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Abstract

Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma,
age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the
global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share
common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone dea-
cetylases (HDACSs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and
nonhistone proteins. HDAC:s are crucial for regulating various cellular processes, such as gene expression, protein stability,
localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases,
neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular
diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases,
specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as
optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and
key regulators of fibrosis and angiogenesis, such as TGF-p and VEGF, highlighting the potential of targeting HDAC as novel
therapeutic strategies for ocular diseases.

Keywords Histone deacetylase - Ocular disease - Diabetic retinopathy - Aged-macular degeneration - Glaucoma -
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Introduction

Ocular disorders are a growing global issue that significantly
affects quality of life. Cataracts, glaucoma, age-related mac-
ular degeneration (AMD), and diabetic retinopathy (DR) are
the most prevalent ocular diseases (Foster and Resnikoff
2005), and their prevalence is expected to increase signifi-
cantly in the coming decades (Tham et al. 2014; Teo et al.
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2021; Deng et al. 2022). The global market size is also
increasing, with an estimated annual growth rate of approx-
imately 9.3% from 2023 to 2030 (Grand View Research
Report, GVR -3-68038-766-7). However, the pharmaceuti-
cal treatment options are currently limited. For cataracts,
surgery is the only available treatment (Lam et al. 2015).
Anti-vascular endothelial growth factor (VEGF) antibod-
ies have been used for AMD, DR, and ROP (retinopathy of
prematurity) (Lim et al. 2012; Alagorie et al. 2021; Brown
et al. 2021; Chatziralli 2021; Tan et al. 2021; Tao et al. 2021;
Valikodath et al. 2021). Lastly, topical pressure-lowering
medications such as prostaglandin analogs, are the first-line
therapy for glaucoma (Weinreb et al. 2014).

These diseases share common underlying features like
neovascularization, inflammation, and/or neurodegeneration
(Capitao and Soares 2016; Baudouin et al. 2021). Histone
deacetylases (HDACS) are desirable targets for studies in
various research fields, notably cancer, inflammatory dis-
eases, neurological disorders, and vascular diseases (Glau-
ben et al. 2009; Cantley and Haynes 2013; Park et al. 2022).
Understanding the function of HDACs in ocular diseases
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plays a crucial role in gaining insights into the pathogenesis
and developing fundamental treatment approaches.

This review article delves into the function of HDACs in
ocular diseases, with a particular focus on DR, AMD, and
ROP, as well as optic nerve disorders, such as glaucoma and
optic neuropathy. Furthermore, we investigate how HDACs
interact with important regulators of fibrosis and angiogen-
esis. We evaluate how HDACs affect TGF-p and VEGF
signaling and provide an interpretation within the context
of ocular diseases.

HDAC classification and its dysregulation
in various diseases

HDAC classification

HDAC:Ss are a class of enzymes that catalyze the removal
of acetyl groups from lysine residues in histone proteins,
an important component of chromatin. The deacetylation of
histones results in a more compact chromatin structure that
is transcriptionally inactive and can lead to gene repression.
In addition to their interaction with histones, HDACs modu-
late non-histone proteins’ acetylation status.

HDAC S can be divided into two main groups based on
their deacetylase domains and specific cofactors: the his-
tone deacetylase family and the sirtuin protein family. The
18 mammalian HDACs can be further categorized into four
classes: Class I (HDAC1, HDAC2, HDAC3, and HDACS),
Class II (HDAC4, HDACS5, HDAC6, HDAC7, HDACY, and
HDAC10), Class III (Sirtl, Sirt2, Sirt3, Sirt4, Sirt5, Sirt6,
Sirt7), and Class IV (HDAC11). Class I, Class II, and Class
IV HDACs are Zn>*-containing enzymes, while Class III
HDACS have a different catalytic mechanism that utilizes
nicotinamide adenine dinucleotidet (NAD™) as a cofactor
(Houtkooper et al. 2012; Ellmeier and Seiser 2018) (Fig. 1).
Class | HDAC:s are predominantly located in the nucleus and
are involved in the deacetylation of histones and non-histone
proteins. They form complexes with other proteins to repress
target genes (Ayer 1999). HDACS is an exception that func-
tions alone without forming a large complex (Hu et al.
2000). Class II HDAC:s are further subdivided into Class Ila
(HDAC4, HDACS5, HADC7, and HDAC9) and IIb (HDAC6
and HDAC10). Class ITa HDACs have binding sites for two
important proteins:14-3-3 and myocyte-specific enhancer
factor 2 A (MEF2A). These binding sites are crucial for the
movement of molecules between the nucleus and the cyto-
plasm (Yang and Grégoire 2005). Class IIb HDACs have a
characteristic tail domain at the C-terminus. HDAC6 has
two deacetylase domains and a zinc finger ubiquitin-binding
domain (ZnF-UBD), also known as polyubiquitin-associated
zinc finger (PAZ), that plays a crucial role in transporting
misfolded protein cargo to aggresomes (Yang and Grégoire

2005; Hai et al. 2017). The zinc-binding group, which is
unique to HDACG, has been the focus of intensive study for
the selective inhibition of HDACS6 in the development of
HDACS6 inhibitors. Chong Kun Dang Pharmaceutical has
completed phase 2 clinical trials (NCT04204603) for CKD-
506, a potential treatment for autoimmune diseases such
as rtheumatoid arthritis. Additionally, CKD-510, based on
the non-hydroxamic acid structure, has completed phase 1
clinical trials (NCT04746287) and is being evaluated for its
potential efficacy in treating Charcot-Marie-Tooth and atrial
fibrillation. HDAC10 has a catalytic domain and a leucine-
rich repeat domain (Hai et al. 2017). Class III HDACs share
conserved domains and rely on NAD* and peptide-binding.
Sirt5, a member of the sirtuin family, has little or no dea-
cetylase activity but can remove acyl groups from histones
and proteins (Du et al. 2011; Sabari et al. 2017). The spatial
expression of sirtuins is diverse. Sirtl, Sirt6, and Sirt7 are
located in the nucleus, Sirt3, Sirt4, and Sirt5 are located in
the mitochondria, and Sirt2 is found mainly in the cytoplasm
(Houtkooper et al. 2012; Ellmeier and Seiser 2018).

Dysregulation of HDACs in various diseases

HDAC: are associated with various biological processes,
including gene regulation, DNA methylation, DNA repair,
histone modification, chromatin remodeling, cell cycle pro-
gression, apoptosis, and development. Dysregulation of
HDAC: has been associated with fibrosis, angiogenesis, and
inflammation and has been implicated in various diseases.
Accordingly, HDACs have emerged as promising therapeutic
targets for various diseases, including cancer, neurodegen-
erative disorders, vascular disease, and inflammatory dis-
eases (Glauben et al. 2009; Cantley and Haynes 2013; Pedro
Ferreira et al. 2021; Park et al. 2022).

Naive CD4* T-cells differentiate into effector Thl and
Th2 cells in the immune system, producing IFN-y and IL-4,
respectively. In addition, IL.-12 is required for differentiation
into Thl cells, whereas IL.-4 is necessary for differentiation
into Th2 cells. HDACs are epigenetic regulators that influ-
ence the production of various types of cytokines involved in
T-cell differentiation (Bowen et al. 2008; Aune et al. 2009).
IL-2 is a cytokine that plays an important role in the dif-
ferentiation and development of T-cells. HDACI1 binds to
the IL-2 promoter and suppresses its expression (Kametani
et al. 2008). Also, in unstimulated cells, HDAC1 combines
with the p50 subunit of NF-kB and suppresses downstream
gene expression (Zhong et al. 2002). HDAC7 suppresses
the expression of Nur77 and regulates the apoptosis rate of
T-cells during T-cell receptor engagement (Dequiedt et al.
2003). Sirtl inhibits regulatory T-cell (Treg) differentiation
by controlling FoxP3, reduces oxidative stress by controlling
FoxO1, and reduces inflammatory factors of macrophages
(Shen et al. 2021).
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Fig. 1 Classification and catalytic mechanisms of HDACs. A HDACSs are divided into four classes based on their structure and catalytic mecha-
nisms. Class I, Class II, and Class IV are Zn>* containing enzymes. However, Class Il HDACs have a distinct catalytic mechanism that employs
NAD™ as a cofactor. The intracellular localization and the total number of amino acids for each HDAC protein are presented (Only the longest
isoform is shown). B Both Zn** dependent HDACs and NAD™ dependent sirtuins interact with the target protein and deacetylate the acetylation

moiety. Figures were created with Biorender.com

Dysregulation of HDACs in diabetic retinopathy

DR is a disease associated with abnormal blood vessel
growth in the retina and is a leading cause of vision loss
in developed countries, typically occurring 10 to 15 years
after diabetes diagnosis (Cheung et al. 2010; Jampol et al.
2020). The main risk factors of DR are disease duration and
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uncontrolled blood glucose levels. Without treatment, DR
can progress from mild non-proliferative DR (NPDR) to
severe NPDR or proliferative DR (PDR) (Wong et al. 2016).
Recent studies have shown that treatment with antibodies
against VEGF, such as ranibizumab, bevacizumab, and
aflibercept, can effectively reduce diabetic macular edema
and improve vision, replacing macular laser therapy as the
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primary treatment (Elman et al. 2010; Michaelides et al.
2010; Mitchell et al. 2011; Nguyen et al. 2012; Brown et al.
2015; Heier et al. 2016).

Since 2015, Ranibizumab (Lucentis, Genentech) and
aflibercept (Eylea, Regeneron) have been FDA-approved for
diabetic macular edema. Their indications were expanded
respectively to include all forms of DR in 2017 and 2019.
They target all VEGF-A isoforms and prevent neovasculari-
zation by restoring retinal vascular permeability (Alagorie
et al. 2021; Brown et al. 2021; Chatziralli 2021; Tan et al.
2021; Tao et al. 2021). However, the frequency and duration
of treatment required for optimal results remain unclear.

Sirtl plays a therapeutic role in DR. Retinas from exper-
imental DR models display reduced Sirtl expression and
activity (Lamoke et al. 2015; Zhao et al. 2016; Liu et al.
2018; Ji et al. 2020; Qi et al. 2020; Hammer et al. 2021).
Sirtl overexpression (Kowluru et al. 2016; Mishra and
Kowluru 2017; Mishra et al. 2018) and the pharmacological
activation of Sirt]l (Kowluru et al. 2014; Sarubbo et al. 2018;
Tu et al. 2021) have been found to have therapeutic effects in
DR. Under DR conditions, there is a positive feedback loop
involving Sirtl, Ac-p65, and miR-23b-3p. Specifically, Sirtl
deacetylates Ac-p65 on the K310 site. A reduction in Sirtl
leads to the accumulation of Ac-p65 and activates the NF-xB
signaling pathway (Lanzillotta et al. 2010; Yang et al. 2012;
Zhao et al. 2016). Furthermore, Ac-p65 directly binds to the
promoter region of miR-23b-3p, increasing its expression.
This, in turn, acts as a negative regulator of Sirtl expression
(Zhao et al. 2016). These processes explain the deterioration
of symptoms due to a decrease in Sirtl expression in DR
and the positive feedback loop associated with the decline in
Sirtl expression. Sirt] is also regulated by other miRNAs in
DR, including miR-34a, miR-195, miR-204, and miR-211.
AntagomiRs of these Sirtl-regulating miRNAs have shown
therapeutic effects in DR (Mortuza et al. 2014; Zhao et al.
2016; Thounaojam et al. 2019; Chen et al. 2020; Ji et al.
2020; Qi et al. 2020).

Retinas from patients with DR and experimental mod-
els show increased HDACS6 levels (Abouhish et al. 2020).
The activity of ERK1/2-HDAC6 has been implicated in the
worsening of lesions in DR, while the administration of
Glucagon-like peptide 1 has been shown to improve lesions
by decreasing HDAC6 expression (Cai et al. 2017; Yuan
et al. 2018). Furthermore, the HDACS6 inhibitor tubastatin
A has been found to have therapeutic effects in DR models
(Abouhish et al. 2020).

Sirt3 maintains retinal homeostasis, and its depletion
accelerates NAD™" reduction and disease progression in
streptozotocin-induced animal models (Mao et al. 2020).
Non-obese diabetic mice show reduced Sirt6 expression in
the retina, and a central nervous system-specific Sirt6 KO
mouse was found to accelerate disease progression (Zorrilla-
Zubilete et al. 2018). Moreover, an experimental DR model

showed increased expression of HDAC1, HDAC2, HDACS3,
HDAC6, and HDACS and decreased expression of HDAC4
and HDACS (Zhong and Kowluru 2010; Fu et al. 2020; Che
et al. 2022). Targeting HDAC3 mRNA using short-hairpin
RNA has shown therapeutic effects in DR animal models
(Che et al. 2022).

Dysregulation of HDACs in age-related macular
degeneration

Macular degeneration results from a combination of genetics
and environment, but aging is the primary risk factor. AMD
can be classified into two main types: dry AMD, account-
ing for about 90% of cases, and wet AMD, which accounts
for about 10% of cases (Flores et al. 2021). Dry AMD is
characterized by the accumulation of yellowish-brown waste
called “drusen” in the retina. It is usually asymptomatic and
associated with a lower risk of vision loss. However, it can
progress to wet AMD at any time, making early interven-
tion crucial. Alternatively, wet AMD leads to blindness due
to leakage of fluid or blood from abnormal blood vessels
into the macula (Lim et al. 2012; Mehta 2015; Stahl 2020;
Thomas et al. 2021). In this section, we discuss the role of
HDACSs in AMD pathogenesis.

Dry AMD Dry AMD is an early manifestation of AMD that
is characterized by the presence of drusen between Bruch’s
membrane (BM) and the retinal pigment epithelium (RPE)
(Bowes Rickman et al. 2013). While the precise mechanism
of drusen formation remains unclear, several factors have
been implicated, including genetic elements related to com-
plement, lipid, and extracellular matrix (ECM) pathways, as
well as environmental factors such as smoking, hyperten-
sion, cardiovascular disease, diabetes mellitus, age-related
changes, and metabolic stress (Fleckenstein et al. 2021).

The protective role of clusterin in AMD and its potential
therapeutic implications have been highlighted in recent
research. The secretion of clusterin was observed to increase
in response to pan-HDAC inhibitors in ARPE-19 cells, sug-
gesting a potential therapeutic effect of HDAC inhibitors
in AMD (Yoshida et al. 1995; Suuronen et al. 2007). How-
ever, within the retinas of dry AMD patients, HDAC1 and
HDAC?2 may exert a protective function by directly binding
to the CCL26 promoter region and epigenetically repress-
ing gene expression. Genetic knockout or pharmacological
inhibitor treatment leads to an increase in CCL26 expres-
sion. Consequently, the use of pan-HDAC inhibitors or the
targeting of HDAC1 and HDAC2 may have a negative effect
on the pathogenesis of dry AMD (Dubey et al. 2022).

Wet AMD Neovascularization of the choroid is a critical fea-

ture of wet AMD. During this process, VEGF plays a crucial
role and serves as a clinical biomarker and therapeutic target

@ Springer



24

J.H.Junetal.

of wet AMD. Sirtl could play a protective role in wet AMD
conditions. RPE cells from AMD donors exhibit decreased
Sirtl expression (Zhang et al. 2020). The oral nutritional
supplement of resveratrol produces long-term beneficial
effects on wet AMD patients (Richer et al. 2014; Zhang
et al. 2014).

The laser-induced choroidal neovascularization model
is very well-known and best represents angiogenesis in
wet AMD. When G570 (indoline-based hydroxamate), an
HDAC6-HSP90 inhibitor was administered in this model,
its therapeutic effect was equivalent to that of the FDA-
approved aflibercept, with a comparable decrease in the neo-
vascular area (Hsu et al. 2021). During angiogenesis in wet
AMD, the RPE layer is continuously stimulated by VEGF,
which weakens the tight junctions. HDACS6 is involved in
the EMT pathway and increased in the cytosol via TGF-p1
stimulation. HDACS6 acts as an epigenetic repressor to tight
junction proteins by entering the nucleus and deacetylat-
ing lysine 5 of histone H2B (Shan et al. 2008; Deskin et al.
2016; Gu et al. 2016; Mobley et al. 2017). Those signal-
ing pathways might be involved in the pathogenesis of wet
AMD. Collectively, the evidence suggests that Sirt1 activa-
tors and HDAC®6 inhibitors hold therapeutic potential against
wet AMD.

Dysregulation of HDACs in glaucoma

Globally, glaucoma is the most common cause of irrevers-
ible blindness (Tham et al. 2014). It encompasses a group
of conditions with heterogeneous causes, resulting in cup-
ping of the optic nerve head, loss of retinal ganglion cells
(RGCs), and ECM remodeling (Jonas et al. 2017). Glau-
coma is divided into open-angle and angle-closure glaucoma
depending on the shape of the anterior chamber angle (King
et al. 2013; Weinreb et al. 2016). The most common form of
glaucoma is primary open-angle glaucoma (POAG), which
is caused by increased pressure in the eye due to resistance
in the trabecular meshwork (Bellezza et al. 2003; Weinreb
and Khaw 2004). In contrast, primary angle-closure glau-
coma (PACG) is caused by physical blockage of the drainage
pathway of the front chamber by eye tissue, usually the iris
(King et al. 2013). The risk factors for POAG include aging
(Rudnicka et al. 2006; Kim et al. 2012a, 2016), elevated
intraocular pressure (IOP) (Kass et al. 2002; Musch et al.
2009; Kim et al. 2016), sub-Saharan African ethnicity (Rud-
nicka et al. 2006; Leske et al. 2007), and severe myopia (Qiu
et al. 2013). Aging, hyperopia, and East Asian ethnicity are
the main risk factors for PACG (Congdon et al. 1997; Dan-
dona et al. 2000; Moghimi et al. 2015). The pathophysiol-
ogy of glaucoma is usually associated with an increase in
IOP (Weinreb et al. 2014). The lamina cribrosa, through
which the optic nerve fibers cross the sclera, represents the
most vulnerable point in the pressurized eye wall (Quigley
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et al. 1981). The mechanical stress and strain resulting from
increased IOP can lead to the compression, distortion, and
alteration of the lamina cribrosa, ultimately causing mechan-
ical damage to the axons and disrupting their transport (Bur-
goyne et al. 2005). Prevention and slowing disease progres-
sion are the main goals of glaucoma treatment. To target
IOP, several different classes of topical pressure-lowering
medications are available. In general, prostaglandin analogs
are the first-line medical therapy (Weinreb et al. 2014).

