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Abstract
Irbesartan, a potent and selective angiotensin II type-1  (AT1) receptor blocker (ARB), is one of the representative medica-
tions for the treatment of hypertension. Cytochrome P450 (CYP) 2C9 is primarily involved in the oxidation of irbesartan. 
CYP2C9 is highly polymorphic, and genetic polymorphism of this enzyme is the leading cause of significant alterations in 
the pharmacokinetics of irbesartan. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model 
to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes. The irbesartan PBPK model was established 
using the PK-Sim® software. Our previously reported pharmacogenomic data for irbesartan was leveraged in the develop-
ment of the PBPK model and collected clinical pharmacokinetic data for irbesartan was used for the validation of the model. 
Physicochemical and ADME properties of irbesartan were obtained from previously reported data, predicted by the modeling 
software, or optimized to fit the observed plasma concentration–time profiles. Model evaluation was performed by comparing 
the predicted plasma concentration–time profiles and pharmacokinetic parameters to the observed results. Predicted plasma 
concentration–time profiles were visually similar to observed profiles. Predicted AUC inf in CYP2C9*1/*3 and CYP2C9*1/*13 
genotypes were increased by 1.54- and 1.62-fold compared to CYP2C9*1/*1 genotype, respectively. All fold error values 
for AUC and  Cmax in non-genotyped and CYP2C9 genotyped models were within the two-fold error criterion. We properly 
established the PBPK model of irbesartan in different CYP2C9 genotypes. It can be used to predict the pharmacokinetics of 
irbesartan for personalized pharmacotherapy in individuals of various races, ages, and CYP2C9 genotypes.

Keywords Antihypertensive pharmacotherapy · CYP2C9 · Physiologically based pharmacokinetic (PBPK) model · 
Irbesartan · Genetic polymorphism

Introduction

Hypertension is one of the major risk factors for a variety 
of cardiovascular diseases (CVDs) including heart failure, 
acute coronary syndrome, and atrial fibrillation, and cer-
ebral stroke (Kjeldsen 2018). Hypertension is a globally 
prevalent disease, affecting approximately 1.28 billion peo-
ple aged 30–79 years in 2019 (NCD Risk Factor Collabo-
ration (NCD-RisC) 2021) and causing 12.8% of the total 
annual deaths worldwide (World Health Organization 2021). 
Nevertheless, blood pressure control using antihyperten-
sive medications was adequately achieved in less than 50 
percent of patients with hypertension (Cooper-DeHoff and 
Johnson 2016; Mann and Flack 2023). The inter-individual 
variability of the drug responses may be mainly attrib-
uted to genetic factors associated with the disposition of 
drugs, such as polymorphisms of drug-transporters (Shin 
et al. 2020; Magadmi et al. 2023; Jeong et al. 2023) and 
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drug-metabolizing enzymes (Lee et al. 2018; Byeon et al. 
2019, 2023; Bae et al. 2020; Kim et al. 2022; Cho et al. 
2023a, b; Kang et al. 2023), and non-genetic factors includ-
ing age, body weight, gender, race, co-administered drugs, 
etc. (Weinshilboum 2003; Lee et al. 2019; Jung et al. 2020). 
Individualized therapy considering various factors that influ-
ence the antihypertensive drug response is needed to reduce 
adverse sequelae and achieve proper therapeutic effects.

Irbesartan, a potent and selective angiotensin II type-1 
 (AT1) receptor blocker (ARB), is one of the representa-
tive medications for the treatment of hypertension (Marino 
and Vachharajani 2001). Glucuronide conjugation (Perrier 
et al. 1994) and oxidation are the main metabolic pathways 
of irbesartan. Cytochrome P450 (CYP) 2C9 is primarily 
involved in the oxidation route, while CYP3A4 has a neg-
ligible contribution (Bourrié et al. 1999). Previous in vitro 
studies reported that the active hepatic uptake of irbesar-
tan is mediated by organic anion-transporting polypeptide 
(OATP) 1B1 and 1B3 (Chapy et al. 2015; Izumi et al. 2018; 
McFeely et al. 2019). Irbesartan and its metabolites are 
excreted by both biliary and renal routes (Brunner 1997), 
with less than 2% of the dose as unchanged form in the urine 
(European Medicines Agency 2023).

