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Abstract

Irbesartan, a potent and selective angiotensin II type-1 (AT),) receptor blocker (ARB), is one of the representative medica-
tions for the treatment of hypertension. Cytochrome P450 (CYP) 2C9 is primarily involved in the oxidation of irbesartan.
CYP2C9 is highly polymorphic, and genetic polymorphism of this enzyme is the leading cause of significant alterations in
the pharmacokinetics of irbesartan. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model
to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes. The irbesartan PBPK model was established
using the PK-Sim® software. Our previously reported pharmacogenomic data for irbesartan was leveraged in the develop-
ment of the PBPK model and collected clinical pharmacokinetic data for irbesartan was used for the validation of the model.
Physicochemical and ADME properties of irbesartan were obtained from previously reported data, predicted by the modeling
software, or optimized to fit the observed plasma concentration—time profiles. Model evaluation was performed by comparing
the predicted plasma concentration—time profiles and pharmacokinetic parameters to the observed results. Predicted plasma
concentration—time profiles were visually similar to observed profiles. Predicted AUC; ;in CYP2C9*1/*3 and CYP2C9*1/¥13
genotypes were increased by 1.54- and 1.62-fold compared to CYP2C9*1/*1 genotype, respectively. All fold error values
for AUC and C,,,, in non-genotyped and CYP2C9 genotyped models were within the two-fold error criterion. We properly
established the PBPK model of irbesartan in different CYP2C9 genotypes. It can be used to predict the pharmacokinetics of
irbesartan for personalized pharmacotherapy in individuals of various races, ages, and CYP2C9 genotypes.

Keywords Antihypertensive pharmacotherapy - CYP2C9 - Physiologically based pharmacokinetic (PBPK) model -
Irbesartan - Genetic polymorphism

Introduction

Hypertension is one of the major risk factors for a variety
of cardiovascular diseases (CVDs) including heart failure,
acute coronary syndrome, and atrial fibrillation, and cer-
ebral stroke (Kjeldsen 2018). Hypertension is a globally
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drug-metabolizing enzymes (Lee et al. 2018; Byeon et al.
2019, 2023; Bae et al. 2020; Kim et al. 2022; Cho et al.
2023a, b; Kang et al. 2023), and non-genetic factors includ-
ing age, body weight, gender, race, co-administered drugs,
etc. (Weinshilboum 2003; Lee et al. 2019; Jung et al. 2020).
Individualized therapy considering various factors that influ-
ence the antihypertensive drug response is needed to reduce
adverse sequelae and achieve proper therapeutic effects.

Irbesartan, a potent and selective angiotensin II type-1
(AT)) receptor blocker (ARB), is one of the representa-
tive medications for the treatment of hypertension (Marino
and Vachharajani 2001). Glucuronide conjugation (Perrier
et al. 1994) and oxidation are the main metabolic pathways
of irbesartan. Cytochrome P450 (CYP) 2C9 is primarily
involved in the oxidation route, while CYP3A4 has a neg-
ligible contribution (Bourrié et al. 1999). Previous in vitro
studies reported that the active hepatic uptake of irbesar-
tan is mediated by organic anion-transporting polypeptide
(OATP) 1B1 and 1B3 (Chapy et al. 2015; Izumi et al. 2018;
McFeely et al. 2019). Irbesartan and its metabolites are
excreted by both biliary and renal routes (Brunner 1997),
with less than 2% of the dose as unchanged form in the urine
(European Medicines Agency 2023).