Previous studies have provided evidence regarding the
involvement of HDACsS in the pathogenesis of glaucoma.
A positive correlation between HDAC6 mRNA expression
levels and disease progression has been reported, as evi-
denced by neuroretinal rim area in POAG patients (Siwak
et al. 2018). In a rat model of chronic glaucoma induced
by hypertonic saline injection, increased protein expression
and activity of HDAC1, HDAC 2, HDAC3, and HDAC6
were observed (Zaidi et al. 2020). It is noteworthy that some
patients with open-angle glaucoma exhibit normal IOP,
which is referred to as normal-tension glaucoma, low-ten-
sion glaucoma, or normal pressure glaucoma (Leske 1983;
Heijl 2015). Glutamate/aspartate transporter (GLAST)-
deficient mice are a model of normal-tension glaucoma
(Harada et al. 2007). This animal model exhibits a thin inner
retinal layer and degeneration of RGCs, indicating typical
glaucoma lesions (Kimura et al. 2015; Sano et al. 2019).
When valproic acid, an HDAC inhibitor, was administered
to GLAST KO mice, the number of cells in the RGC layer
and the thickness of the inner retinal layer were increased
(Kimura et al. 2015).

Some reports have suggested a relationship between
glaucoma and epigenetic changes in the trabecular mesh-
work or Schlemm’s canal (Matsuda et al. 2015; McDonnell
et al. 2016; Chansangpetch et al. 2018; Cai et al. 2020).
This epigenetic regulation may be linked to the function
of HDAC:S. In a rabbit model of increased IOP caused by
TGF-B2 injection, the administration of SAHA (suberoy-
lanilide hydroxamic acid), a pan-HDAC inhibitor, improved
the increase in IOP. Additionally, treatment of SAHA sup-
pressed the elevation of transepithelial electrical resistance
values, ECM protein expression, and cytoskeletal protein
expression at trabecular meshwork and Schlemm’s canal
cells induced by TGF-p2. It has been shown that the effect
of SAHA was due to the regulation of the non-SMAD path-
way of TGF-p signaling (Fujimoto et al. 2021).

Dysregulation of HDACs in retinopathy of prematurity

ROP is an ocular disorder that predominantly afflicts preterm
neonates. The disorder affects the vascular and neural tissue
layers of the retina, which are responsible for photodetec-
tion and neural signal transmission to the visual centers in
the brain. ROP manifests most frequently in neonates born
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preterm, specifically those born before 31 weeks of gestation
or with a birth weight of less than 1250 g. This susceptibil-
ity arises due to the incompleteness of the retinal vascu-
larization process at birth, necessitating further maturation
and development (Zin and Gole 2013; Alajbegovic-Halimic
et al. 2015). Infants who require oxygen therapy because
of respiratory distress syndrome or other conditions are at
an increased risk of developing ROP. High oxygen levels
can damage developing blood vessels in the retina, leading
to abnormal growth (Pierce et al. 1996; Hartnett and Lane
2013). Infants with other medical conditions, such as ane-
mia, sepsis, and apnea, are also at a higher risk of developing
ROP (Lundgren et al. 2018; Goldstein et al. 2019). It is note-
worthy that not all premature infants develop ROP, and that
the severity of this condition can vary widely among those
who do. Therefore, early detection and treatment of ROP are
important to prevent vision loss or blindness.

The traditional approach for treating ROP involves photo-
coagulation, which uses laser beams to seal and close abnor-
mal blood vessels in the underdeveloped retina. However,
this method may present challenges such as poor visualiza-
tion of the blood vessels and scarce availability in resource-
limited settings. Conversely, anti-VEGF therapy raises
uncertainties regarding optimal dosages, potential ocular
complications, and systemic adverse reactions in the cardio-
vascular system and neurodevelopment, which are important
considerations in ROP treatment decisions. These challenges
underscore the need for further development of novel drug
therapies in the field (Valikodath et al. 2021).

Dysregulation of HDACs in retinitis pigmentosa

Retinitis pigmentosa is a group of genetically inherited dis-
orders that primarily affect the retina, leading to gradual
vision loss and blindness (Hartong et al. 2006). Mutations
in genes that are essential for the structure and function
of retinal cells might interfere with the normal develop-
ment, maintenance, and survival of retinal cells, leading
to their progressive degeneration over time (Hamel 2006).
The fundamental treatment consists of conservative treat-
ment, and in a few particular cases, gene therapy or stem
cell treatment (Wu et al. 2023). For example, noretigene
neparvovev-ryzl (Luxturna®) has been FDA-approved for
RPE65 gene-mutated patients, a specific retinitis pigmen-
tosa type (Maguire et al. 2019). The phosphodiesterase 6b
(Pde6b) gene mutation models, such as rd1 and rd10 mice,
are one of the most well-known animal models. Those mice
show progressive photoreceptor degeneration over time
(Bowes et al. 1990; Chang et al. 2002, 2007). Rd1 mice
show increased HDAC activity and hypoacetylation of lysine
in the outer nuclear layer of the retina (Sancho-Pelluz et al.
2010). These findings suggest HDACs dysregulation dur-
ing retinal degeneration. Intravitreal injection of trichostatin

A as a pan-HDAC inhibitor or tubastatin A as an HDAC6
inhibitor increased cone cell survival in animal models
(Sundaramurthi et al. 2020; Samardzija et al. 2021). Addi-
tionally, intraperitoneal injection of romidepsin, an HDAC1
and HDAC?2 inhibitor, into rd10 mice shows efficacy against
retinitis pigmentosa (Popova et al. 2021). Clinical studies
using valproic acid suggested beneficial effects for patients
(Clemson et al. 2011; Kumar et al. 2014). These results indi-
cate that the HDACs involved in retinitis pigmentosa patho-
genesis and its inhibition delay disease progression. Further
research is needed to determine whether HDAC regulates
gene function itself or if it regulates disease progression.
Additionally, specific profiling of HDAC dysregulation in
each type of retinitis pigmentosa is required.

Dysregulation of HDACs in retinoblastoma

Retinoblastoma is a rare and aggressive form of cancer that
primarily affects the retina. It is the most common primary
malignant intraocular cancer among the pediatric popula-
tion and is almost exclusively found in young children. The
condition is mainly caused by mutations in the RB1 gene,
which encodes the retinoblastoma protein (pRB) (Dimaras
et al. 2012). The pRB protein plays a crucial role in regulat-
ing the cell cycle from the G1 to the S phase and prevent-
ing uncontrolled cell division. Mutations in the RB1 gene
lead to the loss of normal pRB protein function, resulting
in uncontrolled growth and proliferation of retinal cells,
ultimately leading to retinoblastoma (Henley and Dick
2012; Zhou et al. 2022). Aberrant histone deacetylation can
contribute to retinoblastoma formation (McEvoy and Dyer
2015). pRB inhibits the cyclin E gene by interacting with
E2F transcription factors and HDACI. Trichostatin A treat-
ment suppresses the cell cycle by inhibiting HDAC1 (Brehm
et al. 1998; Magnaghi-Jaulin et al. 1998). Moreover, trichos-
tatin A treatment induces apoptosis in human retinoblastoma
cells (Dalgard et al. 2008). Pan-HDAC inhibitors treatment
reduces the promoter activity of c-myc as a proto-oncogene
in a retinoblastoma cell line (Yu et al. 2020). High expres-
sion of HDACY correlates with a poor prognosis, while
its downregulation reduces cell proliferation via cell cycle
arrest in retinoblastoma cells (Zhang et al. 2016b). These
findings suggested targeting HDAC:s as a potential therapeu-
tic strategy for managing retinoblastoma.

Dysregulation of HDACs in optic neuropathy

Optic neuropathy refers to damage or dysfunction of the
optic nerve, which can lead to vision problems. There are
various causes of optic neuropathy in ocular disease, and
the pathogenesis is associated with HDACs (Schmitt et al.
2016; Pan et al. 2023).
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Ischemic optic neuropathy occurs when insufficient
blood flow to the optic nerve leads to tissue damage (Chi-
quet et al. 2022). Non-arteritic anterior ischemic optic neu-
ropathy, which occurs after glaucoma, is the most common
form of optic neuropathy and typically occurs at ages 50 and
older (Dworak and Nichols 2014). The optic nerve becomes
ischemic, resulting in swelling and damage to the nerve fib-
ers, which can lead to vision loss (Fu et al. 2021). HDACs
are deeply involved in the apoptosis process of RGCs. The
optic nerve crush mice model shows an increased level of
HDAC2 and HDAC3 protein expression and activity in
the RGC layer. Furthermore, administration of trichostatin
A, pan-HDAC inhibitors, or apicidin, an HDAC 2 and 3
inhibitor, ameliorates disease phenotypes after optic nerve
crush (Crosson et al. 2010; Pelzel et al. 2010). Addition-
ally, genetic evidence supports that cell survival and elec-
troretinography of GCL, recover to the normal level in the
HDAC2*'~ mice in the ischemic neuropathy injury model
(Fan et al. 2013). One study suggests that the activation
mechanism of HDAC3 within the neuronal system is through
phosphorylation by GSK3p, resulting in a cytotoxic effect
on neurons (Bardai and D’Mello 2011). The RGC-specific
knock-out of HDAC1 and HDAC2 promotes RGC survival
in the optic nerve axotomy injury model (Lebrun-Julien and
Suter 2015).

Optic neuritis is often associated with autoimmune dis-
eases such as multiple sclerosis (Kale 2016). In this con-
dition, the immune system attacks the myelin sheath sur-
rounding the optic nerve. Demyelination disrupts the normal
transmission of nerve signals, causing inflammation and
damage to the optic nerve leading to vision problems (Ma
et al. 2022). Valproic acid administration in the induced
experimental autoimmune encephalomyelitis mouse model
led to a reduction in the Ibal-positive area and demyeli-
nation, thereby ameliorating the lesion. These results sug-
gest that HDACs were involved in optical neuritis lesions
(Azuchi et al. 2017). Based on these findings, targeting
HDACSs can be a treatment option for patients with optic
neuropathy.

Role of TGF-f signaling in ocular pathologies

TGF-p signaling plays a pathological role in ocular disease.
It is initiated by the phosphorylation of Smad2 and Smad3.
These proteins form complexes with Smad4 and translocate
to the nucleus to transduce downstream signals (Akhurst and
Hata 2012). This signaling pathway promotes the excessive
production of ECM components like collagen and fibronec-
tin, resulting in the formation of fibrotic tissue. These
changes can lead to tissue contraction, disruption of retinal
structure, and impaired visual function (Hachana and Lar-
rivee 2022). For instance, TGF-f signaling enhances outflow
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resistance via ECM remodeling of the trabecular meshwork
in glaucoma (Prendes et al. 2013; Wang et al. 2017; Kasetti
et al. 2018). Additionally, it induces epithelial-to-mesenchy-
mal transition (EMT), causing the breakdown of the cell
junctions and transition to mesenchymal status, which con-
tributes to the disruption of the blood-retinal barrier (Chen
et al. 2017; Zou et al. 2020). Furthermore, it could stimulate
the release of VEGF and lead to retinal edema/hemorrhage
through pro-angiogenic Smad1/5/8 signaling mediated acti-
vation of leucine-rich a-2-glycoprotein 1 in endothelial cells
(Wang et al. 2013). This section focuses on the crosstalk
between TGF-f signaling and HDAC:s.

HDACs deacetylate SMAD complexes
Smad2/3

Smad?2/3 undergoes acetylation in the nucleus, which acti-
vates its transcriptional activity (Inoue et al. 2007; Tu and
Luo 2007). Sirtl reduces TGF-p1 signaling-mediated tran-
scriptional activity by deacetylating Smad3. The overexpres-
sion of Sirtl and its activation by resveratrol reduces Smad3
acetylation and attenuates ECM protein expression. Con-
versely, the knockdown of Sirt1 leads to the accumulation of
acetylated Smad3 and enhances TGF-f signaling-mediated
transcriptional activity (Huang et al. 2014). Sirt6 reduces
Smad?2/3 transcriptional activity through deacetylation of
K54 and K378, respectively (Maity et al. 2020; Zhang et al.
2021). HDACS6 also regulates Smad3 acetylation. The inhi-
bition of HDACS6 via tubastatin A suppresses TGF-f signal-
ing by promoting Smad3 acetylation at the K19 site in the
cytoplasm, thereby preventing Smad2/3 phosphorylation and
nuclear translocation (Osseni et al. 2022).

Smad4

Smad4 is deacetylated by Sirtl and Sirt7, increasing its abil-
ity to regulate gene expression (Simic et al. 2013; Chen et al.
2014; Tang et al. 2017; Li et al. 2018). While the precise site
of the interaction between Sirt]l and Smad4 has not yet been
fully elucidated, Sirtl has been shown to inhibit TGF-f sign-
aling by deacetylating Smad4 under certain circumstances
(Simic et al. 2013; Chen et al. 2014; Li et al. 2018). Sirt7
deacetylates Smad4 at the K428 residue and blocks TGF-f
signaling by deacetylating Smad4, which results in its desta-
bilization (Tang et al. 2017).

Smad7

TGF-p signaling upregulates Smad7, which primarily acts
as a negative regulator (Nakao et al. 1997). However, Smad7
also exhibits positive regulatory effects on gene expression
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(Thakur et al. 2020) and is implicated in TGF-p-induced
apoptosis (Lallemand et al. 2001; Okado et al. 2002; Kume
et al. 2007). Smad7 is acetylated at lysine residues 64 and
70. The balance between acetylation and ubiquitination
controls its stability. Smurfl mediates the degradation of

deacetylated Smad7 via the ubiquitin-proteasome system
(Gronroos et al. 2002). HDAC1, HDAC3, HDAC6, and
Sirtl could deacetylate Smad7 and enhance its degradation
(Fig. 2) (Simonsson et al. 2005; Kume et al. 2007; Sedda
et al. 2018).

TGF-B
—_—
Cytosa e
HDAC6
> @ , = <Ll - Ubiquitin-proteasome
Acetylation — Qi > & mediated degradation
[) Phosphorylation
—— Inhibition signaling .
49 HDAC6
Smad3) . & Smad3
Sirt6 Smad2
Nucleus v Sirt1
e 2 sirt6 e
Smad3 Transcriptional
Smad?2 s, ——>»{Smad3 —> activity
< ac Sirt1
Sirt7
\Smad4

A7\ \"/\\"/,\\/\\"/\

Fig.2 The regulatory mechanism of TGF-f signaling by HDACs through the deacetylation of Smad proteins. The TGF-f signaling cascade is
initiated by the phosphorylation of Smad2 and Smad3, which form complexes with Smad4 and translocate to the nucleus, where they activate
downstream signaling pathways. This schematic diagram illustrates how HDACs modulate TGF-f signaling at each cascade step by deacetylat-

ing Smad proteins. Figures were created with Biorender.com
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conditions due to ROS-mediated inhibition of HIF-1a hydroxylation and ubiquitin-proteasome-mediated degradation. HIF-1« translocates into
the nucleus and forms a dimer with HIF-1p, leading to its role as a transcription factor for VEGF. Additionally, STAT3 acts as a transcription
factor for both VEGF and HIF-1a. We present the role of HDACs in promoting or inhibiting VEGF expression in each signaling step. Figures

were created with Biorender.com

Effect of VEGF signaling in the pathology
of ocular diseases

VEGTF plays a critical role in angiogenesis. The growth
of blood vessels is vital for providing nutrients to tissues
and organs. However, uncontrolled angiogenesis can lead
to disease, including tumors and intraocular vascular dis-
orders such as DR, AMD, and ROP. Targeting VEGF has
prevented blindness in millions of patients with eye dis-
eases, as well as increased survival of patients with various
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types of cancer (Adamis and Shima 2005; Ferrara 2016).
VEGF was significantly increased in the aqueous humor in
neovascular glaucoma, wet-AMD, and PDR patients (Lim
et al. 2009; Chalam et al. 2014; Hsu et al. 2016). Abnor-
mal or excessive VEGF production can lead to the growth
of fragile, leaky blood vessels within the retina (Jo et al.
2016). This neovascularization disrupts the typical retina
architecture and can lead to vision impairment or even
blindness. In the endothelial cells of the retina, VEGF-
A binds to VEGF receptor 2, inducing phosphorylation
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Table 1 HDACS regulate the post-translational modification of transcription factors for VEGF gene expression

Classification Biological functions

References

Zinc dependent HDACs ~ Class I

HDAC1/2 HDACI stabilizes HIF-1a by forming a
complex with metastasis-associated protein

Yuan et al.(2005), Yoo et al. (2006), Yeh et al.
(2013)

1. In addition, STAT3 acetylation at Lys685
via p300 is responsible for the deacetylation
of HDACI1 and HDAC2

HDAC3

HDACS

HDACS3 is essential to phosphorylation at the
Y705 of STATS3 in liver cancer cells

HDACS binds directly to HIF-1a and

Xiao et al. (2006), Zeng et al. (2006), Lu et al.
(2018)

Kim et al. (2023)

deacetylates it, increasing transcriptional
activity such as hexokinase2 and glucose

transporterl
Class Ila HDAC4

HDAC4 deacetylates lysine residues (Lys10,

Geng et al.(2011)

11, 12, 19, and 21) in HIF-1a N-terminal to
increase its transcriptional activity

HDACS

HDACS regulates HIF-1a stability and trans-

Chen et al.(2015)

activation by controlling the acetylation

level of Hsp70
HDAC7

HDACT7 and HIF-1a combine to be trans-

Kato et al. (2004)

located to the nucleus and increase the
transcriptional activity of HIF-1a

Class IIb HDAC6
scriptional activity

NAD™ dependent sirtuins Class III ~ Sirtl

HDACS6 increases HIF-1a stability and tran-

Sirt] inhibits transcriptional activity by
deacetylating HIF-1a at Lys674 and STAT3

Qian et al. (2006)

Lim et al. (2010), Sestito et al. (2011), Park
et al. (2014)

at Lys685, 679, 707, and 709

Sirt2

Sirt2 causes ubiquitination of HIF-1a by

Seo et al. (2015), Hu et al. (2018)

deacetylating HIF-1a at the Lys709. In
addition, Sirt2 increases VEGFA secretion
by phosphorylation STAT3 at Y705

Sirt3

Sirt3 does not directly bind to HIF-1a but
destabilizes it. In addition, Sirt3 regulates

Bell et al. (2011), Finley et al. (2011), Guo
et al. (2017)

transcriptional activity by deacetylating

STAT3
Sirt6

Sirt6 acts as a co-repressor of HIF-1a and
deacetylating the histone H3K9 of the

Zhong et al. (2010), Feng et al. (2016), Zhou
et al. (2017)

HIF-1a target gene. In addition, Sirt6
inhibits tumor growth by inhibiting JAK2/
STAT3 phosphorylation

of VE-cadherin at Y685 (Smith et al. 2020), and eNOS
at S1177. This results in elevated NO production and
increased vascular permeability (Park et al. 2019). VEGF
signaling is also involved in producing pro-inflammatory
cytokines (Hachana et al. 2020).