CYP2C9 is highly polymorphic, and genetic polymor-
phism of this enzyme leads to significant alterations in the 
pharmacokinetics and pharmacodynamics of clinically used 
CYP2C9 substrate drugs (Perini et al. 2005; Bae et al. 2011a, 
2012; Choi et al. 2011; Lee et al. 2016; Kim et al. 2017, 
2022). To date, more than 85 different CYP2C9 allelic vari-
ants and subvariants (CYP2C9*1B to *85) have been iden-
tified (https:// www. pharm var. org/ gene/ CYP2C9). Of these 
alleles, CYP2C9*2 (rs1799853, c.430C > T, p.Arg144Cys) 
and CYP2C9*3 (rs1057910, c.1075A > C, p.Ile359Leu), 
the two most common alleles (Daly et al. 2017), exhibit 
impaired catalytic activity compared to the normal allele 
both in vitro and in vivo (Tang et al. 2001; Lee et al. 2003; 
Perini et al. 2005). CYP2C9*13 (rs72558187, c.269 T > C, 
p.Leu90Pro), an allele only observed in East Asians with 
an extremely low frequency of 0.2–0.7% (Bae et al. 2011b; 
Daly et al. 2017), also shows reduced enzyme activity (Guo 
et al. 2005; Wang et al. 2015). Thus, dose adjustment of irbe-
sartan according to genetic variations of individuals could be 
recommended for optimal antihypertensive therapy.

The physiologically based pharmacokinetic (PBPK) 
model, a mechanistic approach to describe the pharma-
cokinetics of xenobiotics, is widely used to estimate drug 
exposures in special populations such as pediatrics, pregnant 
women, obesity, and those with organ impairments (Kuepfer 
et al. 2016; Zhuang and Lu 2016; Marsousi et al. 2017). 
The PBPK model also aids in scrutinizing the pharmacoki-
netic alterations according to drug-drug interactions (Min 
and Bae 2017) and the effects of genetic polymorphisms 
(Cho et al. 2021b; Lee et al. 2022; Rüdesheim et al. 2022; 

Yang et al. 2022). Previously, PBPK models of irbesartan 
focused on oral absorption (Kaur et al. 2020) and hepatic 
uptake (Chapy et al. 2015) have been reported. However, 
no study has examined the effect of irbesartan according to 
CYP2C9 genetic polymorphism. In this study, we aimed to 
establish the PBPK model of irbesartan in different CYP2C9 
genotypes.

Methods

Software

PK-Sim® version 10.0 (Bayer AG, Leverkusen, Germany) 
was used for the building of the irbesartan PBPK model, 
sensitivity analysis, and parameter optimization. Plasma 
concentration–time profiles in previous publications were 
digitized using Engauge  Digitizer® version 12.1 (https:// 
marku mmitc hell. github. io/ engau ge- digit izer/). Pharma-
cokinetic parameters that were not extracted from previous 
publications were estimated via non-compartmental analysis 
(NCA) using the BA Calc 2007 analysis program (MFDS, 
Cheongju, Republic of Korea) based on the obtained plasma 
concentration–time profiles.

Clinical pharmacokinetic data

Our previously reported pharmacogenomic data in which 
150 mg single oral dose of irbesartan was administered 
in healthy Korean subjects with three different genotype 
groups (Choi et al. 2012) was used for the development (to 
determine input parameters) of the PBPK model. Clinical 
pharmacokinetic studies were extensively investigated and 
the pharmacokinetic data with single and multiple oral dose 
administrations of irbesartan in healthy adults under fasting 
state were collected and used for the validation (to verify the 
developed model) of the PBPK model.

Model building

The “middle-out” strategy was used for the PBPK model 
building. Previously reported literature or drug databases 
were extensively investigated to obtain the physicochemi-
cal and absorption, distribution, metabolism, and excretion 
(ADME) characteristics of irbesartan, thereafter incorporat-
ing them into the PBPK model. Of those, Log P and  pKa 
were adjusted within the previously reported ranges. Gastric 
emptying time was assigned as 40 min based on Klingen-
smith et al. (2010). The specific intestinal and organ perme-
abilities were optimized and calculated by the quantitative 
structure–activity relationship (QSAR) method built in the 
PK-Sim® software, respectively.