CYP2C9 is highly polymorphic, and genetic polymor-
phism of this enzyme leads to significant alterations in the
pharmacokinetics and pharmacodynamics of clinically used
CYP2(C9 substrate drugs (Perini et al. 2005; Bae et al. 201 1a,
2012; Choi et al. 2011; Lee et al. 2016; Kim et al. 2017,
2022). To date, more than 85 different CYP2C9 allelic vari-
ants and subvariants (CYP2C9*IB to *85) have been iden-
tified (https://www.pharmvar.org/gene/CYP2C9). Of these
alleles, CYP2C9%*2 (rs1799853, c.430C>T, p.Argl144Cys)
and CYP2C9*3 (rs1057910, c.1075A > C, p.1lle359Leu),
the two most common alleles (Daly et al. 2017), exhibit
impaired catalytic activity compared to the normal allele
both in vitro and in vivo (Tang et al. 2001; Lee et al. 2003;
Perini et al. 2005). CYP2C9*13 (rs72558187, c.269 T>C,
p.Leu90Pro), an allele only observed in East Asians with
an extremely low frequency of 0.2-0.7% (Bae et al. 2011b;
Daly et al. 2017), also shows reduced enzyme activity (Guo
et al. 2005; Wang et al. 2015). Thus, dose adjustment of irbe-
sartan according to genetic variations of individuals could be
recommended for optimal antihypertensive therapy.

The physiologically based pharmacokinetic (PBPK)
model, a mechanistic approach to describe the pharma-
cokinetics of xenobiotics, is widely used to estimate drug
exposures in special populations such as pediatrics, pregnant
women, obesity, and those with organ impairments (Kuepfer
et al. 2016; Zhuang and Lu 2016; Marsousi et al. 2017).
The PBPK model also aids in scrutinizing the pharmacoki-
netic alterations according to drug-drug interactions (Min
and Bae 2017) and the effects of genetic polymorphisms
(Cho et al. 2021b; Lee et al. 2022; Riidesheim et al. 2022;
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Yang et al. 2022). Previously, PBPK models of irbesartan
focused on oral absorption (Kaur et al. 2020) and hepatic
uptake (Chapy et al. 2015) have been reported. However,
no study has examined the effect of irbesartan according to
CYP2C9 genetic polymorphism. In this study, we aimed to
establish the PBPK model of irbesartan in different CYP2C9
genotypes.

Methods
Software

PK-Sim® version 10.0 (Bayer AG, Leverkusen, Germany)
was used for the building of the irbesartan PBPK model,
sensitivity analysis, and parameter optimization. Plasma
concentration—time profiles in previous publications were
digitized using Engauge Digitizer® version 12.1 (https://
markummitchell.github.io/engauge-digitizer/). Pharma-
cokinetic parameters that were not extracted from previous
publications were estimated via non-compartmental analysis
(NCA) using the BA Calc 2007 analysis program (MFDS,
Cheongju, Republic of Korea) based on the obtained plasma
concentration—time profiles.

Clinical pharmacokinetic data

Our previously reported pharmacogenomic data in which
150 mg single oral dose of irbesartan was administered
in healthy Korean subjects with three different genotype
groups (Choi et al. 2012) was used for the development (to
determine input parameters) of the PBPK model. Clinical
pharmacokinetic studies were extensively investigated and
the pharmacokinetic data with single and multiple oral dose
administrations of irbesartan in healthy adults under fasting
state were collected and used for the validation (to verify the
developed model) of the PBPK model.

Model building

The “middle-out” strategy was used for the PBPK model
building. Previously reported literature or drug databases
were extensively investigated to obtain the physicochemi-
cal and absorption, distribution, metabolism, and excretion
(ADME) characteristics of irbesartan, thereafter incorporat-
ing them into the PBPK model. Of those, Log P and pK,
were adjusted within the previously reported ranges. Gastric
emptying time was assigned as 40 min based on Klingen-
smith et al. (2010). The specific intestinal and organ perme-
abilities were optimized and calculated by the quantitative
structure—activity relationship (QSAR) method built in the
PK-Sim® software, respectively.
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CYP2C9 and UDP-glucuronosyltransferase (UGT) 1A3
enzymes were incorporated to reflect the metabolism of irbe-
sartan. Michaelis—Menten constant (K ) values for CYP2C9
and UGT1A3 were obtained from Bourrié et al. (1999) and
Chapy et al. (2015) respectively, and the value for CYP2C9
was minorly modified. Turnover number (k.,) values of
CYP2C9 and UGT1A3 for the non-genotyped model were
simultaneously optimized to recover the mean observed
plasma concentration—time profile obtained from our phar-
macogenomic study (Choi et al. 2012). Thereafter, the devel-
oped non-genotyped model was scaled to the PBPK model
for different CYP2C9 genotypes, where the k_, values in
different CYP2C9 genotypes were optimized to describe the
plasma concentration—time profiles for each genotype in Choi
et al. (2012). The OATP1B1 and 1B3 were incorporated to
describe the transport of irbesartan. The k., and K, values
for OATP1B1 and 1B3 were optimized and obtained from
Chapy et al. (2015), respectively. The reference concentra-
tion of CYP2C9 was 3.84 pmol/L (Rodrigues 1999) and