HDACSs regulate the VEGF-mediated angiogenesis
process. HDAC3 is a pivotal mediator in VEGF-triggered
endothelial cell differentiation and angiogenesis, and the
VEGF receptor 2-PI3K-Akt signaling cascade regulates
its activity. Upon activation by this cascade, HDAC3 dea-
cetylates p53, culminating in the activation of p21 (Xiao

et al. 2006; Zeng et al. 2006). Class II HDACs such as
HDACS5, HDAC6, and HDAC7 have angiogenic func-
tions in endothelial cells (Wang et al. 2008; Urbich et al.
2009; Kaluza et al. 2011; Zecchin et al. 2014). VEGFR-2
signaling activates PDK-1, which phosphorylates and acti-
vates HDACS at the sites Ser259 and Ser498, as well as
HDACT7 at the sites of Ser178, Ser344, and Ser479. Acti-
vated HDACS5 and HDACT7 are involved in angiogenesis
(Ha et al. 2008; Wang et al. 2008). Moreover, HDACS
and HDACSG6 directly bind to VEGFR-2 and regulate its
acetylation level and function (Zecchin et al. 2014). Sirtl
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Fig.4 Dysregulation of HDACsS in ocular diseases. A schematic demonstration depicts the dysregulation of HDACs in ocular diseases such as
DR, AMD, Glaucoma, and ROP. These diseases are complicated and involve forming new blood vessels, neurodegeneration, and/or inflamma-
tion inside the eye. We presented upregulated and downregulated HDACs in each disease condition. Reference to DR: (Zhong and Kowluru
2010; Kowluru et al. 2014; Silberman et al. 2014; Cai et al. 2017; Mishra and Kowluru 2017; Peshti et al. 2017; Zorrilla-Zubilete et al. 2018;
Abouhish et al. 2020; Fu et al. 2020; Hammer et al. 2021; Che et al. 2022). Reference to AMD: (Kaluza et al. 2013; Maloney et al. 2013; Ishida
et al. 2017; Dahbash et al. 2019; Xiao et al. 2020; Hamid et al. 2021; Zhao et al. 2022). Reference to glaucoma: (Yang et al. 2014; Zhang et al.
2016a; Siwak et al. 2018; Yaman et al. 2020; Zaidi et al. 2020). Reference to ROP: (Wang et al. 2008; Chen et al. 2013; Ran et al. 2020, 2022;

Bahl and Seto 2021). Figures were created with Biorender.com

also regulates VEGF receptor expression. It enhances the
mRNA expression of VEGFR-1 and VEGFR-2. By con-
trast, Sirtl inhibition decreases mRNA expression (Mai-
zel et al. 2014). Nicotinamide phosphoribosyl transferase
leads to the Sirtl-dependent enhancement of Notch-1
intracellular domain deacetylation, which upregulates
VEGFR-2 and VEGFR-3 (Wang et al. 2014). HDACs
play a role in regulating VEGF expression under hypoxic
conditions. HDACs are involved in the post-translational
modification, protein stability, and nuclear-cytoplasmic
transport of VEGF signaling pathway proteins, impacting
angiogenesis (Fig. 3; Table 1). These findings emphasize
the significance of HDACs in modulating VEGF signaling
and its implications in angiogenesis and ocular diseases.
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Conclusions

In conclusion, the present review provides a comprehensive
analysis of the involvement of HDACsS in the pathogenesis
of various ocular diseases, including DR, AMD, glaucoma,
and ROP (Fig. 4), as well as retinitis pigmentosa, retino-
blastoma, and optic neuropathy. The limited availability of
effective treatments for these complex disorders necessitates
the exploration of novel therapeutic strategies. The potential
of HDAC inhibitors in this context warrants further investi-
gation, as they have shown promising neuroprotective and
neuroactive properties in various neurological and ocular
diseases.
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In addition, this review extends beyond the field of oph-
thalmology. It examines the relationship between HDACs
and critical regulators of fibrosis and angiogenesis, such
as TGF-f and VEGTF, offering valuable insights into the
potential targets of HDACs under a broader range of condi-
tions. The significance of HDACs in the development of
retinal diseases, which share common features with cancer
and inflammatory conditions, highlights the need for further
research in this area. Given the projected increase in the
incidence of retinal diseases in the coming years, it is crucial
to identify effective treatments. Therefore, the potential of
HDAC inhibitors as a novel therapeutic strategy for these
diseases should be thoroughly investigated, and clinical tri-
als are required to establish their efficacy and safety.

Funding This work was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF-
2019R1A2C3011422, NRF-2019R1A5A2027340). This work was
also supported by a grant from the Ministry of Oceans and Fisheries’
R&D project, Korea (1525011845).

Declarations

Conflict of interest Jae Hyun Jun is an employee of Chong Kun Dang
Pharmaceutical Co. The other authors have no conflict of interest.

References

Abouhish H, Thounaojam MC, Jadeja RN, Gutsaeva DR, Powell FL,
Khriza M, Martin PM, Bartoli M (2020) Inhibition of HDAC6
attenuates diabetes-induced retinal Redox imbalance and micro-
angiopathy. Antioxid (Basel). https://doi.org/10.3390/antiox9070
599

Adamis AP, Shima DT (2005) The role of vascular endothelial growth
factor in ocular health and disease. RETINA. https://doi.org/10.
1097/00006982-200502000-00001

Akhurst RJ, Hata A (2012) Targeting the TGFbeta signalling pathway
in disease. Nat Rev Drug Discov 11:790-811. https://doi.org/
10.1038/nrd3810

Alagorie AR, Velaga S, Nittala MG, Yu HJ, Wykoff CC, Sadda SR
(2021) Effect of aflibercept on diabetic retinopathy severity and
visual function in the recovery study for proliferative diabetic
retinopathy. Ophthalmol Retina 5:409-419. https://doi.org/10.
1016/j.0ret.2020.08.018

Alajbegovic-Halimic J, Zvizdic D, Alimanovic-Halilovic E, Dodik I,
Duvnjak S (2015) Risk factors for retinopathy of prematurity in
premature born children. Med Arch 69:409-413. https://doi.org/
10.5455/medarh.2015.69.409-413

Aune TM, Collins PL, Chang S (2009) Epigenetics and T helper 1
differentiation. Immunology 126:299-305. https://doi.org/10.
1111/j.1365-2567.2008.03026.x

Ayer DE (1999) Histone deacetylases: transcriptional repression with
SINers and NuRDs. Trends Cell Biol 9:193-198. https://doi.org/
10.1016/50962-8924(99)01536-6

Azuchi Y, Kimura A, Guo X, Akiyama G, Noro T, Harada C, Nishi-
gaki A, Namekata K, Harada T (2017) Valproic acid and ASK1
deficiency ameliorate optic neuritis and neurodegeneration in an

animal model of multiple sclerosis. Neurosci Lett 639:82-87.
https://doi.org/10.1016/j.neulet.2016.12.057

Bahl S, Seto E (2021) Regulation of histone deacetylase activities
and functions by phosphorylation and its physiological rel-
evance. Cell Mol Life Sci 78:427-445. https://doi.org/10.1007/
s00018-020-03599-4

Bahn G, Jo DG (2019) Therapeutic approaches to Alzheimer’s disease
through modulation of NRF2. Neuromol Med 21:1-11. https://
doi.org/10.1007/s12017-018-08523-5

Bardai FH, D’mello SR (2011) Selective toxicity by HDAC3 in neu-
rons: regulation by Akt and GSK3p. J Neurosci 31:1746-1751.
https://doi.org/10.1523/jneurosci.5704-10.2011

Baudouin C, Kolko M, Melik-Parsadaniantz S, Messmer EM (2021)
Inflammation in glaucoma: from the back to the front of the eye,
and beyond. Prog Retin Eye Res 83:100916. https://doi.org/10.
1016/j.preteyeres.2020.100916

Bell EL, Emerling BM, Ricoult SJ, Guarente L (2011) SitT3 suppresses
hypoxia inducible factor lalpha and tumor growth by inhibiting
mitochondrial ROS production. Oncogene 30:2986-2996. https://
doi.org/10.1038/onc.2011.37

Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Bur-
goyne CF (2003) Deformation of the lamina cribrosa and ante-
rior scleral canal wall in early experimental glaucoma. Investig
Ophthalmol Vis Sci 44:623-637. https://doi.org/10.1167/iovs.
01-1282

Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ,
Zheng S, Yenamandra A, Locke K, Yuan JL, Bonine-Summers
AR, Wells CE, Kaiser JF, Washington MK, Zhao Z, Wagner
FF, Sun ZW, Xia F, Holson EB, Khabele D, Hiebert SW (2010)
Hdac3 is essential for the maintenance of chromatin structure
and genome stability. Cancer Cell 18:436-447. https://doi.org/
10.1016/j.ccr.2010.10.022

Bowen H, Kelly A, Lee T, Lavender P (2008) Control of cytokine
gene transcription in Thl and Th2 cells. Clin Exp Allergy
38:1422-1431. https://doi.org/10.1111/j.1365-2222.2008.
03067.x

Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber
DB (1990) Retinal degeneration in the rd mouse is caused by
a defect in the beta subunit of rod cGMP-phosphodiesterase.
Nature 347:677—-680. https://doi.org/10.1038/347677a0

Bowes Rickman C, Farsiu S, Toth CA, Klingeborn M (2013) Dry
age-related macular degeneration: mechanisms, therapeutic tar-
gets, and imaging. Invest Ophthalmol Vis Sci 54:0RSF68-80.
https://doi.org/10.1167/iovs.13-12757

Brehm A, Miska EA, Mccance DJ, Reid JL, Bannister AJ, Kou-
zarides T (1998) Retinoblastoma protein recruits histone dea-
cetylase to repress transcription. Nature 391:597-601. https://
doi.org/10.1038/35404

Brown DM, Schmidt-Erfurth U, Do DV, Holz FG, Boyer DS, Midena
E, Heier JS, Terasaki H, Kaiser PK, Marcus DM (2015) Intra-
vitreal aflibercept for diabetic macular edema: 100-week results
from the VISTA and VIVID studies. Ophthalmology 122:2044—
2052. https://doi.org/10.1016/j.0ophtha.2015.06.017

Brown DM, Wykoft CC, Boyer D, Heier JS, Clark WL, Emanuelli A,
Higgins PM, Singer M, Weinreich DM, Yancopoulos GD, Ber-
liner AJ, Chu K, Reed K, Cheng Y, Vitti R (2021) Evaluation of
intravitreal aflibercept for the treatment of severe nonprolifera-
tive diabetic retinopathy: results from the panorama randomized
clinical trial. JAMA Ophthalmol 139:946-955. https://doi.org/
10.1001/jamaophthalmol.2021.2809

Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The
optic nerve head as a biomechanical structure: a new paradigm
for understanding the role of IOP-related stress and strain in the
pathophysiology of glaucomatous optic nerve head damage. Prog
Retin Eye Res 24:39-73. https://doi.org/10.1016/j.preteyeres.
2004.06.001

@ Springer


https://doi.org/10.3390/antiox9070599
https://doi.org/10.3390/antiox9070599
https://doi.org/10.1097/00006982-200502000-00001
https://doi.org/10.1097/00006982-200502000-00001
https://doi.org/10.1038/nrd3810
https://doi.org/10.1038/nrd3810
https://doi.org/10.1016/j.oret.2020.08.018
https://doi.org/10.1016/j.oret.2020.08.018
https://doi.org/10.5455/medarh.2015.69.409-413
https://doi.org/10.5455/medarh.2015.69.409-413
https://doi.org/10.1111/j.1365-2567.2008.03026.x
https://doi.org/10.1111/j.1365-2567.2008.03026.x
https://doi.org/10.1016/s0962-8924(99)01536-6
https://doi.org/10.1016/s0962-8924(99)01536-6
https://doi.org/10.1016/j.neulet.2016.12.057
https://doi.org/10.1007/s00018-020-03599-4
https://doi.org/10.1007/s00018-020-03599-4
https://doi.org/10.1007/s12017-018-08523-5
https://doi.org/10.1007/s12017-018-08523-5
https://doi.org/10.1523/jneurosci.5704-10.2011
https://doi.org/10.1016/j.preteyeres.2020.100916
https://doi.org/10.1016/j.preteyeres.2020.100916
https://doi.org/10.1038/onc.2011.37
https://doi.org/10.1038/onc.2011.37
https://doi.org/10.1167/iovs.01-1282
https://doi.org/10.1167/iovs.01-1282
https://doi.org/10.1016/j.ccr.2010.10.022
https://doi.org/10.1016/j.ccr.2010.10.022
https://doi.org/10.1111/j.1365-2222.2008.03067.x
https://doi.org/10.1111/j.1365-2222.2008.03067.x
https://doi.org/10.1038/347677a0
https://doi.org/10.1167/iovs.13-12757
https://doi.org/10.1038/35404
https://doi.org/10.1038/35404
https://doi.org/10.1016/j.ophtha.2015.06.017
https://doi.org/10.1001/jamaophthalmol.2021.2809
https://doi.org/10.1001/jamaophthalmol.2021.2809
https://doi.org/10.1016/j.preteyeres.2004.06.001
https://doi.org/10.1016/j.preteyeres.2004.06.001

32

J.H.Junetal.