https://www.pharmvar.org/gene/CYP2C9
https://markummitchell.github.io/engauge-digitizer/
https://markummitchell.github.io/engauge-digitizer/
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CYP2C9 and UDP-glucuronosyltransferase (UGT) 1A3 
enzymes were incorporated to reflect the metabolism of irbe-
sartan. Michaelis–Menten constant  (Km) values for CYP2C9 
and UGT1A3 were obtained from Bourrié et al. (1999) and 
Chapy et al. (2015) respectively, and the value for CYP2C9 
was minorly modified. Turnover number  (kcat) values of 
CYP2C9 and UGT1A3 for the non-genotyped model were 
simultaneously optimized to recover the mean observed 
plasma concentration–time profile obtained from our phar-
macogenomic study (Choi et al. 2012). Thereafter, the devel-
oped non-genotyped model was scaled to the PBPK model 
for different CYP2C9 genotypes, where the  kcat values in 
different CYP2C9 genotypes were optimized to describe the 
plasma concentration–time profiles for each genotype in Choi 
et al. (2012). The OATP1B1 and 1B3 were incorporated to 
describe the transport of irbesartan. The  kcat and  Km values 
for OATP1B1 and 1B3 were optimized and obtained from 
Chapy et al. (2015), respectively. The reference concentra-
tion of CYP2C9 was 3.84 μmol/L (Rodrigues 1999) and 

UGT1A3, OATP1B1, and 1B3 were 1.00 μmol/L, the default 
value of PK-Sim®. Relative expression values for CYP2C9 
and UGT1A3 were obtained from the reverse transcription-
polymerase chain reaction (RT-PCR) data (Nishimura et al. 
2003; Nishimura and Naito 2005, 2006) and values for OATPs 
were obtained from ArrayExpress data (http:// www. ebi. ac. uk/ 
micro array- as/ ae/).

Dissolution characteristics were described using the Lint80 
function and the dissolution time was extracted from the disso-
lution profile of the commercial product (Khullar et al. 2015). 
Model input parameters were refined by iteratively perform-
ing sensitivity analysis and parameter identification based on 
the observed data at each step and the Levenberg–Marquardt 
algorithm was adopted for parameter optimization. Estima-
tion methods for the partition coefficients and cellular perme-
abilities were Poulin and Theil (Poulin and Theil 2000; Poulin 
et al. 2001; Poulin and Theil 2002a, b) and Charge depend-
ent Schmitt normalized to PK-Sim® (Hindmarsh et al. 2023), 
respectively.

Table 1  Demographic and dose 
administration information of 
clinical studies used to build the 
non-genotyped PBPK model of 
irbesartan

Age and weight data are expressed as the mean ± standard deviation or range (min–max)
SD single dose, daily once daily dose, n number of subjects, – not given
a Data used for the model development

References Dose n Demographic data

Female (%) Age (years) Weight (kg)

Choi et al. (2012)a 150 mg SD 28 0 23.5 ± 1.2 63.8 ± 5.8
El-Desoky et al. (2011) 150 mg SD 2 0 45–50 –
Huang et al. (2006) 150 mg SD 18 0 18–25 55.9–72.6
Marino et al. (1998a) 150 mg SD 9 0 24–38 66.0–85.0
Bae et al. (2009) 300 mg SD 23 0 22–38 63–76
Huang et al. (2006) 300 mg SD 18 0 19–27 61.2–75.3
Marino et al. (1998a) 300 mg SD 9 0 22–32 68.5–86.0
Marino et al. (1998b) 300 mg SD 10 30 55 ± 10.6 74.5 ± 8.1
Marino et al. (1998a) 600 mg SD 9 0 26–45 64.0–96.5
Marino et al. (1998a) 900 mg SD 9 0 20–45 67.5–96.2
Marino et al. (1998a) 150 mg daily 9 0 24–38 66.0–85.0
Choi et al. (2015) 300 mg daily 25 0 25.9 ± 3.8 67.8 ± 6.0
Marino et al. (1998a) 300 mg daily 9 0 22–32 68.5–86.0
Marino et al. (1998b) 300 mg daily 10 30 55 ± 10.6 74.5 ± 8.1
Marino et al. (1998a) 600 mg daily 9 0 26–45 64.0–96.5
Marino et al. (1998a) 900 mg daily 9 0 20–45 67.5–96.2

Table 2  Demographic, 
genotype, and dose 
administration information of 
clinical studies used to build 
the irbesartan PBPK model in 
different CYP2C9 genotypes

Age and weight data are expressed as the mean ± standard deviation
SD single dose, n number of subjects

References Dose CYP2C9 n Demographic data

Female (%) Age (years) Weight (kg)