UGT1A3, OATP1BI1, and 1B3 were 1.00 pmol/L, the default
value of PK-Sim®. Relative expression values for CYP2C9
and UGT1A3 were obtained from the reverse transcription-
polymerase chain reaction (RT-PCR) data (Nishimura et al.
2003; Nishimura and Naito 2005, 2006) and values for OATPs
were obtained from ArrayExpress data (http://www.ebi.ac.uk/
microarray-as/ae/).

Dissolution characteristics were described using the Lint80
function and the dissolution time was extracted from the disso-
lution profile of the commercial product (Khullar et al. 2015).
Model input parameters were refined by iteratively perform-
ing sensitivity analysis and parameter identification based on
the observed data at each step and the Levenberg—Marquardt
algorithm was adopted for parameter optimization. Estima-
tion methods for the partition coefficients and cellular perme-
abilities were Poulin and Theil (Poulin and Theil 2000; Poulin
et al. 2001; Poulin and Theil 2002a, b) and Charge depend-
ent Schmitt normalized to PK-Sim® (Hindmarsh et al. 2023),
respectively.

Table 1 Demographic and dose

T e X References Dose n Demographic data

administration information of

clinical studies used to build the Female (%) Age (years) Weight (kg)

non-genotyped PBPK model of

irbesartan Choi et al. (2012)* 150 mg SD 28 0 235+1.2 63.8+5.8
El-Desoky et al. (2011) 150 mg SD 2 0 45-50 -
Huang et al. (2006) 150 mg SD 18 0 18-25 55.9-72.6
Marino et al. (1998a) 150 mg SD 9 0 24-38 66.0-85.0
Bae et al. (2009) 300 mg SD 23 0 22-38 63-76
Huang et al. (2006) 300 mg SD 18 0 19-27 61.2-75.3
Marino et al. (1998a) 300 mg SD 9 0 22-32 68.5-86.0
Marino et al. (1998b) 300 mg SD 10 30 55+10.6 74.5+8.1
Marino et al. (1998a) 600 mg SD 9 0 26-45 64.0-96.5
Marino et al. (1998a) 900 mg SD 0 20-45 67.5-96.2
Marino et al. (1998a) 150 mg daily 0 24-38 66.0-85.0
Choi et al. (2015) 300 mg daily 25 0 259+3.8 67.8+6.0
Marino et al. (1998a) 300 mg daily 9 0 22-32 68.5-86.0
Marino et al. (1998b) 300 mg daily 10 30 55+10.6 74.5+8.1
Marino et al. (1998a) 600 mg daily 9 0 2645 64.0-96.5
Marino et al. (1998a) 900 mg daily 9 0 20-45 67.5-96.2
Age and weight data are expressed as the mean + standard deviation or range (min—-max)
SD single dose, daily once daily dose, n number of subjects, — not given
“Data used for the model development

Table 2 Demographic, References Dose CYP2C9 n Demographic data

genotype, and dose

administration information of Female (%) Age (years) Weight (kg)

clinical studies used to build

the irbesartan PBPK model in Choi et al. (2012) 150 mg SD *] /%] 12 0 23.8+0.6 64.9+5.9

different CYP2C9 genotypes Choi et al. (2012) 150 mg SD *]/%3 10 0 23.0+1.6 62.9+6.1
Choi et al. (2012) 150 mg SD *1/%13 6 0 243+2.3 65.8+6.1

Age and weight data are expressed as the mean + standard deviation

SD single dose, n number of subjects
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Table 3 Input parameters for the irbesartan PBPK model

Parameter (unit) Reference value Input value References/comments
Basic physico-chemistry