Cai X, LiJ, Wang M, She M, Tang Y, LiJ, Li H, Hui H (2017) GLP-1
treatment improves diabetic retinopathy by alleviating autophagy
through GLP-1R-ERK1/2-HDACS6 signaling pathway. Int ] Med
Sci 14:1203-1212. https://doi.org/10.7150/ijms.20962

Cai J, Drewry MD, Perkumas K, Dismuke WM, Hauser MA, Stamer
WD, Liu Y (2020) Differential DNA methylation patterns in
human Schlemm’s canal endothelial cells with glaucoma. Mol
Vis 26:483-493

Cantley MD, Haynes DR (2013) Epigenetic regulation of inflamma-
tion: progressing from broad acting histone deacetylase (HDAC)
inhibitors to targeting specific HDACs. Inflammopharmacology
21:301-307. https://doi.org/10.1007/s10787-012-0166-0

Capitao M, Soares R (2016) Angiogenesis and inflammation crosstalk
in diabetic retinopathy. J Cell Biochem 117:2443-2453. https://
doi.org/10.1002/jcb.25575

Chalam KV, Grover S, Sambhav K, Balaiya S, Murthy RK (2014)
Aqueous interleukin-6 levels are superior to vascular endothelial
growth factor in predicting therapeutic response to bevacizumab
in age-related macular degeneration. J Ophthalmol. https://doi.
org/10.1155/2014/502174

Chalkiadaki A, Guarente L. (2015) The multifaceted functions of sir-
tuins in cancer. Nat Rev Cancer 15:608-624. https://doi.org/10.
1038/nrc3985

Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heck-
enlively JR (2002) Retinal degeneration mutants in the mouse.
Vision Res 42:517-525. https://doi.org/10.1016/S0042-6989(01)
00146-8

Chang B, Hawes NL, Pardue MT, German AM, Hurd RE, Davisson
MT, Nusinowitz S, Rengarajan K, Boyd AP, Sidney SS, Phillips
M]J, Stewart RE, Chaudhury R, Nickerson JM, Heckenlively JR,
Boatright JH (2007) Two mouse retinal degenerations caused by
missense mutations in the beta-subunit of rod cGMP phospho-
diesterase gene. Vis Res 47:624-633. https://doi.org/10.1016/].
visres.2006.11.020

Chansangpetch S, Prombhul S, Tantisevi V, Sodsai P, Manassakorn
A, Hirankarn N, Lin SC (2018) DNA methylation status of the
interspersed repetitive sequences for LINE-1, Alu, HERV-E, and
HERV-K in trabeculectomy specimens from glaucoma eyes. J
Ophthalmol. https://doi.org/10.1155/2018/9171536

Chatziralli I (2021) Ranibizumab for the treatment of diabetic retinopa-
thy. Expert Opin Biol Ther 21:991-997. https://doi.org/10.1080/
14712598.2021.1928629

Che S, Wu S, Yu P (2022) Downregulated HDAC3 or up-regulated
microRNA-296-5p alleviates diabetic retinopathy in a mouse
model. Regen Ther 21:1-8. https://doi.org/10.1016/j.reth.2022.
04.002

Chen J, Michan S, Juan AM, Hurst CG, Hatton CJ, Pei DT, Joyal JS,
Evans LP, Cui Z, Stahl A, Sapieha P, Sinclair DA, Smith LE
(2013) Neuronal sirtuin]l mediates retinal vascular regeneration
in oxygen-induced ischemic retinopathy. Angiogenesis 16:985—
992. https://doi.org/10.1007/s10456-013-9374-5

Chen IC, Chiang W-F, Huang H-H, Chen P-F, Shen Y-Y, Chiang H-C
(2014) Role of SIRT1 in regulation of epithelial-to-mesenchymal
transition in oral squamous cell carcinoma metastasis. Mol Can-
cer 13:254. https://doi.org/10.1186/1476-4598-13-254

Chen S, Yin C, Lao T, Liang D, He D, Wang C, Sang N (2015) AMPK-
HDACS pathway facilitates nuclear accumulation of HIF-1alpha
and functional activation of HIF-1 by deacetylating Hsp70 in the
cytosol. Cell Cycle 14:2520-2536. https://doi.org/10.1080/15384
101.2015.1055426

Chen CL, Chen YH, Tai MC, Liang CM, Lu DW, Chen JT (2017)
Resveratrol inhibits transforming growth factor-beta2-induced
epithelial-to-mesenchymal transition in human retinal pigment
epithelial cells by suppressing the smad pathway. Drug Des
Devel Ther 11:163-173. https://doi.org/10.2147/DDDT.S126743

@ Springer

Chen B, Wu L, Cao T, Zheng H-M, He T (2020) MiR-221/SIRT1/
Nrf2 signal axis regulates high glucose induced apoptosis in
human retinal microvascular endothelial cells. BMC Ophthalmol
20:300. https://doi.org/10.1186/s12886-020-01559-x

Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet
376:124-136. https://doi.org/10.1016/S0140-6736(09)62124-3

Chiquet C, Vignal C, Gohier P, Heron E, Thuret G, Rougier MB,
Lehmann A, Flet L, Quesada JL, Roustit M, Milea D, Pepin JL,
Group E (2022) Treatment of nonarteritic anterior ischemic optic
neuropathy with an endothelin antagonist: endothelion (endothe-
lin antagonist receptor in ischemic optic neuropathy)-a multicen-
tre randomised controlled trial protocol. Trials 23:916. https://
doi.org/10.1186/s13063-022-06786-9

Cho Y, Bae HG, Okun E, Arumugam TV, Jo DG (2022) Physiology
and pharmacology of amyloid precursor protein. Pharmacol Ther
235:108122. https://doi.org/10.1016/j.pharmthera.2022.108122

Clemson CM, Tzekov R, Krebs M, Checchi JM, Bigelow C, Kaushal
S (2011) Therapeutic potential of valproic acid for retinitis pig-
mentosa. Br J Ophthalmol 95:89-93. https://doi.org/10.1136/bjo.
2009.175356

Congdon NG, Youlin Q, Quigley H, Hung T, Wang T, Ho T, Tielsch
JM (1997) Biometry and primary angle-closure glaucoma
among Chinese, white, and black populations. Ophthalmology
104:1489-1495

Crosson CE, Mani SK, Husain S, Alsarraf O, Menick DR (2010) Inhi-
bition of histone deacetylase protects the retina from ischemic
injury. Invest Ophthalmol Vis Sci 51:3639-3645. https://doi.org/
10.1167/i0vs.09-4538

Dahbash M, Sella R, Megiddo-Barnir E, Nisgav Y, Tarasenko N,
Weinberger D, Rephaeli A, Livnat T (2019) The histone dea-
cetylase inhibitor AN7, attenuates choroidal neovascularization
in a mouse model. Int J Mol Sci. https://doi.org/10.3390/ijms2
0030714

Dalgard CL, Van Quill KR, O’brien JM (2008) Evaluation of the
in vitro and in vivo antitumor activity of histone deacety-
lase inhibitors for the therapy of retinoblastoma. Clin Can-
cer Res 14:3113-3123. https://doi.org/10.1158/1078-0432.
CCR-07-4836

Dandona L, Dandona R, Mandal P, Srinivas M, John RK, Mccarty CA,
Rao GN (2000) Angle-closure glaucoma in an urban population
in southern India: the Andhra Pradesh eye disease study. Oph-
thalmology 107:1710-1716

Deng Y, Qiao L, Du M, Qu C, Wan L, Li J, Huang L (2022) Age-
related macular degeneration: epidemiology, genetics, patho-
physiology, diagnosis, and targeted therapy. Genes Dis 9:62-79.
https://doi.org/10.1016/j.gendis.2021.02.009

Dequiedt F, Kasler H, Fischle W, Kiermer V, Weinstein M, Herndier
BG, Verdin E (2003) HDAC?7, a thymus-specific class II histone
deacetylase, regulates Nur77 transcription and TCR-mediated
apoptosis. Immunity 18:687-698. https://doi.org/10.1016/s1074-
7613(03)00109-2

Deskin B, Lasky J, Zhuang Y, Shan B (2016) Requirement of HDAC6
for activation of Notch1 by TGF-betal. Sci Rep 6:31086. https://
doi.org/10.1038/srep31086

Dimaras H, Kimani K, Dimba EO, Gronsdahl P, White A, Chan HSL,
Gallie BL (2012) Retinoblastoma. Lancet 379:1436-1446.
https://doi.org/10.1016/S0140-6736(11)61137-9

Dovey OM, Foster CT, Conte N, Edwards SA, Edwards JM, Singh R,
Vassiliou G, Bradley A, Cowley SM (2013) Histone deacetylase
1 and 2 are essential for normal T-cell development and genomic
stability in mice. Blood 121:1335-1344. https://doi.org/10.1182/
blood-2012-07-441949

Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim
JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J,
Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine


https://doi.org/10.7150/ijms.20962
https://doi.org/10.1007/s10787-012-0166-0
https://doi.org/10.1002/jcb.25575
https://doi.org/10.1002/jcb.25575
https://doi.org/10.1155/2014/502174
https://doi.org/10.1155/2014/502174
https://doi.org/10.1038/nrc3985
https://doi.org/10.1038/nrc3985
https://doi.org/10.1016/S0042-6989(01)00146-8
https://doi.org/10.1016/S0042-6989(01)00146-8
https://doi.org/10.1016/j.visres.2006.11.020
https://doi.org/10.1016/j.visres.2006.11.020
https://doi.org/10.1155/2018/9171536
https://doi.org/10.1080/14712598.2021.1928629
https://doi.org/10.1080/14712598.2021.1928629
https://doi.org/10.1016/j.reth.2022.04.002
https://doi.org/10.1016/j.reth.2022.04.002
https://doi.org/10.1007/s10456-013-9374-5
https://doi.org/10.1186/1476-4598-13-254
https://doi.org/10.1080/15384101.2015.1055426
https://doi.org/10.1080/15384101.2015.1055426
https://doi.org/10.2147/DDDT.S126743
https://doi.org/10.1186/s12886-020-01559-x
https://doi.org/10.1016/S0140-6736(09)62124-3
https://doi.org/10.1186/s13063-022-06786-9
https://doi.org/10.1186/s13063-022-06786-9
https://doi.org/10.1016/j.pharmthera.2022.108122
https://doi.org/10.1136/bjo.2009.175356
https://doi.org/10.1136/bjo.2009.175356
https://doi.org/10.1167/iovs.09-4538
https://doi.org/10.1167/iovs.09-4538
https://doi.org/10.3390/ijms20030714
https://doi.org/10.3390/ijms20030714
https://doi.org/10.1158/1078-0432.CCR-07-4836
https://doi.org/10.1158/1078-0432.CCR-07-4836
https://doi.org/10.1016/j.gendis.2021.02.009
https://doi.org/10.1016/s1074-7613(03)00109-2
https://doi.org/10.1016/s1074-7613(03)00109-2
https://doi.org/10.1038/srep31086
https://doi.org/10.1038/srep31086
https://doi.org/10.1016/S0140-6736(11)61137-9
https://doi.org/10.1182/blood-2012-07-441949
https://doi.org/10.1182/blood-2012-07-441949

Dysregulation of histone deacetylases in ocular diseases

33

demalonylase and desuccinylase. Science 334:806—809. https://
doi.org/10.1126/science.1207861

Dubey R, Dubey SK, Jung KS, Mohan K, Kleinman ME (2022)
CCL26 expression is elevated in the retinal pigment epithelium
in atrophic AMD. Investig Ophthalmol Vis Sci 63:28-28

Dworak DP, Nichols J (2014) A review of optic neuropathies. Dis Mon
60:276-281. https://doi.org/10.1016/j.disamonth.2014.03.008

Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacety-
lase inhibitors as anticancer drugs. Int J Mol Sci. https://doi.org/
10.3390/ijms 18071414

Ellmeier W, Seiser C (2018) Histone deacetylase function in CD4 +T
cells. Nat Rev Immunol 18:617-634. https://doi.org/10.1038/
s41577-018-0037-z

Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, Edwards
AR, Ferris Iii FL, Friedman SM, Glassman AR, Miller KM
(2010) Randomized trial evaluating ranibizumab plus prompt
or deferred laser or triamcinolone plus prompt laser for diabetic
macular edema. Ophthalmology 117:1064—1077. https://doi.org/
10.1016/j.0phtha.2010.02.031

Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their
inhibitors in cancer, neurological diseases and immune disorders.
Nat Rev Drug Discovery 13:673-691. https://doi.org/10.1038/
nrd4360

Fan J, Alsarraf O, Dahrouj M, Platt KA, Chou CJ, Rice DS, Cros-
son CE (2013) Inhibition of HDAC?2 protects the retina from
ischemic injury. Invest Ophthalmol Vis Sci 54:4072-4080.
https://doi.org/10.1167/iovs.12-11529

Feng J, Yan PF, Zhao HY, Zhang FC, Zhao WH, Feng M (2016) SIRT6
suppresses glioma cell growth via induction of apoptosis, inhibi-
tion of oxidative stress and suppression of JAK2/STAT3 signal-
ing pathway activation. Oncol Rep 35:1395-1402. https://doi.
org/10.3892/0r.2015.4477

Ferrara N (2016) VEGF and intraocular neovascularization: from dis-
covery to therapy. Transl Vis Sci Technol 5:10-10 https://doi.
org/10.1167/tvst.5.2.10

Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-
Feldstein J, Moreira PI, Cardoso SM, Clish CB, Pandolfi PP,
Haigis MC (2011) SIRT3 opposes reprogramming of cancer
cell metabolism through HIF1alpha destabilization. Cancer Cell
19:416-428. https://doi.org/10.1016/j.ccr.2011.02.014

Fleckenstein M, Keenan TDL, Guymer RH, Chakravarthy U, Schmitz-
Valckenberg S, Klaver CC, Wong WT, Chew EY (2021) Age-
related macular degeneration. Nat Rev Dis Primers 7:31. https://
doi.org/10.1038/541572-021-00265-2

Flores R, Carneiro A, Vieira M, Tenreiro S, Seabra MC (2021) Age-
related macular degeneration: pathophysiology, management,
and future perspectives. Ophthalmologica 244:495-511. https://
doi.org/10.1159/000517520

Foster A, Resnikoff S (2005) The impact of vision 2020 on global
blindness. Eye (Lond) 19:1133-1135. https://doi.org/10.1038/
sj.eye.6701973

Fu 'Y, Wang Y, Gao X, Li H, Yuan Y (2020) Dynamic expression of
HDAC3 in db/db mouse RGCs and its relationship with apopto-
sis and autophagy. J Diabetes Res. https://doi.org/10.1155/2020/
6086780

Fu Z, Li H, Wang Y (2021) Implication of retrobulbar and internal
carotid artery blood-flow-volume alterations for the pathogenesis
of non-arteritic anterior ischemic optic neuropathy. BMC Oph-
thalmol 21:309. https://doi.org/10.1186/s12886-021-02075-2

Fujimoto T, Inoue-Mochita M, Iraha S, Tanihara H, Inoue T (2021)
Suberoylanilide hydroxamic acid (SAHA) inhibits transforming
growth factor-beta 2-induced increases in aqueous humor outflow
resistance. J Biol Chem 297:101070. https://doi.org/10.1016/j.
jbc.2021.101070

Geng H, Harvey CT, Pittsenbarger J, Liu Q, Beer TM, Xue C, Qian
DZ (2011) HDAC4 protein regulates HIF1alpha protein lysine

acetylation and cancer cell response to hypoxia. J Biol Chem
286:38095-38102. https://doi.org/10.1074/jbc.M111.257055

Glauben R, Sonnenberg E, Zeitz M, Siegmund B (2009) HDAC inhibi-
tors in models of inflammation-related tumorigenesis. Cancer
Lett 280:154-159. https://doi.org/10.1016/j.canlet.2008.11.019

Goldstein GP, Leonard SA, Kan P, Koo EB, Lee HC, Carmichael SL
(2019) Prenatal and postnatal inflammation-related risk factors
for retinopathy of prematurity. J Perinatol 39:964-973. https://
doi.org/10.1038/s41372-019-0357-2

Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schliiter OM,
Bradke F, Lu J, Fischer A (2013) Reducing HDAC6 amelio-
rates cognitive deficits in a mouse model for Alzheimer’s dis-
ease. EMBO Mol Med 5:52-63. https://doi.org/10.1002/emmm.
201201923

Griff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ,
Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Hag-
garty SJ, Delalle I, Tsai LH (2012) An epigenetic blockade
of cognitive functions in the neurodegenerating brain. Nature
483:222-226. https://doi.org/10.1038/nature 10849

Gronroos E, Hellman U, Heldin C-H, Ericsson J (2002) Control of
Smad?7 stability by competition between acetylation and ubiqui-
tination. Mol Cell 10:483-493. https://doi.org/10.1016/S1097-
2765(02)00639-1

Gu S, Liu Y, Zhu B, Ding K, Yao TP, Chen F, Zhan L, Xu P, Ehrlich M,
Liang T, Lin X, Feng XH (2016) Loss of alpha-tubulin acetyla-
tion is associated with TGF-beta-induced epithelial-mesenchy-
mal transition. J Biol Chem 291:5396-5405. https://doi.org/10.
1074/jbc.M115.713123

Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao
J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE,
Depinho RA, Jaenisch R, Tsai LH (2009) HDAC?2 negatively
regulates memory formation and synaptic plasticity. Nature
459:55-60. https://doi.org/10.1038/nature07925

Guo X, Yan F, LiJ, Zhang C, Bu P (2017) SIRT3 attenuates AnglI-
induced cardiac fibrosis by inhibiting myofibroblasts transdif-
ferentiation via STAT3-NFATc2 pathway. Am J Transl Res
9:3258-3269

Ha CH, Wang W, Jhun BS, Wong C, Hausser A, Pfizenmaier K, Mck-
insey TA, Olson EN, Jin ZG (2008) Protein kinase D-depend-
ent phosphorylation and nuclear export of histone deacetylase
5 mediates vascular endothelial growth factor-induced gene
expression and angiogenesis. J Biol Chem 283:14590-14599.
https://doi.org/10.1074/jbc.M800264200

Hachana S, Larrivee B (2022) TGF-beta superfamily signaling in the
eye: implications for ocular pathologies. Cells 11. https://doi.
org/10.3390/cells11152336

Hachana S, Fontaine O, Sapieha P, Lesk M, Couture R, Vaucher
E (2020) The effects of anti-VEGF and kinin B(1) receptor
blockade on retinal inflammation in laser-induced choroidal
neovascularization. Br J Pharmacol 177:1949-1966. https://
doi.org/10.1111/bph.14962

Hai Y, Shinsky SA, Porter NJ, Christianson DW (2017) Histone
deacetylase 10 structure and molecular function as a polyamine
deacetylase. Nat Commun 8:15368. https://doi.org/10.1038/
ncomms15368

Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40.
https://doi.org/10.1186/1750-1172-1-40

Hamid MA, Moustafa MT, Nashine S, Costa RD, Schneider K, Ati-
lano SR, Kuppermann BD, Kenney MC (2021) Anti-VEGF
drugs influence epigenetic regulation and AMD-specific
molecular markers in ARPE-19 cells. Cells. https://doi.org/
10.3390/cells 10040878

Hammer SS, Vieira CP, Mcfarland D, Sandler M, Levitsky Y, Dor-
weiler TF, Lydic TA, Asare-Bediako B, Adu-Agyeiwaah Y,
Sielski MS, Dupont M, Longhini AL, Li Calzi S, Chakraborty
D, Seigel GM, Proshlyakov DA, Grant MB, Busik JV (2021)

@ Springer


https://doi.org/10.1126/science.1207861
https://doi.org/10.1126/science.1207861
https://doi.org/10.1016/j.disamonth.2014.03.008
https://doi.org/10.3390/ijms18071414
https://doi.org/10.3390/ijms18071414
https://doi.org/10.1038/s41577-018-0037-z
https://doi.org/10.1038/s41577-018-0037-z
https://doi.org/10.1016/j.ophtha.2010.02.031
https://doi.org/10.1016/j.ophtha.2010.02.031
https://doi.org/10.1038/nrd4360
https://doi.org/10.1038/nrd4360
https://doi.org/10.1167/iovs.12-11529
https://doi.org/10.3892/or.2015.4477
https://doi.org/10.3892/or.2015.4477
https://doi.org/10.1167/tvst.5.2.10
https://doi.org/10.1167/tvst.5.2.10
https://doi.org/10.1016/j.ccr.2011.02.014
https://doi.org/10.1038/s41572-021-00265-2
https://doi.org/10.1038/s41572-021-00265-2
https://doi.org/10.1159/000517520
https://doi.org/10.1159/000517520
https://doi.org/10.1038/sj.eye.6701973
https://doi.org/10.1038/sj.eye.6701973
https://doi.org/10.1155/2020/6086780
https://doi.org/10.1155/2020/6086780
https://doi.org/10.1186/s12886-021-02075-2
https://doi.org/10.1016/j.jbc.2021.101070
https://doi.org/10.1016/j.jbc.2021.101070
https://doi.org/10.1074/jbc.M111.257055
https://doi.org/10.1016/j.canlet.2008.11.019
https://doi.org/10.1038/s41372-019-0357-2
https://doi.org/10.1038/s41372-019-0357-2
https://doi.org/10.1002/emmm.201201923
https://doi.org/10.1002/emmm.201201923
https://doi.org/10.1038/nature10849
https://doi.org/10.1016/S1097-2765(02)00639-1
https://doi.org/10.1016/S1097-2765(02)00639-1
https://doi.org/10.1074/jbc.M115.713123
https://doi.org/10.1074/jbc.M115.713123
https://doi.org/10.1038/nature07925
https://doi.org/10.1074/jbc.M800264200
https://doi.org/10.3390/cells11152336
https://doi.org/10.3390/cells11152336
https://doi.org/10.1111/bph.14962
https://doi.org/10.1111/bph.14962
https://doi.org/10.1038/ncomms15368
https://doi.org/10.1038/ncomms15368
https://doi.org/10.1186/1750-1172-1-40
https://doi.org/10.3390/cells10040878
https://doi.org/10.3390/cells10040878

34

J.H.Junetal.