Choi et al. (2012) 150 mg SD *1/*1 12 0 23.8 ± 0.6 64.9 ± 5.9
Choi et al. (2012) 150 mg SD *1/*3 10 0 23.0 ± 1.6 62.9 ± 6.1
Choi et al. (2012) 150 mg SD *1/*13 6 0 24.3 ± 2.3 65.8 ± 6.1

http://www.ebi.ac.uk/microarray-as/ae/
http://www.ebi.ac.uk/microarray-as/ae/
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Sensitivity analysis

A sensitivity analysis was performed to confirm which input 
parameters had an impact on the area of the plasma concen-
tration–time curve from 0 to infinity (AUC inf) and maximum 
plasma concentration  (Cmax) of irbesartan. Input parameters 
that were optimized, related to optimized parameters, or might 
have a marked influence on calculation methods used in the 
model, were included in the analysis. The sensitivity was cal-
culated as follows (Eq. 1):

(1)S =
ΔPK

PK
÷
Δp

p

 where S is the sensitivity, PK  is the initial value of the 
pharmacokinetic parameter, ΔPK is the change of the phar-
macokinetic parameter from initial value, p is the initial 
value of the examined parameter, and Δp is the change of 
the examined parameter from initial value. A sensitivity 
of + 1.0 indicates that a + 10% change in an examined input 
parameter causes a + 10% change in the predicted pharma-
cokinetic parameter.

Model evaluation

Both graphical and numerical evaluation methods were used 
to evaluate the PBPK model. Predicted plasma concentra-
tion–time profiles plotting the arithmetic mean and 90% 

Table 3  Input parameters for the irbesartan PBPK model

Log P logarithm of octanol/water partition coefficient, pKa negative logarithm of acid dissociation constant, fu fraction unbound in plasma, Km 
Michaelis–Menten constant, kcat turnover number

Parameter (unit) Reference value Input value References/comments

Basic physico-chemistry
 Molecular weight (g/mol) 428.53 428.53 DrugBank
 Log P 1–5.39 2.7 Sanofi and DrugBank
  pKa 4.9–6.1 (Acidic)

4.12 (Basic)
5.80 (Acidic)
4.12 (Basic)

Cagigal et al. (2001), DrugBank, and 
Chapy et al. (2015)

  fu (%) 10.0 10.0 DrugBank
 Solubility at reference pH 1.2 (mg/mL)  1.29 1.29 Kaur et al. (2020)

Absorption
 Specific intestinal permeability (cm/min) – 3.19E−4 Optimized by PK-Sim®

Distribution
 Specific organ permeability (cm/min) – 2.33E−3 Calculated by PK-Sim®

Metabolism
 CYP2C9  Km (μM) 54.0 57.0 Bourrié et al. (1999), minor modification
 CYP2C9  kcat (1/min)
Non-genotyped

– 27.6 Optimized by PK-Sim®

 CYP2C9  kcat (1/min)
CYP2C9*1/*1

– 33 Optimized by PK-Sim®

 CYP2C9  kcat (1/min)
CYP2C9*1/*3

11 Optimized by PK-Sim®

 CYP2C9  kcat (1/min)
CYP2C9*1/*13

10 Optimized by PK-Sim®

 UGT1A3  Km (μM) 368.6 368.6 Chapy et al. (2015)
 UGT1A3  kcat (1/min) – 30 Optimized by PK-Sim®

Transport
 OATP1B1  Km (μM) 0.69 0.69 Chapy et al. (2015)
 OATP1B1  kcat (1/min) – 1.0 Optimized by PK-Sim®

 OATP1B3  Km (μM)  11.09 11.09 Chapy et al. (2015)
 OATP1B3  kcat (1/min) – 0.3 Optimized by PK-Sim®

Excretion
 Renal plasma clearance (mL/min/kg) – 0.01 Optimized by PK-Sim®

 Biliary plasma clearance (L/hr/kg) – 0.02 Optimized by PK-Sim®

Formulation
 Dissolution time (min)  < 20 10 Khullar et al. (2015)



943Physiologically based pharmacokinetic (PBPK) modeling to predict the pharmacokinetics of…

1 3

prediction interval (i.e. 5th and 95th percentile range) for the 
virtual population (n = 100) with close demographic charac-
teristics to those of the subject populations in clinical studies 
were visually compared to the observed profiles. The demo-
graphic data not reported in previous studies were generated 
based on the implemented algorithm in the PK-Sim® software. 
A two-fold error criterion for AUC and  Cmax, commonly used 
in previous studies (Abduljalil et al. 2015; Sager et al. 2015), 
was used as the numerical evaluation criterion. The fold error 
value was calculated as follows (Eq. 2):

To quantitatively measure the model’s predictive perfor-
mance, the mean relative deviation (MRD) of all predicted 
plasma concentrations and the geometric mean fold error 

(2)Fold error =
Predicted value

Observed value

(GMFE) for predicted AUC and  Cmax were calculated accord-
ing to Eqs. 3 and 4, respectively:

 where Cpred,i is the i-th predicted plasma concentration, Cobs,i 
is the corresponding observed plasma concentration, and N 
is the number of observations.