Molecular weight (g/mol) 428.53 428.53 DrugBank

LogP 1-5.39 2.7 Sanofi and DrugBank

pK, 4.9-6.1 (Acidic) 5.80 (Acidic) Cagigal et al. (2001), DrugBank, and

4.12 (Basic) 4.12 (Basic) Chapy et al. (2015)

f, (%) 10.0 10.0 DrugBank

Solubility at reference pH 1.2 (mg/mL) 1.29 1.29 Kaur et al. (2020)
Absorption

Specific intestinal permeability (cm/min) - 3.19E7* Optimized by PK-Sim®
Distribution

Specific organ permeability (cm/min) - 2.33E73 Calculated by PK-Sim®
Metabolism

CYP2C9 K, (kM) 54.0 57.0 Bourrié et al. (1999), minor modification

CYP2C9 k, (1/min) - 27.6 Optimized by PK-Sim®

Non-genotyped

CYP2C9 k., (1/min) - 33 Optimized by PK-Sim®

CYP2C9*1/*1

CYP2C9 k, (1/min) 11 Optimized by PK-Sim®

CYP2C9*1/*3

CYP2C9 k_,, (1/min) 10 Optimized by PK-Sim®

CYP2C9*1/%13

UGT1A3 K., (pM) 368.6 368.6 Chapy et al. (2015)

UGT1A3 k,,, (1/min) - 30 Optimized by PK-Sim®
Transport

OATP1B1 K, (M) 0.69 0.69 Chapy et al. (2015)

OATP1B1 k,, (1/min) - 1.0 Optimized by PK-Sim®

OATP1B3 K, (M) 11.09 11.09 Chapy et al. (2015)

OATP1B3 k,, (1/min) - 0.3 Optimized by PK-Sim®
Excretion

Renal plasma clearance (mL/min/kg) - 0.01 Optimized by PK-Sim®

Biliary plasma clearance (L/hr/kg) - 0.02 Optimized by PK-Sim®
Formulation

Dissolution time (min) <20 10 Khullar et al. (2015)

Log P logarithm of octanol/water partition coefficient, pK, negative logarithm of acid dissociation constant, f, fraction unbound in plasma, K,

Michaelis-Menten constant, k., turnover number

Sensitivity analysis

A sensitivity analysis was performed to confirm which input
parameters had an impact on the area of the plasma concen-
tration—time curve from 0 to infinity (AUC;,;) and maximum
plasma concentration (C,,,,) of irbesartan. Input parameters
that were optimized, related to optimized parameters, or might
have a marked influence on calculation methods used in the
model, were included in the analysis. The sensitivity was cal-
culated as follows (Eq. 1):

A
g _ APK _ Ap

PR T 3 (1)
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where S is the sensitivity, PK is the initial value of the

pharmacokinetic parameter, APK is the change of the phar-
macokinetic parameter from initial value, p is the initial
value of the examined parameter, and Ap is the change of
the examined parameter from initial value. A sensitivity
of + 1.0 indicates that a+ 10% change in an examined input
parameter causes a+ 10% change in the predicted pharma-
cokinetic parameter.

Model evaluation
Both graphical and numerical evaluation methods were used

to evaluate the PBPK model. Predicted plasma concentra-
tion—time profiles plotting the arithmetic mean and 90%
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Fig. 1 Predicted and observed plasma concentration—time profiles of irbesartan after A-J single (A development) and K-P multiple oral doses
in non-genotyped populations. Solid lines and shaded areas indicate arithmetic mean and 90% prediction interval (Sth and 95th percentile range)
of predicted plasma concentrations, respectively. Circles indicate the mean of observed plasma concentrations. Profiles are shown as linear and

semi-logarithmic scale. SD single dose, daily once daily dose

prediction interval (i.e. 5Sth and 95th percentile range) for the
virtual population (n=100) with close demographic charac-
teristics to those of the subject populations in clinical studies
were visually compared to the observed profiles. The demo-
graphic data not reported in previous studies were generated
based on the implemented algorithm in the PK-Sim® software.
A two-fold error criterion for AUC and C,,,,, commonly used
in previous studies (Abduljalil et al. 2015; Sager et al. 2015),
was used as the numerical evaluation criterion. The fold error
value was calculated as follows (Eq. 2):
Predicted value