Fasting and fasting-mimicking treatment activate SIRT1/LXRa
and alleviate diabetes-induced systemic and microvascular dys-
function. Diabetologia 64:1674—1689. https://doi.org/10.1007/
s00125-021-05431-5

Harada T, Harada C, Nakamura K, Quah HM, Okumura A, Namekata
K, Saeki T, Aihara M, Yoshida H, Mitani A, Tanaka K (2007)
The potential role of glutamate transporters in the pathogen-
esis of normal tension glaucoma. J Clin Invest 117:1763-1770.
https://doi.org/10.1172/jci30178

Hartnett ME, Lane RH (2013) Effects of oxygen on the development
and severity of retinopathy of prematurity. J AAPOS 17:229—
234. https://doi.org/10.1016/j.jaapos.2012.12.155

Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa.
The Lancet 368:1795-1809. https://doi.org/10.1016/S0140-
6736(06)69740-7

Heideman MR, Wilting RH, Yanover E, Velds A, De Jong J, Kerk-
hoven RM, Jacobs H, Wessels LF, Dannenberg JH (2013)
Dosage-dependent tumor suppression by histone deacetylases
1 and 2 through regulation of c-Myc collaborating genes and
p53 function. Blood 121:2038-2050. https://doi.org/10.1182/
blood-2012-08-450916

Heier JS, Korobelnik J-F, Brown DM, Schmidt-Erfurth U, Do DV,
Midena E, Boyer DS, Terasaki H, Kaiser PK, Marcus DM
(2016) Intravitreal aflibercept for diabetic macular edema:
148-week results from the VISTA and VIVID studies. Oph-
thalmology 123:2376-2385. https://doi.org/10.1016/j.ophtha.
2016.07.032

Heijl A (2015) Glaucoma treatment: by the highest level of evidence.
The Lancet 385:1264—1266. https://doi.org/10.1016/S0140-
6736(14)62347-3

Henley SA, Dick FA (2012) The retinoblastoma family of proteins and
their regulatory functions in the mammalian cell division cycle.
Cell Div 7:10. https://doi.org/10.1186/1747-1028-7-10

Herskovits AZ, Guarente L (2013) Sirtuin deacetylases in neurodegen-
erative diseases of aging. Cell Res 23:746-758. https://doi.org/
10.1038/cr.2013.70

Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of
metabolism and healthspan. Nat Rev Mol Cell Biol 13:225-238.
https://doi.org/10.1038/nrm3293

Hsu MY, Hung YC, Hwang DK, Lin SC, Lin KH, Wang CY, Choi HY,
Wang YP, Cheng CM (2016) Detection of aqueous VEGF con-
centrations before and after intravitreal injection of anti-VEGF
antibody using low-volume sampling paper-based ELISA. Sci
Rep 6:34631. https://doi.org/10.1038/srep34631

Hsu TJ, Nepali K, Tsai CH, Imtiyaz Z, Lin FL, Hsiao G, Lai MJ, Cheng
YW (2021) The HDAC/HSP90 Inhibitor G570 attenuated blue
light-induced cell migration in RPE Cells and neovascularization
in mice through decreased VEGF production. Molecules. https://
doi.org/10.3390/molecules26144359

Hu E, Chen Z, Fredrickson T, Zhu Y, Kirkpatrick R, Zhang GF, Johan-
son K, Sung CM, Liu R, Winkler J (2000) Cloning and charac-
terization of a novel human class I histone deacetylase that func-
tions as a transcription repressor. J Biol Chem 275:15254-15264.
https://doi.org/10.1074/jbc.M908988199

Hu F, Sun X, Li G, Wu Q, Chen Y, Yang X, Luo X, Hu J, Wang G
(2018) Inhibition of SIRT?2 limits tumour angiogenesis via inac-
tivation of the STAT3/VEGFA signalling pathway. Cell Death
Dis 10:9. https://doi.org/10.1038/541419-018-1260-z

Huang XZ, Wen D, Zhang M, Xie Q, Ma L, Guan Y, Ren Y, Chen J,
Hao CM (2014) Sirtl activation ameliorates renal fibrosis by
inhibiting the TGF-p/Smad3 pathway. J Cell Biochem 115:996—
1005. https://doi.org/10.1002/jcb.24748

lizuka N, Morita A, Kawano C, Mori A, Sakamoto K, Kuroyama M,
Ishii K, Nakahara T (2018) Anti-angiogenic effects of valproic
acid in a mouse model of oxygen-induced retinopathy. J Pharma-
col Sci 138:203-208. https://doi.org/10.1016/].jphs.2018.10.004

@ Springer

Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A, Onozaki
K, Hayashi H (2007) Smad3 is acetylated by p300/CBP to regu-
late its transactivation activity. Oncogene 26:500-508. https://
doi.org/10.1038/sj.0nc.1209826

Ishida T, Yoshida T, Shinohara K, Cao K, Nakahama KI, Morita I,
Ohno-Matsui K (2017) Potential role of sirtuin 1 in Muller
glial cells in mice choroidal neovascularization. PLoS One
12:e0183775. https://doi.org/10.1371/journal.pone.0183775

Jampol LM, Glassman AR, Sun J (2020) Evaluation and care of
patients with diabetic retinopathy. N Engl ] Med 382:1629-1637.
https://doi.org/10.1056/NEJMral909637

Ji Q,HanJ, Wang L, Liu J, Dong Y, Zhu K, Shi L (2020) MicroRNA-
34a promotes apoptosis of retinal vascular endothelial cells by
targeting SIRT1 in rats with diabetic retinopathy. Cell Cycle
19:2886-2896. https://doi.org/10.1080/15384101.2020.1827509

Jo DH, Bae J, Chae S, Kim JH, Han J-H, Hwang D, Lee S-W, Kim
JH (2016) Quantitative proteomics reveals 2 integrin-mediated
cytoskeletal rearrangement in vascular endothelial growth fac-
tor (VEGF)-induced retinal vascular hyperpermeability*. Mol
Cell Proteom 15:1681-1691. https://doi.org/10.1074/mcp.M115.
053249

Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S
(2017) Glaucoma. Lancet 390:2183-2193. https://doi.org/10.
1016/s0140-6736(17)31469-1

Kale N (2016) Optic neuritis as an early sign of multiple sclerosis. Eye
Brain 8:195-202. https://doi.org/10.2147/EB.S54131

Kaluza D, Kroll J, Gesierich S, Yao T-P, Boon RA, Hergenreider E,
Tjwa M, Rossig L, Seto E, Augustin HG, Zeiher AM, Dimmeler
S, Urbich C (2011) Class IIb HDAC6 regulates endothelial cell
migration and angiogenesis by deacetylation of cortactin. EMBO
J30:4142-4156. https://doi.org/10.1038/embo;j.2011.298

Kaluza D, Kroll J, Gesierich S, Manavski Y, Boeckel JN, Doebele C,
Zelent A, Rossig L, Zeiher AM, Augustin HG, Urbich C, Dim-
meler S (2013) Histone deacetylase 9 promotes angiogenesis by
targeting the antiangiogenic microRNA-17-92 cluster in endothe-
lial cells. Arterioscler Thromb Vasc Biol 33:533-543. https://doi.
org/10.1161/ATVBAHA.112.300415

Kametani Y, Wang L, Koduka K, Sato T, Katano I, Habu S (2008)
Rapid histone deacetylation and transient HDAC association in
the IL-2 promoter region of TSST-1-stimulated T cells. Immunol
Lett 119:97-102. https://doi.org/10.1016/j.imlet.2008.05.006

Kasetti RB, Maddineni P, Patel PD, Searby C, Sheffield VC, Zode GS
(2018) Transforming growth factor beta2 (TGFbeta2) signaling
plays a key role in glucocorticoid-induced ocular hypertension. J
Biol Chem 293:9854-9868. https://doi.org/10.1074/jbc. RA118.
002540

Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL,
Miller JP, Parrish RK, Wilson MR, Gordon MO, Group OHTS
(2002) The ocular hypertension treatment study: a randomized
trial determines that topical ocular hypotensive medication
delays or prevents the onset of primary open-angle glaucoma.
Arch Ophthalmol 120:701-713

Kato H, Tamamizu-Kato S, Shibasaki F (2004) Histone deacetylase
7 associates with hypoxia-inducible factor lalpha and increases
transcriptional activity. J Biol Chem 279:41966-41974. https://
doi.org/10.1074/jbc.M406320200

Kazantsev AG, Thompson LM (2008) Therapeutic application of his-
tone deacetylase inhibitors for central nervous system disorders.
Nat Rev Drug Discov 7:854-868. https://doi.org/10.1038/nrd26
81

Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers
JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair
DA, Tsai LH (2007) SIRT1 deacetylase protects against neuro-
degeneration in models for Alzheimer’s disease and amyotrophic
lateral sclerosis. Embo J 26:3169-3179. https://doi.org/10.1038/
sj.emboj.7601758


https://doi.org/10.1007/s00125-021-05431-5
https://doi.org/10.1007/s00125-021-05431-5
https://doi.org/10.1172/jci30178
https://doi.org/10.1016/j.jaapos.2012.12.155
https://doi.org/10.1016/S0140-6736(06)69740-7
https://doi.org/10.1016/S0140-6736(06)69740-7
https://doi.org/10.1182/blood-2012-08-450916
https://doi.org/10.1182/blood-2012-08-450916
https://doi.org/10.1016/j.ophtha.2016.07.032
https://doi.org/10.1016/j.ophtha.2016.07.032
https://doi.org/10.1016/S0140-6736(14)62347-3
https://doi.org/10.1016/S0140-6736(14)62347-3
https://doi.org/10.1186/1747-1028-7-10
https://doi.org/10.1038/cr.2013.70
https://doi.org/10.1038/cr.2013.70
https://doi.org/10.1038/nrm3293
https://doi.org/10.1038/srep34631
https://doi.org/10.3390/molecules26144359
https://doi.org/10.3390/molecules26144359
https://doi.org/10.1074/jbc.M908988199
https://doi.org/10.1038/s41419-018-1260-z
https://doi.org/10.1002/jcb.24748
https://doi.org/10.1016/j.jphs.2018.10.004
https://doi.org/10.1038/sj.onc.1209826
https://doi.org/10.1038/sj.onc.1209826
https://doi.org/10.1371/journal.pone.0183775
https://doi.org/10.1056/NEJMra1909637
https://doi.org/10.1080/15384101.2020.1827509
https://doi.org/10.1074/mcp.M115.053249
https://doi.org/10.1074/mcp.M115.053249
https://doi.org/10.1016/s0140-6736(17)31469-1
https://doi.org/10.1016/s0140-6736(17)31469-1
https://doi.org/10.2147/EB.S54131
https://doi.org/10.1038/emboj.2011.298
https://doi.org/10.1161/ATVBAHA.112.300415
https://doi.org/10.1161/ATVBAHA.112.300415
https://doi.org/10.1016/j.imlet.2008.05.006
https://doi.org/10.1074/jbc.RA118.002540
https://doi.org/10.1074/jbc.RA118.002540
https://doi.org/10.1074/jbc.M406320200
https://doi.org/10.1074/jbc.M406320200
https://doi.org/10.1038/nrd2681
https://doi.org/10.1038/nrd2681
https://doi.org/10.1038/sj.emboj.7601758
https://doi.org/10.1038/sj.emboj.7601758

Dysregulation of histone deacetylases in ocular diseases

35

Kim JH, Kim JH, Oh M, Yu YS, Kim KW, Kwon HJ (2009) N-hydroxy-
7-(2-naphthylthio) heptanomide inhibits retinal and choroidal
angiogenesis. Mol Pharm 6:513-519. https://doi.org/10.1021/
mp800178b

Kim M, Kim T-W, Park KH, Kim JM (2012a) Risk factors for pri-
mary open-angle glaucoma in South Korea: the Namil study.
Jpn J Ophthalmol 56:324-329. https://doi.org/10.1007/
$10384-012-0153-4

Kim MS, Akhtar MW, Adachi M, Mahgoub M, Bassel-Duby R, Kava-
lali ET, Olson EN, Monteggia LM (2012b) An essential role for
histone deacetylase 4 in synaptic plasticity and memory forma-
tion. J Neurosci 32:10879-10886. https://doi.org/10.1523/jneur
0sci.2089-12.2012

Kim KE, Kim MJ, Park KH, Jeoung JW, Kim SH, Kim CY, Kang
SW, Society O (2016) Prevalence, awareness, and risk factors
of primary open-angle glaucoma: Korea National Health and
Nutrition Examination Survey. Ophthalmology. https://doi.org/
10.1016/j.0ophtha.2015.11.004

Kim JY, Cho H, Yoo J, Kim GW, Jeon YH, Lee SW, Kwon SH (2023)
HDACS deacetylates HIF-1alpha and enhances its protein stabil-
ity to promote tumor growth and migration in melanoma. Can-
cers (Basel). https://doi.org/10.3390/cancers 15041123

Kimura A, Guo X, Noro T, Harada C, Tanaka K, Namekata K, Harada
T (2015) Valproic acid prevents retinal degeneration in a murine
model of normal tension glaucoma. Neurosci Lett 588:108-113.
https://doi.org/10.1016/j.neulet.2014.12.054

King A, Azuara-Blanco A, Tuulonen A (2013) Glaucoma. BMJ
346:3518. https://doi.org/10.1136/bmj.f3518

Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV,
Yoshida M, Toft DO, Pratt WB, Yao TP (2005) HDAC®6 regu-
lates Hsp90 acetylation and chaperone-dependent activation of
glucocorticoid receptor. Mol Cell 18:601-607. https://doi.org/
10.1016/j.molcel.2005.04.021

Kowluru RA, Santos JM, Zhong Q (2014) Sirtl, a negative regulator
of matrix metalloproteinase-9 in diabetic retinopathy. Invest
Ophthalmol Vis Sci 55:5653-5660. https://doi.org/10.1167/
iovs.14-14383

Kowluru RA, Mishra M, Kumar B (2016) Diabetic retinopathy and
transcriptional regulation of a small molecular weight G-Pro-
tein, Racl. Exp Eye Res 147:72-77. https://doi.org/10.1016/].
exer.2016.04.014

Kumar A, Midha N, Gogia V, Gupta S, Sehra S, Chohan A (2014)
Efficacy of oral valproic acid in patients with retinitis pigmen-
tosa. J Ocul Pharmacol Ther 30:580-586. https://doi.org/10.
1089/jop.2013.0166

Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S-I, Isshiki K,
Isono M, Uzu T, Guarente L, Kashiwagi A, Koya D (2007)
SIRTI inhibits transforming growth factor 3-Induced apoptosis
in glomerular mesangial cells via Smad7 deacetylation*. J Biol
Chem 282:151-158. https://doi.org/10.1074/jbc.M605904200

Lallemand F, Mazars A, Prunier C, Bertrand F, Kornprost M, Gallea
S, Roman-Roman S, Cherqui G, Atfi A (2001) Smad7 inhib-
its the survival nuclear factor kB and potentiates apoptosis
in epithelial cells. Oncogene 20:879—-884. https://doi.org/10.
1038/sj.0nc.1204167

Lam D, Rao SK, Ratra V, Liu Y, Mitchell P, King J, Tassignon M-J,
Jonas J, Pang CP, Chang DF (2015) Cataract. Nat Rev Dis
Primers 1:15014. https://doi.org/10.1038/nrdp.2015.14

Lamoke F, Shaw S, Yuan J, Ananth S, Duncan M, Martin P, Bartoli
M (2015) Increased oxidative and nitrative stress accelerates
aging of the retinal vasculature in the Diabetic retina. PLoS
One 10:e0139664. https://doi.org/10.1371/journal.pone.01396
64