(3)

MRD = 10
x
, with x =

√

√

√

√
1

N

N
∑

i=1

(log10Cpred,i − log10Cobs,i)
2
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Fig. 1  Predicted and observed plasma concentration–time profiles of irbesartan after A–J single (A development) and K–P multiple oral doses 
in non-genotyped populations. Solid lines and shaded areas indicate arithmetic mean and 90% prediction interval (5th and 95th percentile range) 
of predicted plasma concentrations, respectively. Circles indicate the mean of observed plasma concentrations. Profiles are shown as linear and 
semi-logarithmic scale. SD single dose, daily once daily dose
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 where PKpred,i is the i-th predicted AUC or  Cmax value, 
PKobs,i is the corresponding observed value, and n is the 
number of the collected pharmacokinetic parameter data.

Results

Model building and evaluation

A total of nineteen clinical pharmacokinetic data, consist-
ing of four data for development (our pharmacogenomic 
data) and fifteen data for validation (collected data from 
previous publications), were used to build the PBPK 

(4)GMFE = 10
x
, with x =

1

n

n
∑

i=1

|

|

|

|

|

log10

(

PKpred,i

PKobs,i

)

|

|

|

|

|

model. Of those, sixteen data were used in the non-geno-
typed model (Table 1) and three data were used in the gen-
otyped model (Table 2). The demographic, genotype, and 
dose administration information of clinical studies used to 
build the irbesartan model are presented in Tables 1 and 
2. Input parameters for the irbesartan PBPK model are 
summarized in Table 3.

The comparison between the predicted and observed 
plasma concentration–time profiles after single or mul-
tiple oral doses of irbesartan at 150–900 mg dose range 
is visualized in Fig. 1. All fold error values for AUC and 
 Cmax in the non-genotyped model were included within 
the two-fold range criterion, with respective ranges being 
0.52–1.95 and 0.83–1.94 (Fig.  2A and B). GMFE for 
AUC was 1.30 and 62.5% (10/16) and 75.0% (12/16) of 
fold error values for AUC were within the 1.25-fold and 

Fig. 2  Goodness-of-fit plots comparing the predicted versus observed A AUC B  Cmax and C plasma concentration of irbesartan in non-geno-
typed populations. Closed circles indicate single dose administrations and open circles indicate multiple dose administrations. Solid lines indi-
cate the line of unity, dashed lines indicate the two-fold range and dotted lines indicate the 1.25-fold range
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1.5-fold range, respectively. For  Cmax, 62.5% (10/16) and 
68.8% (11/16) of the predicted values were included in the 
1.25-fold and 1.5-fold range of the corresponding observed 
values, respectively, and GMFE was 1.40. As illustrated 
in the goodness-of-fit plot in Fig. 2C, the percentage of 
the predicted plasma concentrations within the 1.25- and 
two-fold range of the observed plasma concentrations were 
41.5% and 86.9%, respectively, with an overall MRD of 
1.57. The detailed results are presented in Table 4.  

The comparison between the predicted and observed 
plasma concentration–time profiles in different CYP2C9 
genotypes is shown in Fig. 3. Predicted profiles for three dif-
ferent genotypes were visually similar to the observed pro-
files. Predicted AUC inf in CYP2C9*1/*3 and CYP2C9*1/*13 
genotypes were increased by 1.54- and 1.62-fold compared 
to CYP2C9*1/*1 genotype, respectively. Predicted  Cmax 
for the population with the CYP2C9*3 and *13 carriers 
were 1.27- and 1.28-fold higher than the wild-type carrier, 
respectively. Goodness-of-fit plots for AUC inf (Fig. 4A) and 
 Cmax (Fig. 4B) in the irbesartan model related to CYP2C9 
genetic polymorphism exhibited that the predicted values 

were almost consistent with their corresponding observed 
values with all fold error values included in the 1.25-fold 
range (AUC inf range 0.98–1.09,  Cmax range 0.93–1.14). 
GMFE for AUC inf was 1.04 and for  Cmax was 1.08. As visu-
alized in Fig. 4C, 58.3% and 94.4% of fold error values for 
plasma concentrations were included in the 1.25- and two-
fold range, respectively, and overall MRD was 1.37. The 
detailed results are presented in Table 5.  