Fold error = Observed value 2)

To quantitatively measure the model’s predictive perfor-
mance, the mean relative deviation (MRD) of all predicted
plasma concentrations and the geometric mean fold error

(GMEE) for predicted AUC and C,,,, were calculated accord-
ing to Eqgs. 3 and 4, respectively:

N
. 1 )
MRD = 10%, with x = 4| Z (10g,0Cprea; — 10g10Cops.)

i=1
3)
where C,,.q; 1s the i-th predicted plasma concentration, C,;
is the corresponding observed plasma concentration, and N
is the number of observations.
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n
. 1 PKpredi
GMEFE = 10%, withx = — 10g10<—’ 4
n ; PKobs,i )
where PK.q; is the i-th predicted AUC or C,,, value,

PK . 18 the corresponding observed value, and n is the
number of the collected pharmacokinetic parameter data.

Results

Model building and evaluation

A total of nineteen clinical pharmacokinetic data, consist-
ing of four data for development (our pharmacogenomic

data) and fifteen data for validation (collected data from
previous publications), were used to build the PBPK

A

model. Of those, sixteen data were used in the non-geno-
typed model (Table 1) and three data were used in the gen-
otyped model (Table 2). The demographic, genotype, and
dose administration information of clinical studies used to
build the irbesartan model are presented in Tables 1 and
2. Input parameters for the irbesartan PBPK model are
summarized in Table 3.

The comparison between the predicted and observed
plasma concentration—time profiles after single or mul-
tiple oral doses of irbesartan at 150-900 mg dose range
is visualized in Fig. 1. All fold error values for AUC and
Cinax 10 the non-genotyped model were included within
the two-fold range criterion, with respective ranges being
0.52-1.95 and 0.83-1.94 (Fig. 2A and B). GMFE for
AUC was 1.30 and 62.5% (10/16) and 75.0% (12/16) of
fold error values for AUC were within the 1.25-fold and

B
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Fig.2 Goodness-of-fit plots comparing the predicted versus observed A AUC B C

max

and C plasma concentration of irbesartan in non-geno-

typed populations. Closed circles indicate single dose administrations and open circles indicate multiple dose administrations. Solid lines indi-
cate the line of unity, dashed lines indicate the two-fold range and dotted lines indicate the 1.25-fold range
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Table 4 Comparison between the predicted and observed AUC, C,,,,
sartan in non-genotyped populations

and plasma concentration values after single or multiple oral doses of irbe-

References Dose AUC (pg-h/mL)* Crax (pg/mL)P MRD
Observed Predicted Fold error Observed Predicted Fold error
Choi et al. (2012)° 150 mg SD 8.78¢ 8.40 0.96 1.99¢ 1.69 0.85 1.40
El-Desoky et al. (2011) 150 mg SD 14.75 7.63 0.52 1.61 1.44 0.89 1.60
Huang et al. (2006) 150 mg SD 5.36 10.43 1.95 1.11 2.13 1.92 1.79
Marino et al. (1998a) 150 mg SD 9.70 9.05 0.93 1.90 1.67 0.88 1.25
Bae et al. (2009) 300 mg SD 14.3 19.2 1.34 3.12 3.70 1.18 1.50
Huang et al. (2006) 300 mg SD 12.96 21.90 1.69 2.17 4.07 1.88 2.16
Marino et al. (1998a) 300 mg SD 20.00 18.86 0.94 2.90 3.62 1.25 1.64
Marino et al. (1998b) 300 mg SD 19.81 19.70 0.99 4.14 3.45 0.83 1.27
Marino et al. (1998a) 600 mg SD 32.60 38.33 1.18 4.90 6.83 1.39 1.58
Marino et al. (1998a) 900 mg SD 44.80 58.39 1.30 5.30 10.25 1.93 1.82
Marino et al. (1998a) 150 mg daily 9.30 9.16 0.98 2.04 1.75 0.86 1.31
Choi et al. (2015) 300 mg daily 16.12 18.73 1.16 322 391 1.22 1.65
Marino et al. (1998a) 300 mg daily 19.80 19.2 0.97 3.30 3.81 1.15 1.43
Marino et al. (1998b) 300 mg daily 20.92 19.96 0.95 4.07 3.64 0.89 1.34
Marino et al. (1998a) 600 mg daily 31.90 38.89 1.22 4.40 7.23 1.64 1.49
Marino et al. (1998a) 900 mg daily 34.20 59.18 1.73 5.60 10.87 1.94 1.89