Lanzillotta A, Sarnico I, Ingrassia R, Boroni F, Branca C, Benarese
M, Faraco G, Blasi F, Chiarugi A, Spano P, Pizzi M (2010) The
acetylation of RelA in Lys310 dictates the NF-kxB-dependent

response in post-ischemic injury. Cell Death Dis 1:696-e96.
https://doi.org/10.1038/cddis.2010.76

Lebrun-Julien F, Suter U (2015) Combined HDAC1 and HDAC2
depletion promotes retinal ganglion cell survival after Injury
through reduction of p53 target gene expression. ASN Neuro
7:1759091415593066. https://doi.org/10.1177/1759091415
593066

Leder A, Leder P (1975) Butyric acid, a potent inducer of erythroid
differentiation in cultured erythroleukemic cells. Cell 5:319-322.
https://doi.org/10.1016/0092-8674(75)90107-5

Leske MC (1983) The epidemiology of open-angle glaucoma: a review.
Am J Epidemiol 118:166-191. https://doi.org/10.1093/oxfor
djournals.aje.al 13626

Leske MC, Wu S, Honkanen R, Nemesure B, Schachat A, Hyman
L, Hennis A, Group BES (2007) Nine-year incidence of open-
angle glaucoma in the Barbados Eye studies. Ophthalmology
114:1058-1064. https://doi.org/10.1016/j.ophtha.2006.08.051

Li Z, Wang F, Zha S, Cao Q, Sheng J, Chen S (2018) SIRT1 inhibits
TGF-B-induced endothelial-mesenchymal transition in human
endothelial cells with Smad4 deacetylation. J Cell Physiol
233:9007-9014. https://doi.org/10.1002/jcp.26846

Lim TH, Bae SH, Cho YJ, Lee JH, Kim HK, Sohn YH (2009) Con-
centration of vascular endothelial growth factor after intracam-
eral bevacizumab injection in eyes with neovascular glaucoma.
Korean J Ophthalmol 23:188-192. https://doi.org/10.3341/kjo.
2009.23.3.188

Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sir-
tuin 1 modulates cellular responses to hypoxia by deacetylating
hypoxia-inducible factor lalpha. Mol Cell 38:864-878. https://
doi.org/10.1016/j.molcel.2010.05.023

Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY (2012) Age-
related macular degeneration. Lancet 379:1728-1738. https://
doi.org/10.1016/S0140-6736(12)60282-7

Liu H-N, Cao N-J, Li X, Qian W, Chen X-L (2018) Serum micro-
RNA-211 as a biomarker for diabetic retinopathy via modulat-
ing Sirtuin 1. Biochem Biophys Res Commun 505:1236-1243.
https://doi.org/10.1016/j.bbrc.2018.10.052

Lu XF, Cao XY, Zhu YJ, Wu ZR, Zhuang X, Shao MY, Xu Q, Zhou Y],
JiHJ, Lu QR, Shi YJ, Zeng Y, Bu H (2018) Histone deacetylase
3 promotes liver regeneration and liver cancer cells prolifera-
tion through signal transducer and activator of transcription 3
signaling pathway. Cell Death Dis 9:398. https://doi.org/10.1038/
s41419-018-0428-x

Lundgren P, Athikarisamy SE, Patole S, Lam GC, Smith LE, Simmer
K (2018) Duration of anaemia during the first week of life is
an independent risk factor for retinopathy of prematurity. Acta
Paediatr 107:759-766. https://doi.org/10.1111/apa.14187

Ma KS, Lee CM, Chen PH, Yang Y, Dong YW, Wang YH, Wei JC,
Zheng WJ (2022) Risk of autoimmune diseases following optic
neuritis: a nationwide population-based Cohort study. Front Med
(Lausanne) 9:903608. https://doi.org/10.3389/fmed.2022.903608

Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le
Villain JP, Troalen F, Trouche D, Harel-Bellan A (1998) Retino-
blastoma protein represses transcription by recruiting a histone
deacetylase. Nature 391:601-605. https://doi.org/10.1038/35410

Maguire AM, Russell S, Wellman JA, Chung DC, Yu ZF, Tillman A,
Wittes J, Pappas J, Elci O, Marshall KA, Mccague S, Reichert H,
Davis M, Simonelli F, Leroy BP, Wright JF, High KA, Bennett J
(2019) Efficacy, safety, and durability of voretigene neparvovec-
rzyl in RPE65 mutation-associated inherited retinal dystrophy:
results of phase 1 and 3 trials. Ophthalmology 126:1273-1285.
https://doi.org/10.1016/j.0ophtha.2019.06.017

Maity S, Muhamed J, Sarikhani M, Kumar S, Ahamed F, Spurthi KM,
Ravi V, Jain A, Khan D, Arathi BP, Desingu PA, Sundaresan NR
(2020) Sirtuin 6 deficiency transcriptionally up-regulates TGF-3

@ Springer


https://doi.org/10.1021/mp800178b
https://doi.org/10.1021/mp800178b
https://doi.org/10.1007/s10384-012-0153-4
https://doi.org/10.1007/s10384-012-0153-4
https://doi.org/10.1523/jneurosci.2089-12.2012
https://doi.org/10.1523/jneurosci.2089-12.2012
https://doi.org/10.1016/j.ophtha.2015.11.004
https://doi.org/10.1016/j.ophtha.2015.11.004
https://doi.org/10.3390/cancers15041123
https://doi.org/10.1016/j.neulet.2014.12.054
https://doi.org/10.1136/bmj.f3518
https://doi.org/10.1016/j.molcel.2005.04.021
https://doi.org/10.1016/j.molcel.2005.04.021
https://doi.org/10.1167/iovs.14-14383
https://doi.org/10.1167/iovs.14-14383
https://doi.org/10.1016/j.exer.2016.04.014
https://doi.org/10.1016/j.exer.2016.04.014
https://doi.org/10.1089/jop.2013.0166
https://doi.org/10.1089/jop.2013.0166
https://doi.org/10.1074/jbc.M605904200
https://doi.org/10.1038/sj.onc.1204167
https://doi.org/10.1038/sj.onc.1204167
https://doi.org/10.1038/nrdp.2015.14
https://doi.org/10.1371/journal.pone.0139664
https://doi.org/10.1371/journal.pone.0139664
https://doi.org/10.1038/cddis.2010.76
https://doi.org/10.1177/1759091415593066
https://doi.org/10.1177/1759091415593066
https://doi.org/10.1016/0092-8674(75)90107-5
https://doi.org/10.1093/oxfordjournals.aje.a113626
https://doi.org/10.1093/oxfordjournals.aje.a113626
https://doi.org/10.1016/j.ophtha.2006.08.051
https://doi.org/10.1002/jcp.26846
https://doi.org/10.3341/kjo.2009.23.3.188
https://doi.org/10.3341/kjo.2009.23.3.188
https://doi.org/10.1016/j.molcel.2010.05.023
https://doi.org/10.1016/j.molcel.2010.05.023
https://doi.org/10.1016/S0140-6736(12)60282-7
https://doi.org/10.1016/S0140-6736(12)60282-7
https://doi.org/10.1016/j.bbrc.2018.10.052
https://doi.org/10.1038/s41419-018-0428-x
https://doi.org/10.1038/s41419-018-0428-x
https://doi.org/10.1111/apa.14187
https://doi.org/10.3389/fmed.2022.903608
https://doi.org/10.1038/35410
https://doi.org/10.1016/j.ophtha.2019.06.017

36

J.H.Junetal.

signaling and induces fibrosis in mice. J Biol Chem 295:415-
434. https://doi.org/10.1074/jbc. RA118.007212

Maizel J, Xavier S, Chen J, Lin CH, Vasko R, Goligorsky MS (2014)
Sirtuin 1 ablation in endothelial cells is associated with impaired
angiogenesis and diastolic dysfunction. Am J Physiol Heart Circ
Physiol 307:H1691-H1704. https://doi.org/10.1152/ajpheart.
00281.2014

Majdzadeh N, Morrison BE, D’mello SR (2008a) Class IIA HDACs in
the regulation of neurodegeneration. Front Biosci 13:1072-1082.
https://doi.org/10.2741/2745

Majdzadeh N, Wang L, Morrison BE, Bassel-Duby R, Olson EN,
D’mello SR (2008b) HDAC4 inhibits cell-cycle progression and
protects neurons from cell death. Dev Neurobiol 68:1076-1092.
https://doi.org/10.1002/dneu.20637

Maloney SC, Antecka E, Granner T, Fernandes B, Lim LA, Orellana
ME, Burnier MN Jr. (2013) Expression of SIRT1 in choroidal
neovascular membranes. Retina 33:862-866. https://doi.org/10.
1097/1AE.0b013e31826af556

Mao XB, Cheng YH, Peng KS, You ZP (2020) Sirtuin (Sirt) 3 overex-
pression prevents retinopathy in streptozotocin-induced diabetic
rats. Med Sci Monit 26:¢920883. https://doi.org/10.12659/msm.
920883

Matsuda A, Asada Y, Takakuwa K, Sugita J, Murakami A, Ebihara N
(2015) DNA methylation analysis of human trabecular meshwork
cells during dexamethasone stimulation. Invest Ophthalmol Vis
Sci 56:3801-38009. https://doi.org/10.1167/iovs.14-16008

Mcdonnell F, Irnaten M, Clark AF, O’brien CJ, Wallace DM (2016)
Hypoxia-Induced changes in DNA methylation alter RASAL1
and TGFp1 expression in human trabecular meshwork cells.
PLoS One 11:€0153354. https://doi.org/10.1371/journal.pone.
0153354

Mcevoy JD, Dyer MA (2015) Genetic and epigenetic discoveries in
human retinoblastoma. Crit Rev Oncog 20:217-225. https://doi.
org/10.1615/critrevoncog.2015013711

Mehta S (2015) Age-related macular degeneration. Prim Care
42:377-391. https://doi.org/10.1016/j.pop.2015.05.009

Michaelides M, Kaines A, Hamilton RD, Fraser-Bell S, Rajendram
R, Quhill F, Boos CJ, Xing W, Egan C, Peto T (2010) A pro-
spective randomized trial of intravitreal bevacizumab or laser
therapy in the management of diabetic macular edema (BOLT
study): 12-month data: report 2. Ophthalmology 117:1078—
1086 e2

Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW,
Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA,
Ott M, Gan L (2010) Acetylation of tau inhibits its degradation
and contributes to tauopathy. Neuron 67:953-966. https://doi.
org/10.1016/j.neuron.2010.08.044

Mishra M, Kowluru RA (2017) Role of PARP-1 as a novel transcrip-
tional regulator of MMP-9 in diabetic retinopathy. Biochim Bio-
phys Acta Mol Basis Dis 1863:1761-1769. https://doi.org/10.
1016/j.bbadis.2017.04.024

Mishra M, Duraisamy AJ, Kowluru RA (2018) Sirtl: a guardian of
the development of diabetic retinopathy. Diabetes 67:745-754.
https://doi.org/10.2337/db17-0996

Mitchell P, Bandello F, Schmidt-Erfurth U, Lang GE, Massin P,
Schlingemann RO, Sutter F, Simader C, Burian G, Gerstner O
(2011) The RESTORE study: ranibizumab monotherapy or com-
bined with laser versus laser monotherapy for diabetic macular
edema. Ophthalmology 118:615-625

Mobley RJ, Raghu D, Duke LD, Abell-Hart K, Zawistowski JS, Lutz
K, Gomez SM, Roy S, Homayouni R, Johnson GL, Abell AN
(2017) MAP3K4 controls the chromatin modifier HDAC6 during
trophoblast stem cell epithelial-to-mesenchymal transition. Cell
Rep 18:2387-2400. https://doi.org/10.1016/j.celrep.2017.02.030

Moghimi S, Ramezani F, He M, Coleman AL, Lin SC (2015) Com-
parison of anterior segment-optical coherence tomography

@ Springer

parameters in phacomorphic angle closure and acute angle clo-
sure eyes. Investig Ophthalmol Vis Sci 56:7611-7617

Mortuza R, Feng B, Chakrabarti S (2014) miR-195 regulates SIRT1-
mediated changes in diabetic retinopathy. Diabetologia 57:1037—
1046. https://doi.org/10.1007/s00125-014-3197-9

Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK, Investi-
gators CS (2009) Visual field progression in the collaborative
initial glaucoma treatment study: the impact of treatment and
other baseline factors. Ophthalmology 116:200-207. https://doi.
org/10.1016/j.0ophtha.2008.08.051

Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heu-
chel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, Dijke T, P
(1997) Identification of Smad7, a TGFbeta-inducible antagonist
of TGF-beta signalling. Nature 389:631-635. https://doi.org/10.
1038/39369

Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L,
Gibson A, Sy J, Rundle AC, Hopkins JJ (2012) Ranibizumab
for diabetic macular edema: results from 2 phase I1I randomized
trials: RISE and RIDE. Ophthalmology 119:789-801. https://doi.
org/10.1016/j.ophtha.2011.12.039

Okado T, Terada Y, Tanaka H, Inoshita S, Nakao A, Sasaki S (2002)
Smad7 mediates transforming growth factor-p—induced apoptosis
in mesangial cells. Kidney Int 62:1178-1186. https://doi.org/10.
1111/5.1523-1755.2002.kid583.x

Osseni A, Ravel-Chapuis A, Belotti E, Scionti I, Gangloff YG, Moncol-
lin V, Mazelin L, Mounier R, Leblanc P, Jasmin BJ, Schaeffer
L (2022) Pharmacological inhibition of HDAC6 improves mus-
cle phenotypes in dystrophin-deficient mice by downregulating
TGF-beta via Smad3 acetylation. Nat Commun 13:7108. https://
doi.org/10.1038/s41467-022-34831-3

Pan F, Hu D, Sun LJ, Bai Q, Wang YS, Hou X (2023) Valproate
reduces retinal ganglion cell apoptosis in rats after optic nerve
crush. Neural Regen Res 18:1607-1612. https://doi.org/10.4103/
1673-5374.357913

Park D, Park H, Kim Y, Kim H, Jeoung D (2014) HDAC3 acts as
a negative regulator of angiogenesis. BMB Rep 47:227-232.
https://doi.org/10.5483/bmbrep.2014.47.4.128

Park W, Baek YY, Kim J, Jo DH, Choi S, Kim JH, Kim T, Kim S, Park
M, Kim JY, Won MH, Ha KS, Kim JH, Kwon YG, Kim YM
(2019) Arg-Leu-tyr-glu suppresses retinal endothelial perme-
ability and choroidal neovascularization by inhibiting the VEGF
receptor 2 signaling pathway. Biomol Ther (Seoul) 27:474-483.
https://doi.org/10.4062/biomolther.2019.04 1

Park J, Lai MKP, Arumugam TV, Jo DG (2020) O-GlcNAcylation
as a therapeutic target for Alzheimer’s disease. Neuromol Med
22:171-193. https://doi.org/10.1007/s12017-019-08584-0

Park J, Lee K, Kim K, Yi S-J (2022) The role of histone modifica-
tions: from neurodevelopment to neurodiseases. Signal Transduct
Target Ther 7:217. https://doi.org/10.1038/s41392-022-01078-9

Pedro Ferreira J, Pitt B, Zannad F (2021) Histone deacetylase inhibi-
tors for cardiovascular conditions and healthy longevity. Lancet
Healthy Longev 2:e371-e379. https://doi.org/10.1016/S2666-
7568(21)00061-1

Pelzel HR, Schlamp CL, Nickells RW (2010) Histone H4 deacety-
lation plays a critical role in early gene silencing during neu-
ronal apoptosis. BMC Neurosci 11:62. https://doi.org/10.1186/
1471-2202-11-62

Peshti V, Obolensky A, Nahum L, Kanfi Y, Rathaus M, Avraham M,
Tinman S, Alt FW, Banin E, Cohen HY (2017) Characteriza-
tion of physiological defects in adult SIRT6-/- mice. PLoS One
12:e0176371. https://doi.org/10.1371/journal.pone.0176371

Pierce EA, Foley ED, Smith LE (1996) Regulation of vascular endothe-
lial growth factor by oxygen in a model of retinopathy of prema-
turity. Arch Ophthalmol 114:1219-1228. https://doi.org/10.1001/
archopht.1996.01100140419009


https://doi.org/10.1074/jbc.RA118.007212
https://doi.org/10.1152/ajpheart.00281.2014
https://doi.org/10.1152/ajpheart.00281.2014
https://doi.org/10.2741/2745
https://doi.org/10.1002/dneu.20637
https://doi.org/10.1097/IAE.0b013e31826af556
https://doi.org/10.1097/IAE.0b013e31826af556
https://doi.org/10.12659/msm.920883
https://doi.org/10.12659/msm.920883
https://doi.org/10.1167/iovs.14-16008
https://doi.org/10.1371/journal.pone.0153354
https://doi.org/10.1371/journal.pone.0153354
https://doi.org/10.1615/critrevoncog.2015013711
https://doi.org/10.1615/critrevoncog.2015013711
https://doi.org/10.1016/j.pop.2015.05.009
https://doi.org/10.1016/j.neuron.2010.08.044
https://doi.org/10.1016/j.neuron.2010.08.044
https://doi.org/10.1016/j.bbadis.2017.04.024
https://doi.org/10.1016/j.bbadis.2017.04.024
https://doi.org/10.2337/db17-0996
https://doi.org/10.1016/j.celrep.2017.02.030
https://doi.org/10.1007/s00125-014-3197-9
https://doi.org/10.1016/j.ophtha.2008.08.051
https://doi.org/10.1016/j.ophtha.2008.08.051
https://doi.org/10.1038/39369
https://doi.org/10.1038/39369
https://doi.org/10.1016/j.ophtha.2011.12.039
https://doi.org/10.1016/j.ophtha.2011.12.039
https://doi.org/10.1111/j.1523-1755.2002.kid583.x
https://doi.org/10.1111/j.1523-1755.2002.kid583.x
https://doi.org/10.1038/s41467-022-34831-3
https://doi.org/10.1038/s41467-022-34831-3
https://doi.org/10.4103/1673-5374.357913
https://doi.org/10.4103/1673-5374.357913
https://doi.org/10.5483/bmbrep.2014.47.4.128
https://doi.org/10.4062/biomolther.2019.041
https://doi.org/10.1007/s12017-019-08584-0
https://doi.org/10.1038/s41392-022-01078-9
https://doi.org/10.1016/S2666-7568(21)00061-1
https://doi.org/10.1016/S2666-7568(21)00061-1
https://doi.org/10.1186/1471-2202-11-62
https://doi.org/10.1186/1471-2202-11-62
https://doi.org/10.1371/journal.pone.0176371
https://doi.org/10.1001/archopht.1996.01100140419009
https://doi.org/10.1001/archopht.1996.01100140419009