Sensitivity analysis

The results of the sensitivity analysis are illustrated in 
Fig. 5. Input parameters with sensitivity values calculated 
as greater than 0.5 were considered sensitive. Sensitive input 
parameters for AUC inf and  Cmax of irbesartan were as fol-
lows, in order of higher to lower impact; lipophilicity, acidic 
 pKa, administered dose, and fraction unbound were sensi-
tive input parameters to AUC inf of irbesartan. Lipophilic-
ity and dose were sensitive input parameters to the  Cmax of 
irbesartan.

Table 4  Comparison between the predicted and observed AUC,  Cmax, and plasma concentration values after single or multiple oral doses of irbe-
sartan in non-genotyped populations

Observed and predicted data are given as the mean
a AUC inf single dose, AUC τ,ss multiple dose
b Cmax single dose,  Cmax,ss multiple dose
c Data used for the model development
d Calculated by non-compartmental analysis
AUC inf area under the plasma concentration–time curve from 0 to infinity, AUC τ,ss area under the plasma concentration–time curve over the dos-
ing interval at steady state, Cmax maximum plasma concentration, Cmax,ss maximum plasma concentration over the dosing interval at steady state, 
MRD mean relative deviation, SD single dose, daily once daily dose

References Dose AUC (μg·h/mL)a Cmax (μg/mL)b MRD

Observed Predicted Fold error Observed Predicted Fold error

Choi et al. (2012)c 150 mg SD 8.78d 8.40 0.96 1.99d 1.69 0.85 1.40
El-Desoky et al. (2011) 150 mg SD 14.75 7.63 0.52 1.61 1.44 0.89 1.60
Huang et al. (2006) 150 mg SD 5.36 10.43 1.95 1.11 2.13 1.92 1.79
Marino et al. (1998a) 150 mg SD 9.70 9.05 0.93 1.90 1.67 0.88 1.25
Bae et al. (2009) 300 mg SD 14.3 19.2 1.34 3.12 3.70 1.18 1.50
Huang et al. (2006) 300 mg SD 12.96 21.90 1.69 2.17 4.07 1.88 2.16
Marino et al. (1998a) 300 mg SD 20.00 18.86 0.94 2.90 3.62 1.25 1.64
Marino et al. (1998b) 300 mg SD 19.81 19.70 0.99 4.14 3.45 0.83 1.27
Marino et al. (1998a) 600 mg SD 32.60 38.33 1.18 4.90 6.83 1.39 1.58
Marino et al. (1998a) 900 mg SD 44.80 58.39 1.30 5.30 10.25 1.93 1.82
Marino et al. (1998a) 150 mg daily 9.30 9.16 0.98 2.04 1.75 0.86 1.31
Choi et al. (2015) 300 mg daily 16.12 18.73 1.16 3.22 3.91 1.22 1.65
Marino et al. (1998a) 300 mg daily 19.80 19.2 0.97 3.30 3.81 1.15 1.43
Marino et al. (1998b) 300 mg daily 20.92 19.96 0.95 4.07 3.64 0.89 1.34
Marino et al. (1998a) 600 mg daily 31.90 38.89 1.22 4.40 7.23 1.64 1.49
Marino et al. (1998a) 900 mg daily 34.20 59.18 1.73 5.60 10.87 1.94 1.89
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Discussion

Genetic polymorphism of drug-metabolizing enzymes 
and transporters is one of the principal issues in achieving 
adequate control of blood pressure using antihypertensive 
agents (Oliveira-Paula et al. 2019). Concurrently, several 
factors including age, gender, and obesity are the potential 
indicators that could contribute to the inter-individual vari-
ations of antihypertensive response (Chapman et al. 2002; 
Hiltunen et al. 2007). PBPK modeling enables the prediction 
of the pharmacokinetics of drugs simultaneously consider-
ing all of the characteristics mentioned above, and there-
fore, it may be a desirable approach for the implementation 
of individualized pharmacotherapy in each patient (Kim 
et al. 2018, 2021; Cho et al. 2021a, b, 2022; Whang et al. 
2022). To date, there have been several attempts to estab-
lish the PBPK models in populations with different geno-
types for antihypertensive agents such as candesartan (Jung 
et al. 2021), losartan (Tanveer et al. 2022), and metoprolol 
(Rüdesheim et al. 2020).