Observed and predicted data are given as the mean

2AUC;; single dose, AUC

b
Cmax

“Data used for the model development

+ss Multiple dose

single dose, C multiple dose

max,ss

dCalculated by non-compartmental analysis

AUC,,; area under the plasma concentration—time curve from 0 to infinity, AUC.

ing interval at steady state, C,,,, maximum plasma concentration, C,
MRD mean relative deviation, SD single dose, daily once daily dose

1.5-fold range, respectively. For C_,,, 62.5% (10/16) and
68.8% (11/16) of the predicted values were included in the
1.25-fold and 1.5-fold range of the corresponding observed
values, respectively, and GMFE was 1.40. As illustrated
in the goodness-of-fit plot in Fig. 2C, the percentage of
the predicted plasma concentrations within the 1.25- and
two-fold range of the observed plasma concentrations were
41.5% and 86.9%, respectively, with an overall MRD of
1.57. The detailed results are presented in Table 4.

The comparison between the predicted and observed
plasma concentration—time profiles in different CYP2C9
genotypes is shown in Fig. 3. Predicted profiles for three dif-
ferent genotypes were visually similar to the observed pro-
files. Predicted AUC;,;in CYP2C9*1/*3 and CYP2C9*1/*13
genotypes were increased by 1.54- and 1.62-fold compared
to CYP2C9*1/*1 genotype, respectively. Predicted C,,,
for the population with the CYP2C9*3 and *13 carriers
were 1.27- and 1.28-fold higher than the wild-type carrier,
respectively. Goodness-of-fit plots for AUC, ¢ (Fig. 4A) and
Ciax (Fig. 4B) in the irbesartan model related to CYP2C9
genetic polymorphism exhibited that the predicted values

max,ss

©.ss rea under the plasma concentration—time curve over the dos-

maximum plasma concentration over the dosing interval at steady state,

were almost consistent with their corresponding observed
values with all fold error values included in the 1.25-fold
range (AUC,,; range 0.98-1.09, C, ., range 0.93-1.14).
GMEE for AUC,; was 1.04 and for C,, was 1.08. As visu-
alized in Fig. 4C, 58.3% and 94.4% of fold error values for
plasma concentrations were included in the 1.25- and two-
fold range, respectively, and overall MRD was 1.37. The
detailed results are presented in Table 5.

Sensitivity analysis

The results of the sensitivity analysis are illustrated in
Fig. 5. Input parameters with sensitivity values calculated
as greater than 0.5 were considered sensitive. Sensitive input
parameters for AUC;; and C,,, of irbesartan were as fol-
lows, in order of higher to lower impact; lipophilicity, acidic
pK,. administered dose, and fraction unbound were sensi-
tive input parameters to AUC;; of irbesartan. Lipophilic-
ity and dose were sensitive input parameters to the C,,, of
irbesartan.
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Fig.3 Predicted and observed plasma concentration—time profiles
of irbesartan after 150 mg single oral dose in A CYP2C9*i/*1, B
CYP2C9*1/*3, and C CYP2C9*1/*13 genotypes. Solid lines and shaded
areas indicate arithmetic mean and 90% prediction interval (Sth and
95th percentile range) of predicted plasma concentrations, respectively.
Symbols (inverted triangle; CYP2C9*1/*1, triangle; *1/#3, and rectan-
gle; *1/*13) and error bars indicate the mean and standard deviation of
observed plasma concentrations, respectively. Profiles are shown as linear
and semi-logarithmic scale. SD single dose
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Discussion