Dysregulation of histone deacetylases in ocular diseases

37

Popova EY, Imamura Kawasawa Y, Zhang SS, Barnstable CJ (2021)
Inhibition of epigenetic modifiers LSD1 and HDACI blocks rod
photoreceptor death in mouse models of retinitis pigmentosa. J
Neurosci 41:6775-6792. https://doi.org/10.1523/INEUROSCIL.
3102-20.2021

Prendes MA, Harris A, Wirostko BM, Gerber AL, Siesky B (2013)
The role of transforming growth factor p in glaucoma and the
therapeutic implications. Br J Ophthalmol 97:680-686. https://
doi.org/10.1136/bjophthalmol-2011-301132

Qi F, Jiang X, Tong T, Chang H, Li RX (2020) MiR-204 inhibits
inflammation and cell apoptosis in retinopathy rats with diabetic
retinopathy by regulating Bcl-2 and SIRT1 expressions. Eur Rev
Med Pharmacol Sci 24:6486-6493. https://doi.org/10.26355/eur-
rev_202006_21631

Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja
P, Pili R (2006) Class II histone deacetylases are associated with
VHL-independent regulation of hypoxia-inducible factor 1 alpha.
Cancer Res 66:8814—8821. https://doi.org/10.1158/0008-5472.
CAN-05-4598

Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan
M, Macgrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng
H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM (2006) Neuronal
SIRT1 activation as a novel mechanism underlying the preven-
tion of Alzheimer disease amyloid neuropathology by calorie
restriction*. J Biol Chem 281:21745-21754. https://doi.org/10.
1074/jbc.M602909200

Qiu M, Wang SY, Singh K, Lin SC (2013) Association between myopia
and glaucoma in the United States population. Investig Ophthal-
mol Vis Sci 54:830-835

Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic
nerve damage in human glaucoma. II. The site of injury and
susceptibility to damage. Arch Ophthalmol 99:635-649. https://
doi.org/10.1001/archopht.1981.03930010635009

RanJ, Liu M, Feng J, Li H, Ma H, Song T, Cao Y, Zhou P, Wu Y, Yang
Y, Yang Y, Yu F, Guo H, Zhang L, Xie S, Li D, Gao J, Zhang X,
Zhu X, Zhou J (2020) ASK1-mediated phosphorylation blocks
HDACS6 ubiquitination and degradation to drive the disassem-
bly of photoreceptor connecting cilia. Dev Cell 53:287-299¢5.
https://doi.org/10.1016/j.devcel.2020.03.010

RanJ, Zhang Y, Zhang S, Li H, Zhang L, Li Q, Qin J, Li D, Sun L, Xie
S, Zhang X, Liu L, Liu M, Zhou J (2022) Targeting the HDAC6-
cilium axis ameliorates the pathological changes associated with
retinopathy of prematurity. Adv Sci (Weinh) 9:2105365. https://
doi.org/10.1002/advs.202105365

Richer S, Patel S, Sockanathan S, Ulanski LJ 2nd, Miller L, Podella C
(2014) Resveratrol based oral nutritional supplement produces
long-term beneficial effects on structure and visual function in
human patients. Nutrients 6:4404—4420. https://doi.org/10.3390/
nu6104404

Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate
causes histone modification in HeLa and friend erythroleukaemia
cells. Nature 268:462—464. https://doi.org/10.1038/268462a0

Rudnicka AR, Mt-Isa S, Owen CG, Cook DG, Ashby D (2006) Varia-
tions in primary open-angle glaucoma prevalence by age, gender,
and race: a bayesian meta-analysis. Investig Ophthalmol Vis Sci
47:4254-4261

Sabari BR, Zhang D, Allis CD, Zhao Y (2017) Metabolic regulation
of gene expression through histone acylations. Nat Rev Mol Cell
Biol 18:90-101. https://doi.org/10.1038/nrm.2016.140

Samardzija M, Corna A, Gomez-Sintes R, Jarboui MA, Armento A,
Roger JE, Petridou E, Haq W, Paquet-Durand F, Zrenner E, De
La Villa P, Zeck G, Grimm C, Boya P, Ueffing M, Trifunovic D
(2021) HDAC inhibition ameliorates cone survival in retinitis
pigmentosa mice. Cell Death Differ 28:1317-1332. https://doi.
org/10.1038/s41418-020-00653-3

Sancho-Pelluz J, Alavi MV, Sahaboglu A, Kustermann S, Farinelli P,
Azadi S, Van Veen T, Romero FJ, Paquet-Durand F, Ekstrom P
(2010) Excessive HDAC activation is critical for neurodegenera-
tion in the rd1 mouse. Cell Death Dis 1:e24. https://doi.org/10.
1038/cddis.2010.4

Sano H, Namekata K, Kimura A, Shitara H, Guo X, Harada C, Mita-
mura Y, Harada T (2019) Differential effects of N-acetylcysteine
on retinal degeneration in two mouse models of normal ten-
sion glaucoma. Cell Death Dis 10:75. https://doi.org/10.1038/
s41419-019-1365-z

Santoro F, Botrugno OA, Dal Zuffo R, Pallavicini I, Matthews GM,
Cluse L, Barozzi I, Senese S, Fornasari L, Moretti S, Altucci L,
Pelicci PG, Chiocca S, Johnstone RW, Minucci S (2013) A dual
role for Hdacl: oncosuppressor in tumorigenesis, oncogene in
tumor maintenance. Blood 121:3459-3468. https://doi.org/10.
1182/blood-2012-10-461988

Sarubbo F, Esteban S, Miralles A, Moranta D (2018) Effects of resvera-
trol and other polyphenols on Sirtl: relevance to brain function
during aging. Curr Neuropharmacol 16:126—-136. https://doi.org/
10.2174/1570159X15666170703113212

Schmitt HM, Schlamp CL, Nickells RW (2016) Role of HDACs in
optic nerve damage-induced nuclear atrophy of retinal ganglion
cells. Neurosci Lett 625:11-15. https://doi.org/10.1016/j.neulet.
2015.12.012

Sedda S, Franze E, Bevivino G, Di Giovangiulio M, Rizzo A, Colan-
toni A, Ortenzi A, Grasso E, Giannelli M, Sica GS, Fantini MC,
Monteleone G (2018) Reciprocal regulation between Smad7 and
Sirtl in the gut. Front Immunol 9:1854. https://doi.org/10.3389/
fimmu.2018.01854

Seo KS, Park JH, Heo JY, Jing K, Han J, Min KN, Kim C, Koh GY,
Lim K, Kang GY, Uee Lee J, Yim YH, Shong M, Kwak TH,
Kweon GR (2015) SIRT?2 regulates tumour hypoxia response by
promoting HIF-1alpha hydroxylation. Oncogene 34:1354—1362.
https://doi.org/10.1038/onc.2014.76

Sestito R, Madonna S, Scarponi C, Cianfarani F, Failla CM, Cavani
A, Girolomoni G, Albanesi C (2011) STAT3-dependent effects
of IL-22 in human keratinocytes are counterregulated by sir-
tuin 1 through a direct inhibition of STAT3 acetylation. Faseb
J25:916-927. https://doi.org/10.1096/1.10-172288

Shan B, Yao TP, Nguyen HT, Zhuo Y, Levy DR, Klingsberg RC, Tao
H, Palmer ML, Holder KN, Lasky JA (2008) Requirement of
HDACS6 for transforming growth factor-betal-induced epithe-
lial-mesenchymal transition. J Biol Chem 283:21065-21073.
https://doi.org/10.1074/jbc.M802786200

Shen P, Deng X, Chen Z, Ba X, Qin K, Huang Y, Huang Y, Li T, Yan
J, Tu S (2021) SIRT1: a potential therapeutic target in autoim-
mune diseases. Front Immunol 12:779177. https://doi.org/10.
3389/fimmu.2021.779177

Silberman DM, Ross K, Sande PH, Kubota S, Ramaswamy S, Apte
RS, Mostoslavsky R (2014) SIRT®6 is required for normal
retinal function. PLoS One 9:e98831. https://doi.org/10.1371/
journal.pone.0098831

Simic P, Williams M, Guarente L (2013) SIRT1 Suppresses the
Epithelial-to-Mesenchymal Transition in Cancer Metastasis
and Organ Fibrosis. Cell Reports. https://doi.org/10.1016/j.
celrep.2013.03.019

Simdes-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt PA,
Cuendet M (2013) HDACS as a target for neurodegenerative
diseases: what makes it different from the other HDACs? Mol
Neurodegener 8:7. https://doi.org/10.1186/1750-1326-8-7

Simonsson M, Heldin C-H, Ericsson J, Gronroos E (2005) The bal-
ance between acetylation and deacetylation controls Smad?7
stability*. J Biol Chem 280:21797-21803. https://doi.org/10.
1074/jbc.M503134200

Siwak M, Maslankiewicz M, Nowak-Zduriczyk A, Rozpgdek W,
Wojtczak R, Szymanek K, Szaflik M, Szaflik J, Szaflik JP,

@ Springer


https://doi.org/10.1523/JNEUROSCI.3102-20.2021
https://doi.org/10.1523/JNEUROSCI.3102-20.2021
https://doi.org/10.1136/bjophthalmol-2011-301132
https://doi.org/10.1136/bjophthalmol-2011-301132
https://doi.org/10.26355/eurrev_202006_21631
https://doi.org/10.26355/eurrev_202006_21631
https://doi.org/10.1158/0008-5472.CAN-05-4598
https://doi.org/10.1158/0008-5472.CAN-05-4598
https://doi.org/10.1074/jbc.M602909200
https://doi.org/10.1074/jbc.M602909200
https://doi.org/10.1001/archopht.1981.03930010635009
https://doi.org/10.1001/archopht.1981.03930010635009
https://doi.org/10.1016/j.devcel.2020.03.010
https://doi.org/10.1002/advs.202105365
https://doi.org/10.1002/advs.202105365
https://doi.org/10.3390/nu6104404
https://doi.org/10.3390/nu6104404
https://doi.org/10.1038/268462a0
https://doi.org/10.1038/nrm.2016.140
https://doi.org/10.1038/s41418-020-00653-3
https://doi.org/10.1038/s41418-020-00653-3
https://doi.org/10.1038/cddis.2010.4
https://doi.org/10.1038/cddis.2010.4
https://doi.org/10.1038/s41419-019-1365-z
https://doi.org/10.1038/s41419-019-1365-z
https://doi.org/10.1182/blood-2012-10-461988
https://doi.org/10.1182/blood-2012-10-461988
https://doi.org/10.2174/1570159X15666170703113212
https://doi.org/10.2174/1570159X15666170703113212
https://doi.org/10.1016/j.neulet.2015.12.012
https://doi.org/10.1016/j.neulet.2015.12.012
https://doi.org/10.3389/fimmu.2018.01854
https://doi.org/10.3389/fimmu.2018.01854
https://doi.org/10.1038/onc.2014.76
https://doi.org/10.1096/fj.10-172288
https://doi.org/10.1074/jbc.M802786200
https://doi.org/10.3389/fimmu.2021.779177
https://doi.org/10.3389/fimmu.2021.779177
https://doi.org/10.1371/journal.pone.0098831
https://doi.org/10.1371/journal.pone.0098831
https://doi.org/10.1016/j.celrep.2013.03.019
https://doi.org/10.1016/j.celrep.2013.03.019
https://doi.org/10.1186/1750-1326-8-7
https://doi.org/10.1074/jbc.M503134200
https://doi.org/10.1074/jbc.M503134200

38

J.H.Junetal.

Mayjsterek I (2018) The relationship between HDAC6, CXCR3,
and SIRT1 genes expression levels with progression of primary
open-angle glaucoma. Ophthalmic Genet 39:325-331. https://
doi.org/10.1080/13816810.2018.1432061

Smith RO, Ninchoji T, Gordon E, Andre H, Dejana E, Vestweber D,
Kvanta A, Claesson-Welsh L (2020) Vascular permeability in
retinopathy is regulated by VEGFR2 Y949 signaling to VE-
cadherin. Elife. https://doi.org/10.7554/eLife.54056

Stahl A (2020) The diagnosis and treatment of age-related macular
degeneration. Dtsch Arztebl Int 117:513-520. https://doi.org/
10.3238/arztebl.2020.0513

Sundaramurthi H, Roche SL, Grice GL, Moran A, Dillion ET, Cam-
piani G, Nathan JA, Kennedy BN (2020) Selective histone
deacetylase 6 inhibitors restore cone photoreceptor vision or
outer segment morphology in zebrafish and mouse models of
retinal blindness. Front Cell Dev Biol 8:689. https://doi.org/
10.3389/fcell.2020.00689

Suuronen T, Nuutinen T, Ryhanen T, Kaarniranta K, Salminen A
(2007) Epigenetic regulation of clusterin/apolipoprotein J
expression in retinal pigment epithelial cells. Biochem Bio-
phys Res Commun 357:397-401. https://doi.org/10.1016/j.
bbrc.2007.03.135

Tan Y, Fukutomi A, Sun MT, Durkin S, Gilhotra J, Chan WO (2021)
Anti-VEGF crunch syndrome in proliferative diabetic retinopa-
thy: a review. Surv Ophthalmol 66:926-932. https://doi.org/10.
1016/j.survophthal.2021.03.001

Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, Xu Q, Zhou M, Cao
X, Zhu W-G, Liu B (2017) SIRT7 antagonizes TGF-f signal-
ing and inhibits breast cancer metastasis. Nat Commun 8:318.
https://doi.org/10.1038/s41467-017-00396-9

Tao Y, Jiang P, Liu M, Liu Y, Song L, Wang H (2021) Intravitreal
aflibercept partially reverses severe non-proliferative dia-
betic retinopathy in treatment-naive patients. J Int Med Res
49:300060520985369. https://doi.org/10.1177/0300060520
985369

Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, Bikbov
MM, Wang YX, Tang Y, Lu Y, Wong 1Y, Ting DSW, Tan
GSW, Jonas JB, Sabanayagam C, Wong TY, Cheng CY (2021)
Global prevalence of diabetic retinopathy and projection of
burden through 2045: systematic review and meta-analysis.
Ophthalmology 128:1580-1591. https://doi.org/10.1016/j.
ophtha.2021.04.027

Thakur N, Hamidi A, Song J, Itoh S, Bergh A, Heldin CH, Landstrom
M (2020) Smad7 enhances TGF-beta-Induced transcription of
c-Jun and HDACG6 promoting invasion of prostate cancer cells.
iScience 23:101470. https://doi.org/10.1016/j.is¢ci.2020.101470

Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y (2014)
Global prevalence of glaucoma and projections of glaucoma
burden through 2040: a systematic review and meta-analysis.
Ophthalmology 121:2081-2090

Thomas CJ, Mirza RG, Gill MK (2021) Age-related macular degenera-
tion. Med Clin North Am 105:473—491. https://doi.org/10.1016/j.
mcna.2021.01.003

Thounaojam MC, Jadeja RN, Warren M, Powell FL, Raju R, Gutsaeva
D, Khurana S, Martin PM, Bartoli M (2019) MicroRNA-34a
(miR-34a) mediates retinal endothelial cell premature senescence
through mitochondrial dysfunction and loss of antioxidant activi-
ties. Antioxidants 8:328. https://doi.org/10.3390/antiox8090328

Tu AW, Luo K (2007) Acetylation of Smad2 by the co-activator p300
regulates activin and transforming growth factor f§ response*.
J Biol Chem 282:21187-21196. https://doi.org/10.1074/jbc.
M700085200

Tu Y, Song E, Wang Z, Ji N, Zhu L, Wang K, Sun H, Zhang Y, Zhu
Q, Liu X, Zhu M (2021) Melatonin attenuates oxidative stress
and inflammation of Muller cells in diabetic retinopathy via

@ Springer

activating the Sirtl pathway. Biomed Pharmacother 137:111274.
https://doi.org/10.1016/j.biopha.2021.111274

Urbich C, Rossig L, Kaluza D, Potente M, Boeckel J-N, Knau A,
Diehl F, Geng J-G, Hofmann W-K, Zeiher AM, Dimmeler S
(2009) HDACS is a repressor of angiogenesis and determines the
angiogenic gene expression pattern of endothelial cells. Blood
113:5669-5679. https://doi.org/10.1182/blood-2009-01-196485

Valikodath NG, Chiang MF, Chan RVP (2021) Description and man-
agement of retinopathy of prematurity reactivation after intra-
vitreal antivascular endothelial growth factor therapy. Curr Opin
Ophthalmol 32:468-474. https://doi.org/10.1097/icu.00000
00000000786

Wang S, Li X, Parra M, Verdin E, Bassel-Duby R, Olson EN
(2008) Control of endothelial cell proliferation and migration
by VEGF signaling to histone deacetylase. Proc Nat Acad Sci.
https://doi.org/10.1073/pnas.0802857105

