with IC50 
values of 1.49 ± 0.31 and 3.41 ± 0.85 µM for NO inhibition 
(Xu et al. 2021). Tseng and others obtained Compounds 
O14–O16 in a study of the anti-inflammatory activity of 
derivatives of β-lapachone, which exerted potent inhibitory 
effects on NO with IC50 values in the range of 0.7–1.3 µM 
and low cytotoxicity (Tseng et al. 2013). Gui et al. (2020) 
found Compound O17, which had good anti-inflammatory 
activity in the sponge Dysidea septosa and significantly 
inhibited TNF-α (IC50 = 9.15 µM) and IL-6 (IC50 = 17.62 
µM).

Conclusion and outlook

Inflammation is one of the most important bodily responses 
initiated by the immune system, as it protects the tissues 
from damage or infection, and elicits symptoms such as 
pain to remind the organism of the damage (Kazemi et al. 
2018). However, inflammation serves as a trigger for certain 
diseases, such as inflammation-induced hyperthermia, 
atherosclerosis (van der Valk et  al. 2012), depression 
(Caneo et al. 2016), and chronic obstructive pulmonary 
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Fig. 15   Structures of other natural products (and their derivatives) with anti-inflammatory activity
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disease (COPD) (Oudijk et al. 2003). Hence, the search for 
an effective and safe anti-inflammatory drug is important 
for the protection of human health. The current clinical use 
of NSAIDs and steroidal hormonal anti-inflammatory drugs 
carries many side effects, leading to the search for new anti-
inflammatory drugs. Plant-derived drugs are considered 
to have fewer side effects than their synthetic counterparts 
(El-Saber Batiha et al. 2020). Natural products from plants 
and animals, in terms of their rich variety of molecular types 
and biological activities, conveniently facilitate this search 
for new anti-inflammatory drugs (Azab et al. 2016).

According to the classification of the active ingredients 
of natural products, we reviewed the anti-inflammatory 
activities of phenylpropanoids, quinones, alkaloids, 
terpenoids, f lavonoids, and other compounds, and 
determined that the existing studies on the anti-inflammatory 
activities of natural products mostly concentrated on 
the anti-inflammatory activities of the natural products 
themselves, with fewer studies focusing on the structural 
modifications and derivatizations of the natural products. 
Meanwhile, with the development of modern chemistry and 
other subdisciplines, the synthesis methods are becoming 
more and more diversified, and the structural modification 
of compounds from natural sources is becoming cheaper and 
more efficient. Therefore, we explored the structure–activity 
relationships of various types of natural products and 
identified some specific structures of natural products, 
such as pentacyclic triterpenes, isoquinoline alkaloids, 
coumarins, naphthoquinones, and anthraquinones, which 
exhibited good anti-inflammatory activities. The presence 
of specific groups or changes in the position of groups 
resulted in the variation of the anti-inflammatory activity 
of the compounds, e.g., the introduction of a hydrophobic 
group at the C-3 position of the coumarin parent nucleus 
enhanced the anti-inflammatory activity and the introduction 
of a hydrophilic group decreased the anti-inflammatory 
activity. The introduction of small polar groups such as 
methoxy groups on the benzene ring of anthraquinone could 
strengthen the hydrophobicity of the structure and thus 
increase the anti-inflammatory activity, but the introduction 
of alkane groups at the 5 and 8 positions of naphthoquinone 
was not favorable for increasing its anti-inflammatory 
activity. The introduction of rigid structures in isoquinoline 
alkaloids favored anti-inflammatory activity, whereas 
the number and position of hydroxyl groups contained in 
flavonoids affected their anti-inflammatory activity. This 
finding provided some direction and ideas for the subsequent 
anti-inflammatory derivatization and structural modification 
of natural products.

Moreover, many natural product molecules with anti-
inflammatory activity simultaneously exhibited a certain 
degree of cytotoxicity, and many studies emphasized 
the improvement of anti-inflammatory activity while 

neglecting cytotoxicity. Wang et al. (2019b) investigated 
the anti-neuroinflammatory effect of Erinacine C but 
only highlighted its inhibitory effect on inflammatory 
factors and lacked a discussion of cytotoxicity. Similarly, 
Kuang and colleagues analyzed the transcriptional 
fractions of Nigrospora sphaerica and discovered anti-
inflammatory active ingredients, but only experimented 
on their inhibitory effects on inflammatory factors and 
did not involve cytotoxicity studies (Kuang et al. 2022). 
Therefore, strengthening the cytotoxicity study of natural 
product anti-inflammatory molecules to reduce toxicity 
and increase efficiency is very important. For instance, 
Hou and his coworkers determined that structural 
modification of the A- and B-ring parts could reduce 
cytotoxicity in the study of the structural modification of 
Leiogangtengrongxin and that connecting the carboxyl 
group at the C-20 position could enhance the affinity for 
Nurr77 and thus enhance the anti-inflammatory activity 
(Hou et al. 2020b).

Despite the large number of studies on the anti-inflamma-
tory activity of natural products, there is currently no com-
plete range of anti-inflammatory drugs, derived from natural 
products, available on the market. Although some natural 
product molecules were discovered to have anti-inflammatory 
activity, they could not be enriched in large quantities due to 
their low effective concentrations, making these natural prod-
ucts difficult to use as drugs, and many of the studies were not 
in-depth, only investigating the inhibition of a few inflamma-
tory factors or simply conducting preliminary screening for 
anti-inflammatory activity. Due to the small yield of natural 
products, experiments are usually carried out at the cellular 
level, resulting in little clinical data, which greatly reduces the 
possibility of natural products being marketed as novel anti-
inflammatory agents. To a certain extent, research on the anti-
inflammatory activity of natural products has been limited 
to a superficial level thus far. However, in recent years, the 
rapid development of biosynthesis technology has brought 
new hope for the mass production of active compounds with 
low yields from natural sources. The parent nuclear structures 
of these natural compounds often existed as active centers, so 
there were few changes to the parent nuclear structure in the 
literature that we had searched. Therefore, the study of these 
natural products with anti-inflammatory activity was still of 
great significance, and their semi-synthetic modification to 
make up for the structural defects of the target molecules had 
become an alternative direction. Through the classification 
and summary of the structure of natural anti-inflammatory 
molecules in this review, some rules of structure–activ-
ity relationship were obtained, which could provide some 
guidance for the follow-up structural modification. With the 
rapid development of science and technology, research could 
be enhanced by a large number of new technologies, such 
as high-throughput screening, computer-aided drug design 
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(CADD), and biosynthesis technology, which would hasten 
the research process and would facilitate the development of 
better anti-inflammatory drugs that can protect human health.
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