In the present study, a whole-body PBPK model of irbe-
sartan according to CYP2C9 genetic polymorphism was 
appropriately established. All predicted AUC and  Cmax val-
ues in the non-genotyped populations and different CYP2C9 
genotypes were within the two-fold range of the observed 
values and calculated GMFE and MRD values showed a 
good predictive performance. The developed model properly 
predicted the irbesartan pharmacokinetics in different demo-
graphic characteristics and oral dose administrations and 
it also captured the previous finding in which AUC inf and 
 Cmax of the CYP2C9*1/*3 and CYP2C9*1/*13 genotypes 
were significantly higher than the CYP2C9*1/*1 genotype 
(Choi et al. 2012). This suggests the present model could be 
applied to predict the pharmacokinetics of irbesartan after 
single and multiple dose administrations with a dose range 
of 150–900 mg/d in healthy subjects with different CYP2C9 
genotypes.

Extensive prior knowledge of ADME and drug-depend-
ent properties of irbesartan were consolidated in this 
PBPK model. In the metabolism of irbesartan, CYP2C9 
is the only allocated enzyme for the oxidation pathway due 
to the negligible effects of CYP3A4 (Bourrié et al. 1999). 
Likewise, the glucuronidation pathway was assumed to 
be mediated by UGT1A3 based on the fact that UGT1A3 
is highly selective toward N2-glucuronidation of tetra-
zoles (Alonen et al. 2008) and irbesartan is metabolized 
to tetrazole-N2-glucuronide conjugate (Perrier et al. 1994; 
Chando et al. 1998). Metabolites of irbesartan are pharma-
cologically inactive (Gillis and Markham 1997), thereby 
the PBPK model for those was not established in this 
study. Both OATP1B1 and 1B3 transporters are known 
to be responsible for the hepatic uptake of irbesartan. 

Fig. 3  Predicted and observed plasma concentration–time profiles 
of irbesartan after 150  mg single oral dose in A CYP2C9*1/*1, B 
CYP2C9*1/*3, and C CYP2C9*1/*13 genotypes. Solid lines and shaded 
areas indicate arithmetic mean and 90% prediction interval (5th and 
95th percentile range) of predicted plasma concentrations, respectively. 
Symbols (inverted triangle; CYP2C9*1/*1, triangle; *1/*3, and rectan-
gle; *1/*13) and error bars indicate the mean and standard deviation of 
observed plasma concentrations, respectively. Profiles are shown as linear 
and semi-logarithmic scale. SD single dose
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Fig. 4  Goodness-of-fit plots comparing the predicted versus observed A AUC inf B  Cmax and C plasma concentration of irbesartan in different 
CYP2C9 genotypes. Inverted triangle, triangle, and rectangle symbols indicate CYP2C9*1/*1, *1/*3, and *1/*13 genotypes, respectively. Solid 
lines indicate the line of unity, dashed lines indicate the two-fold range and dotted lines indicate the 1.25-fold range

Table 5  Comparison between the predicted and observed AUC inf,  Cmax, and plasma concentration values after 150 mg single oral dose of irbe-
sartan in different CYP2C9 genotypes

AUC inf area under the plasma concentration–time curve from 0 to infinity, Cmax maximum plasma concentration, MRD mean relative deviation, 
SD single dose

References Dose CYP2C9 AUC inf (μg·h/mL) Cmax (μg/mL) MRD

Observed Predicted Fold error Observed Predicted Fold error

Choi et al. (2012) 150 mg SD *1/*1 7.45 8.1 1.09 1.48 1.69 1.14 1.34
Choi et al. (2012) 150 mg SD *1/*3 12.19 12.5 1.03 2.3 2.15 0.93 1.42
Choi et al. (2012) 150 mg SD *1/*13 13.35 13.13 0.98 2.21 2.16 0.98 1.35
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Uptake contributions of OATP1B1 and 1B3 in our model 
are consistent with the previous in vitro studies in which 
the relative contribution of OATP1B1 is much higher than 
OATP1B3 (Chapy et al. 2015; Izumi et al. 2018).