Genetic polymorphism of drug-metabolizing enzymes
and transporters is one of the principal issues in achieving
adequate control of blood pressure using antihypertensive
agents (Oliveira-Paula et al. 2019). Concurrently, several
factors including age, gender, and obesity are the potential
indicators that could contribute to the inter-individual vari-
ations of antihypertensive response (Chapman et al. 2002;
Hiltunen et al. 2007). PBPK modeling enables the prediction
of the pharmacokinetics of drugs simultaneously consider-
ing all of the characteristics mentioned above, and there-
fore, it may be a desirable approach for the implementation
of individualized pharmacotherapy in each patient (Kim
et al. 2018, 2021; Cho et al. 2021a, b, 2022; Whang et al.
2022). To date, there have been several attempts to estab-
lish the PBPK models in populations with different geno-
types for antihypertensive agents such as candesartan (Jung
et al. 2021), losartan (Tanveer et al. 2022), and metoprolol
(Riidesheim et al. 2020).

In the present study, a whole-body PBPK model of irbe-
sartan according to CYP2C9 genetic polymorphism was
appropriately established. All predicted AUC and C_,, val-
ues in the non-genotyped populations and different CYP2C9
genotypes were within the two-fold range of the observed
values and calculated GMFE and MRD values showed a
good predictive performance. The developed model properly
predicted the irbesartan pharmacokinetics in different demo-
graphic characteristics and oral dose administrations and
it also captured the previous finding in which AUC;; and
C,.ax Of the CYP2C9*1/%3 and CYP2C9%*1/*13 genotypes
were significantly higher than the CYP2C9*1/*] genotype
(Choi et al. 2012). This suggests the present model could be
applied to predict the pharmacokinetics of irbesartan after
single and multiple dose administrations with a dose range
of 150-900 mg/d in healthy subjects with different CYP2C9
genotypes.

Extensive prior knowledge of ADME and drug-depend-
ent properties of irbesartan were consolidated in this
PBPK model. In the metabolism of irbesartan, CYP2C9
is the only allocated enzyme for the oxidation pathway due
to the negligible effects of CYP3A4 (Bourrié et al. 1999).
Likewise, the glucuronidation pathway was assumed to
be mediated by UGT1A3 based on the fact that UGT1A3
is highly selective toward N2-glucuronidation of tetra-
zoles (Alonen et al. 2008) and irbesartan is metabolized
to tetrazole-N2-glucuronide conjugate (Perrier et al. 1994;
Chando et al. 1998). Metabolites of irbesartan are pharma-
cologically inactive (Gillis and Markham 1997), thereby
the PBPK model for those was not established in this
study. Both OATP1B1 and 1B3 transporters are known
to be responsible for the hepatic uptake of irbesartan.
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Table 5 Comparison between the predicted and observed AUC;,;, C,,,«. and plasma concentration values after 150 mg single oral dose of irbe-

sartan in different CYP2C9 genotypes

References Dose CYP2C9 AUC;+ (pg-h/mL) Cpnax (ng/mL) MRD
Observed Predicted Fold error Observed Predicted Fold error

Choi et al. (2012) 150 mg SD *1/%1 7.45 8.1 1.09 1.48 1.69 1.14 1.34

Choi et al. (2012) 150 mg SD *1/%3 12.19 12.5 1.03 23 2.15 0.93 1.42

Choi et al. (2012) 150 mg SD *1/*%13 13.35 13.13 0.98 2.21 2.16 0.98 1.35

AUC,;,; area under the plasma concentration—time curve from 0 to infinity, C,,,, maximum plasma concentration, MRD mean relative deviation,

SD single dose
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Fig.5 Results of sensitivity
analysis to single parameters,
measured as the change of
predicted A AUC; ;and B C,,
following the administration
of 150 mg single oral dose of
irbesartan
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Uptake contributions of OATP1B1 and 1B3 in our model
are consistent with the previous in vitro studies in which
the relative contribution of OATP1B1 is much higher than
OATP1B3 (Chapy et al. 2015; Izumi et al. 2018).