Wang X, Abraham S, Mckenzie JG, Jeffs N, Swire M, Tripathi VB,
Luhmann UFO, Lange CK, Zhai Z, Arthur HM, Bainbridge J,
Moss SE, Greenwood J (2013) LRG1 promotes angiogenesis by
modulating endothelial TGF-f signalling. Nature 499:306-311.
https://doi.org/10.1038/nature12345

Wang P, Du H, Zhou CC, Song J, Liu X, Cao X, Mehta JL, Shi Y,
Su DF, Miao CY (2014) Intracellular NAMPT-NAD+-SIRT1
cascade improves post-ischaemic vascular repair by modulat-
ing notch signalling in endothelial progenitors. Cardiovasc Res
104:477-488. https://doi.org/10.1093/cvr/cvu220

Wang J, Harris A, Prendes MA, Alshawa L, Gross JC, Wentz SM, Rao
AB, Kim NJ, Synder A, Siesky B (2017) Targeting transform-
ing growth factor-f signaling in primary open-angle glaucoma. J
Glaucoma 26:390-395. https://doi.org/10.1097/ijg.0000000000
000627

Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. Lancet
363:1711-1720. https://doi.org/10.1016/S0140-6736(04)16257-0

Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and
treatment of glaucoma: a review. JAMA 311:1901-1911. https://
doi.org/10.1001/jama.2014.3192

Weinreb RN, Leung CK, Crowston JG, Medeiros FA, Friedman DS,
Wiggs JL, Martin KR (2016) Primary open-angle glaucoma. Nat
Rev Dis Primers 2:16067. https://doi.org/10.1038/nrdp.2016.67

Wong TY, Cheung CM, Larsen M, Sharma S, Simo R (2016) Diabetic
retinopathy. Nat Rev Dis Primers 2:16012. https://doi.org/10.
1038/nrdp.2016.12

Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD
(2023) Retinitis pigmentosa: novel therapeutic targets and drug
development. Pharmaceutics. https://doi.org/10.3390/pharmaceut
ics15020685

Xiao Q, Zeng L, Zhang Z, Margariti A, Ali ZA, Channon KM, Xu Q,
Hu Y (2006) Sca-1 + progenitors derived from embryonic stem
cells differentiate into endothelial cells capable of vascular repair
after arterial injury. Arterioscler Thromb Vasc Biol 26:2244—
2251. https://doi.org/10.1161/01.Atv.0000240251.50215.50

Xiao X, Chen M, Xu Y, Huang S, Liang J, Cao Y, Chen H (2020)
Sodium butyrate inhibits neovascularization partially via TNXIP/
VEGFR2 pathway. Oxid Med Cell Longev. https://doi.org/10.
1155/2020/6415671

Yaman D, Takmaz T, Yuksel N, Dincer SA, Sahin FI (2020) Evalu-
ation of silent information regulator T (SIRT) 1 and Forkhead
Box O (FOXO) transcription factor 1 and 3a genes in glau-
coma. Mol Biol Rep 47:9337-9344. https://doi.org/10.1007/
$11033-020-05994-3

Yang XJ, Grégoire S (2005) Class II histone deacetylases: from
sequence to function, regulation, and clinical implication. Mol
Cell Biol 25:2873-2884. https://doi.org/10.1128/mcb.25.8.2873-
2884.2005

Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, Leung S,
Zhong Z, Zhao H, Sweitzer S, Considine T, Riera T, Suri V,


https://doi.org/10.1080/13816810.2018.1432061
https://doi.org/10.1080/13816810.2018.1432061
https://doi.org/10.7554/eLife.54056
https://doi.org/10.3238/arztebl.2020.0513
https://doi.org/10.3238/arztebl.2020.0513
https://doi.org/10.3389/fcell.2020.00689
https://doi.org/10.3389/fcell.2020.00689
https://doi.org/10.1016/j.bbrc.2007.03.135
https://doi.org/10.1016/j.bbrc.2007.03.135
https://doi.org/10.1016/j.survophthal.2021.03.001
https://doi.org/10.1016/j.survophthal.2021.03.001
https://doi.org/10.1038/s41467-017-00396-9
https://doi.org/10.1177/0300060520985369
https://doi.org/10.1177/0300060520985369
https://doi.org/10.1016/j.ophtha.2021.04.027
https://doi.org/10.1016/j.ophtha.2021.04.027
https://doi.org/10.1016/j.isci.2020.101470
https://doi.org/10.1016/j.mcna.2021.01.003
https://doi.org/10.1016/j.mcna.2021.01.003
https://doi.org/10.3390/antiox8090328
https://doi.org/10.1074/jbc.M700085200
https://doi.org/10.1074/jbc.M700085200
https://doi.org/10.1016/j.biopha.2021.111274
https://doi.org/10.1182/blood-2009-01-196485
https://doi.org/10.1097/icu.0000000000000786
https://doi.org/10.1097/icu.0000000000000786
https://doi.org/10.1073/pnas.0802857105
https://doi.org/10.1038/nature12345
https://doi.org/10.1093/cvr/cvu220
https://doi.org/10.1097/ijg.0000000000000627
https://doi.org/10.1097/ijg.0000000000000627
https://doi.org/10.1016/S0140-6736(04)16257-0
https://doi.org/10.1001/jama.2014.3192
https://doi.org/10.1001/jama.2014.3192
https://doi.org/10.1038/nrdp.2016.67
https://doi.org/10.1038/nrdp.2016.12
https://doi.org/10.1038/nrdp.2016.12
https://doi.org/10.3390/pharmaceutics15020685
https://doi.org/10.3390/pharmaceutics15020685
https://doi.org/10.1161/01.Atv.0000240251.50215.50
https://doi.org/10.1155/2020/6415671
https://doi.org/10.1155/2020/6415671
https://doi.org/10.1007/s11033-020-05994-3
https://doi.org/10.1007/s11033-020-05994-3
https://doi.org/10.1128/mcb.25.8.2873-2884.2005
https://doi.org/10.1128/mcb.25.8.2873-2884.2005

Dysregulation of histone deacetylases in ocular diseases

39

White B, Ellis JL, Vlasuk GP, Loh C (2012) SIRT1 activators
suppress inflammatory responses through promotion of p65 dea-
cetylation and inhibition of NF-kB activity. PLoS One 7:e46364.
https://doi.org/10.1371/journal.pone.0046364

Yang X, Cai J, Powell DW, Paladugu H, Kuehn MH, Tezel G (2014)
Up-regulation of sirtuins in the glaucomatous human retina.
Investig Ophthalmol Vis Sci 55:2398-2398

Yeh 1J, Ogba N, Bensigner H, Welford SM, Montano MM (2013)
HEXIM1 down-regulates hypoxia-inducible factor-1alpha pro-
tein stability. Biochem J 456:195-204. https://doi.org/10.1042/
BJ20130592

Yoo YG, Kong G, Lee MO (2006) Metastasis-associated protein 1
enhances stability of hypoxia-inducible factor-1alpha protein by
recruiting histone deacetylase 1. Embo J 25:1231-1241. https://
doi.org/10.1038/sj.emboj.7601025

Yoon S, Eom GH (2016) HDAC and HDAC inhibitor: from cancer to
cardiovascular diseases. Chonnam Med J 52:1-11. https://doi.
org/10.4068/cmj.2016.52.1.1

Yoshida M, Horinouchi S, Beppu T (1995) Trichostatin A and trapoxin:
novel chemical probes for the role of histone acetylation in chro-
matin structure and function. BioEssays 17:423-430. https://doi.
org/10.1002/bies.950170510

Yu N, Chen P, Wang Q, Liang M, Qiu J, Zhou P, Yang M, Yang P,
Wu Y, Han X, Ge J, Zhuang J, Yu K (2020) Histone deacetylase
inhibitors differentially regulate c-Myc expression in retinoblas-
toma cells. Oncol Lett 19:460—468. https://doi.org/10.3892/0l.
2019.11111

Yuan ZL, Guan YJ, Chatterjee D, Chin YE (2005) Stat3 dimerization
regulated by reversible acetylation of a single lysine residue.
Science 307:269-273. https://doi.org/10.1126/science.1105166

Yuan H, Li H, Yu P, Fan Q, Zhang X, Huang W, Shen J, Cui Y, Zhou
W (2018) Involvement of HDACS in ischaemia and reperfusion-
induced rat retinal injury. BMC Ophthalmol 18:300. https://doi.
org/10.1186/s12886-018-0951-7

Zaidi SaH, Guzman W, Singh S, Mehrotra S, Husain S (2020) Changes
in class I and IIb HDACs by 8-opioid in chronic rat glaucoma
model. Investig Ophthalmol Vis Sci 61:4—4. https://doi.org/10.
1167/iovs.61.14.4

Zecchin A, Pattarini L, Gutierrez MI, Mano M, Mai A, Valente S,
Myers MP, Pantano S, Giacca M (2014) Reversible acetylation
regulates vascular endothelial growth factor receptor-2 activity.
J Mol Cell Biol 6:116-127. https://doi.org/10.1093/jmcb/mju010

Zeng L, Xiao Q, Margariti A, Zhang Z, Zampetaki A, Patel S, Capo-
grossi MC, Hu Y, Xu Q (2006) HDAC3 is crucial in shear- and
VEGF-induced stem cell differentiation toward endothelial cells.
J Cell Biol 174:1059-1069. https://doi.org/10.1083/jcb.20060
5113

Zhang H, He S, Spee C, Hinton DR (2014) The effects of SIRT1 on
hypoxia induced by cobalt chloride in human fetal retinal pig-
ment epithelial cells. Investig Ophthalmol Vis Sci 55:385-385

Zhang L, Du J, Justus S, Hsu CW, Bonet-Ponce L, Wu WH, Tsai YT,
Wu WP, Jia Y, Duong JK, Mahajan VB, Lin CS, Wang S, Hurley
JB, Tsang SH (2016a) Reprogramming metabolism by targeting
sirtuin 6 attenuates retinal degeneration. J Clin Invest 126:4659—
4673. https://doi.org/10.1172/ICI86905

Zhang Y, Wu D, Xia F, Xian H, Zhu X, Cui H, Huang Z (2016b)
Downregulation of HDAC9 inhibits cell proliferation and tumor
formation by inducing cell cycle arrest in retinoblastoma. Bio-
chem Biophys Res Commun 473:600—606. https://doi.org/10.
1016/j.bbrc.2016.03.129

Zhang M, Jiang N, Chu Y, Postnikova O, Varghese R, Horvath A,
Cheema AK, Golestaneh N (2020) Dysregulated metabolic
pathways in age-related macular degeneration. Sci Rep 10:2464.
https://doi.org/10.1038/541598-020-59244-4

Zhang J, Li Y, Liu Q, Huang Y, Li R, Wu T, Zhang Z, Zhou J, Huang
H, Tang Q, Huang C, Zhao Y, Zhang G, Jiang W, Mo L, Zhang J,

Xie W, He J (2021) Sirt6 alleviated liver fibrosis by deacetylating
conserved lysine 54 on Smad?2 in hepatic stellate cells. Hepatol-
ogy 73:1140-1157. https://doi.org/10.1002/hep.31418

Zhao S, Li T, LiJ, Lu Q, Han C, Wang N, Qiu Q, Cao H, Xu X, Chen
H, Zheng Z (2016) miR-23b-3p induces the cellular metabolic
memory of high glucose in diabetic retinopathy through a SIRT1-
dependent signalling pathway. Diabetologia 59:644—654. https://
doi.org/10.1007/s00125-015-3832-0

Zhao E, Hou J, Ke X, Abbas MN, Kausar S, Zhang L, Cui H (2019)
The roles of sirtuin family proteins in cancer progression. Can-
cers. https://doi.org/10.3390/cancers11121949

Zhao S, Huang Z, Jiang H, Xiu J, Zhang L, Long Q, Yang Y, Yu L,
Lu L, Gu H (2022) Sirtuin 1 induces choroidal neovasculariza-
tion and triggers age-related macular degeneration by promot-
ing LCN2 through SOX9 deacetylation. Oxid Med Cell Longev.
https://doi.org/10.1155/2022/1671438

Zhong Q, Kowluru RA (2010) Role of histone acetylation in the devel-
opment of diabetic retinopathy and the metabolic memory phe-
nomenon. J Cell Biochem 110:1306-1313. https://doi.org/10.
1002/jcb.22644

Zhong H, May MJ, Jimi E, Ghosh S (2002) The phosphorylation sta-
tus of nuclear NF-kappa B determines its association with CBP/
p300 or HDAC-1. Mol Cell 9:625-636. https://doi.org/10.1016/
s1097-2765(02)00477-x

Zhong L, D’urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack
DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB,
Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R,
Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R (2010)
The histone deacetylase Sirt6 regulates glucose homeostasis via
Hiflalpha. Cell 140:280-293. https://doi.org/10.1016/j.cell.2009.
12.041

Zhou J, Wu A, Yu X, Zhu J, Dai H (2017) SIRT®6 inhibits growth of
gastric cancer by inhibiting JAK2/STAT3 pathway. Oncol Rep
38:1059-1066. https://doi.org/10.3892/0r.2017.5753

Zhou L, Ng DS, Yam JC, Chen LJ, Tham CC, Pang CP, Chu WK (2022)
Post-translational modifications on the retinoblastoma protein. J
Biomed Sci 29:33. https://doi.org/10.1186/s12929-022-00818-x

Zimmermann S, Kiefer F, Prudenziati M, Spiller C, Hansen J, Floss
T, Wurst W, Minucci S, Gottlicher M (2007) Reduced body size
and decreased intestinal tumor rates in HDAC2-mutant mice.
Cancer Res 67:9047-9054. https://doi.org/10.1158/0008-5472.
Can-07-0312

Zin A, Gole GA (2013) Retinopathy of prematurity-incidence today.
Clin Perinatol 40:185-200. https://doi.org/10.1016/j.clp.2013.
02.001

Zorrilla-Zubilete MA, Yeste A, Quintana FJ, Toiber D, Mostoslavsky
R, Silberman DM (2018) Epigenetic control of early neurodegen-
erative events in diabetic retinopathy by the histone deacetylase
SIRT6. J Neurochem 144:128-138. https://doi.org/10.1111/jnc.
14243

Zou H, Shan C, Ma L, Liu J, Yang N, Zhao J (2020) Polarity and
epithelial-mesenchymal transition of retinal pigment epithelial
cells in proliferative vitreoretinopathy. PeerJ 8:¢10136. https://
doi.org/10.7717/peerj.10136

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

@ Springer


https://doi.org/10.1371/journal.pone.0046364
https://doi.org/10.1042/BJ20130592
https://doi.org/10.1042/BJ20130592
https://doi.org/10.1038/sj.emboj.7601025
https://doi.org/10.1038/sj.emboj.7601025
https://doi.org/10.4068/cmj.2016.52.1.1
https://doi.org/10.4068/cmj.2016.52.1.1
https://doi.org/10.1002/bies.950170510
https://doi.org/10.1002/bies.950170510
https://doi.org/10.3892/ol.2019.11111
https://doi.org/10.3892/ol.2019.11111
https://doi.org/10.1126/science.1105166
https://doi.org/10.1186/s12886-018-0951-7
https://doi.org/10.1186/s12886-018-0951-7
https://doi.org/10.1167/iovs.61.14.4
https://doi.org/10.1167/iovs.61.14.4
https://doi.org/10.1093/jmcb/mju010
https://doi.org/10.1083/jcb.200605113
https://doi.org/10.1083/jcb.200605113
https://doi.org/10.1172/JCI86905
https://doi.org/10.1016/j.bbrc.2016.03.129
https://doi.org/10.1016/j.bbrc.2016.03.129
https://doi.org/10.1038/s41598-020-59244-4
https://doi.org/10.1002/hep.31418
https://doi.org/10.1007/s00125-015-3832-0
https://doi.org/10.1007/s00125-015-3832-0
https://doi.org/10.3390/cancers11121949
https://doi.org/10.1155/2022/1671438
https://doi.org/10.1002/jcb.22644
https://doi.org/10.1002/jcb.22644
https://doi.org/10.1016/s1097-2765(02)00477-x
https://doi.org/10.1016/s1097-2765(02)00477-x
https://doi.org/10.1016/j.cell.2009.12.041
https://doi.org/10.1016/j.cell.2009.12.041
https://doi.org/10.3892/or.2017.5753
https://doi.org/10.1186/s12929-022-00818-x
https://doi.org/10.1158/0008-5472.Can-07-0312
https://doi.org/10.1158/0008-5472.Can-07-0312
https://doi.org/10.1016/j.clp.2013.02.001
https://doi.org/10.1016/j.clp.2013.02.001
https://doi.org/10.1111/jnc.14243
https://doi.org/10.1111/jnc.14243
https://doi.org/10.7717/peerj.10136
https://doi.org/10.7717/peerj.10136

	Dysregulation of histone deacetylases in ocular diseases
	Abstract
	Introduction
	HDAC classification and its dysregulation in various diseases
	HDAC classification
	Dysregulation of HDACs in various diseases
	Dysregulation of HDACs in diabetic retinopathy
	Dysregulation of HDACs in age-related macular degeneration
	Dry AMD 
	Wet AMD 

	Dysregulation of HDACs in glaucoma
	Dysregulation of HDACs in retinopathy of prematurity
	Dysregulation of HDACs in retinitis pigmentosa
	Dysregulation of HDACs in retinoblastoma
	Dysregulation of HDACs in optic neuropathy


	Role of TGF-β signaling in ocular pathologies
	HDACs deacetylate SMAD complexes
	Smad23
	Smad4
	Smad7

	Effect of VEGF signaling in the pathology of ocular diseases
	Conclusions
	References