A slight increase or stagnation of irbesartan plasma con-
centration was noted at 10–12 h after administration in our 
pharmacogenomic data (Choi et al. 2012), but the present 
model did not capture this phenomenon. Previous studies 

proposed that the phenomenon could be triggered by the 
enterohepatic circulation of irbesartan and its glucuronide 
metabolite (Davi et al. 2000; Chapy et al. 2015). Meanwhile, 
Karatza and Karalis (2020) suggested that there is a possibil-
ity that absorption complexities, representatively irregular 
gastric emptying time, may contribute to the double-peak 
of irbesartan and properly captured it using a population 
pharmacokinetic approach. To the best of our knowledge, 

Fig. 5  Results of sensitivity 
analysis to single parameters, 
measured as the change of 
predicted A AUC inf and B  Cmax 
following the administration 
of 150 mg single oral dose of 
irbesartan
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no irbesartan PBPK model has elucidated this phenome-
non to date, including our study. PBPK models focusing on 
enterohepatic circulation and/or complex absorption kinetics 
could allow a more accurate capture of the plasma concen-
tration–time profiles of irbesartan.

Five clinical studies have assessed the impact of 
CYP2C9 genetic polymorphism on the pharmacokinet-
ics and/or pharmacodynamics of irbesartan (Hallberg 
et al. 2002; Wen et al. 2003; Hong et al. 2005; Chen et al. 
2006; Choi et al. 2012). Chen et al. (2006) and Hong et al. 
(2005) reported that plasma irbesartan concentration at 
6 h after dosing in Chinese hypertensive patients carry-
ing the CYP2C9*3 allele variant was significantly higher 
than those carrying the wild-type allele. Choi et al. (2012) 
showed that CYP2C9*3 and *13 alleles markedly altered 
the AUC,  Cmax, half-life (t1/2), and apparent clearance 
(CL/F) of irbesartan in healthy Korean subjects. Chen 
et al. (2006) and Hallberg et al. (2002) reported a notable 
reduction of diastolic blood pressure (DBP) in Chinese 
hypertensive patients with CYP2C9*1/*3 genotype and 
Swedish patients with CYP2C9*1/*2 genotype, respec-
tively. On the other hand, Wen et al. (2003) and Hong 
et al. (2005) reported that the impacts of the CYP2C9*3 
variant on the therapeutic efficacy of irbesartan were not 
significant. Although controversial results in the aspects 
of pharmacodynamics have been shown, it seems that 
the genetic polymorphism of CYP2C9 may be one of the 
predictive indicators for the antihypertensive effects of 
irbesartan treatment. Among these studies, Choi et al. 
(2012), our previous pharmacogenomic study, was the 
only study that included the information to develop the 
PBPK model such as plasma concentration–time profiles 
and pharmacokinetic parameters including AUC and  Cmax 
according to CYP2C9 genetic polymorphism. Accordingly, 
we developed the PBPK model for CYP2C9*3 and *13 
allele variants using these data (Choi et al. 2012), and the 
model for CYP2C9*2 allele was not established because 
there was no available data in previous studies. Since the 
CYP2C9*2 allele is the most frequently observed variant 
globally (Daly et al. 2017), further studies on this variant 
should be performed.

Albeit the importance of the CYP2C9 genetic polymor-
phism on the pharmacokinetics or therapeutic efficacy of 
irbesartan, considerations for the genetic polymorphisms of 
UGT  and SLCO genes may also be desirable. UGT  gene is 
highly polymorphic with more than 200 allele variants iden-
tified and these variants are known to influence the expres-
sion levels and/or enzymatic activity of UGT (Stingl et al. 
2014). The SLCO gene, encoding the OATP transporter, 
is also polymorphic, by which the efficacy and safety of 
OATP substrates are affected (Nakanishi and Tamai 2012). 
Previous studies have shown that the UGT  and/or SLCO 
genetic polymorphisms could have a potential role in the 

inter-individual variations of the drug responses for some 
ARB class drugs (Suwannakul et al. 2008; Hirvensalo et al. 
2020; Song et al. 2021). However, to our knowledge, the 
effects of genetic polymorphisms of UGT  and SLCO genes 
on the plasma concentrations or antihypertensive responses 
of irbesartan have been not identified. Thus, we established 
the PBPK model of irbesartan associated with the CYP2C9 
genetic polymorphism in the present study. Future phar-
macogenomic and PBPK modeling studies related to these 
genes may be needed.

In summary, we established the PBPK model of irbe-
sartan, through which the pharmacokinetic alterations 
according to CYP2C9 genetic polymorphism were properly 
described. The present model could contribute to person-
alized antihypertensive pharmacotherapy of irbesartan via 
pharmacokinetic predictions considering together the vari-
ous causes related to the inter-individual variability of drug 
response.
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