A slight increase or stagnation of irbesartan plasma con-
centration was noted at 10—12 h after administration in our
pharmacogenomic data (Choi et al. 2012), but the present
model did not capture this phenomenon. Previous studies

@ Springer

proposed that the phenomenon could be triggered by the
enterohepatic circulation of irbesartan and its glucuronide
metabolite (Davi et al. 2000; Chapy et al. 2015). Meanwhile,
Karatza and Karalis (2020) suggested that there is a possibil-
ity that absorption complexities, representatively irregular
gastric emptying time, may contribute to the double-peak
of irbesartan and properly captured it using a population
pharmacokinetic approach. To the best of our knowledge,
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no irbesartan PBPK model has elucidated this phenome-
non to date, including our study. PBPK models focusing on
enterohepatic circulation and/or complex absorption kinetics
could allow a more accurate capture of the plasma concen-
tration—time profiles of irbesartan.

Five clinical studies have assessed the impact of
CYP2C9 genetic polymorphism on the pharmacokinet-
ics and/or pharmacodynamics of irbesartan (Hallberg
et al. 2002; Wen et al. 2003; Hong et al. 2005; Chen et al.
2006; Choi et al. 2012). Chen et al. (2006) and Hong et al.
(2005) reported that plasma irbesartan concentration at
6 h after dosing in Chinese hypertensive patients carry-
ing the CYP2C9*3 allele variant was significantly higher
than those carrying the wild-type allele. Choi et al. (2012)
showed that CYP2C9*3 and *13 alleles markedly altered
the AUC, C,,,, half-life (¢;,,), and apparent clearance
(CL/F) of irbesartan in healthy Korean subjects. Chen
et al. (2006) and Hallberg et al. (2002) reported a notable
reduction of diastolic blood pressure (DBP) in Chinese
hypertensive patients with CYP2C9*1/*3 genotype and
Swedish patients with CYP2C9*1/*2 genotype, respec-
tively. On the other hand, Wen et al. (2003) and Hong
et al. (2005) reported that the impacts of the CYP2C9*3
variant on the therapeutic efficacy of irbesartan were not
significant. Although controversial results in the aspects
of pharmacodynamics have been shown, it seems that
the genetic polymorphism of CYP2C9 may be one of the
predictive indicators for the antihypertensive effects of
irbesartan treatment. Among these studies, Choi et al.
(2012), our previous pharmacogenomic study, was the
only study that included the information to develop the
PBPK model such as plasma concentration—time profiles
and pharmacokinetic parameters including AUC and C_,,
according to CYP2C9 genetic polymorphism. Accordingly,
we developed the PBPK model for CYP2C9*3 and *13
allele variants using these data (Choi et al. 2012), and the
model for CYP2C9%*2 allele was not established because
there was no available data in previous studies. Since the
CYP2C9%2 allele is the most frequently observed variant
globally (Daly et al. 2017), further studies on this variant
should be performed.

Albeit the importance of the CYP2C9 genetic polymor-
phism on the pharmacokinetics or therapeutic efficacy of
irbesartan, considerations for the genetic polymorphisms of
UGT and SLCO genes may also be desirable. UGT gene is
highly polymorphic with more than 200 allele variants iden-
tified and these variants are known to influence the expres-
sion levels and/or enzymatic activity of UGT (Stingl et al.
2014). The SLCO gene, encoding the OATP transporter,
is also polymorphic, by which the efficacy and safety of
OATP substrates are affected (Nakanishi and Tamai 2012).
Previous studies have shown that the UGT and/or SLCO
genetic polymorphisms could have a potential role in the

inter-individual variations of the drug responses for some
ARB class drugs (Suwannakul et al. 2008; Hirvensalo et al.
2020; Song et al. 2021). However, to our knowledge, the
effects of genetic polymorphisms of UGT and SLCO genes
on the plasma concentrations or antihypertensive responses
of irbesartan have been not identified. Thus, we established
the PBPK model of irbesartan associated with the CYP2C9
genetic polymorphism in the present study. Future phar-
macogenomic and PBPK modeling studies related to these
genes may be needed.

In summary, we established the PBPK model of irbe-
sartan, through which the pharmacokinetic alterations
according to CYP2C9 genetic polymorphism were properly
described. The present model could contribute to person-
alized antihypertensive pharmacotherapy of irbesartan via
pharmacokinetic predictions considering together the vari-
ous causes related to the inter-individual variability of drug
response.
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