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Abstract
Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin 
beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a 
positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, 
cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical 
effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of 
metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly 
composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of 
metformin, and the consideration and prospect of its application.
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Introduction

With the rapid development of society, a high-pressure and 
rapid-paced life has become the norm. Many people would 
like to eat sweets to deal with the pressure they have. How-
ever, eating too much sugar can easily lead to some chronic 
diseases. For example, liver disease, cardio-cerebrovascular 

disease (hypertension, coronary heart disease, stroke, etc.), 
diabetes, malignant tumors, chronic obstructive pulmonary 
disease (chronic bronchitis, emphysema, etc.), mental abnor-
malities, psychosis, and so on (Lustig et al. 2012; Rippe 
and Angelopoulos 2016; Stanhope 2016; Sigala et al. 2021). 
They all have the characteristics of a long course, complex 
etiology, health damage, and serious social harm. Studies 
show that the number of adults with diabetes in China ranks 
first in the world, and it is even estimated that the number of 
adults with diabetes may reach 642 million in 2040. At the 
same time, diabetes tends to induce tumors and other dis-
eases (Zhang et al. 2020b; Saleh et al. 2021), which means 
that diabetic patients often have more than one disease. 
Therefore, drugs that can simultaneously prevent or treat 
multiple concurrent diseases in diabetic patients are worthy 
of looking forward to (Zajda et al. 2020).

Years of research have shown that metformin, a first-
line treatment for type 2 diabetes mellitus (T2DM), may 
be able to treat or prevent other complications in peo-
ple with diabetes (Griffin et al. 2017; Jia et al. 2021; 
Schernthaner et al. 2022). Perhaps metformin could be 
the expected savior. Common chronic diseases such as 
cancer or tumor, cardiovascular disease, and organ dis-
ease can make diabetic patients uncomfortable, and the 
clinical efficacy of metformin found in clinical trials just 
corresponds to them (Fig. 1) (Kalmykova et al. 2019a; 
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Kalmykova et al. 2019b; Pugliese et al. 2019; Munoz 
et al. 2021; Zaccardi et al. 2021). To some extent, it is 
not too much to say that metformin is a lifesaver for peo-
ple with diabetes or chronic diseases. However, most of 
the studies on the efficacy of metformin have not been 
validated by clinical trials. Most of the effects of met-
formin are expected, and the various magical therapeutic 
and preventive effects of metformin in clinical application 
still need further research and clinical validation.

Through data retrieval, the literature on metformin 
in anticancer, tumor inhibition, anti-aging, brain repair, 
cardiovascular protection, pulmonary inflammation inhi-
bition, anxiety relief, anti-inflammatory, adjustment of 
intestinal flora, hair growth, and inhibition of thyroid 
nodules, prevention of stroke and other relevant stud-
ies was collected. According to the research results, the 
mechanism of action of the relevant efficacy was summa-
rized, and the clinical application of metformin was pre-
dicted. This review is mainly composed of the historical 
development of metformin, its clinical curative effect, and 
its mechanisms and thinking, and looking forward to this 
review will focus on three parts around the various clini-
cal efficacy of metformin and prevention mechanisms to 
carry on the summary. We would like to describe the cur-
rent progress in investigating various clinical efficacy and 
preventive mechanisms of metformin in detail.

The history of metformin

Metformin is a precursor to the French Lilac, a medieval 
drug used to reduce polyuria and sugar in diabetics. Dur-
ing 1920–1950, due to the discovery of insulin and the 
toxic side effects of guanidine and its derivatives, guani-
dine glucose-lowering drugs (including metformin and 
metformin) temporarily faded out of people's sight. Met-
formin was first used in the clinical treatment of diabetes 
in 1957. Later, metformin was withdrawn from the market 
due to the side effects of lactic acidosis, thus confirm-
ing metformin as the only hypoglycemic drug that can 
reduce the complications of macrovascular and reduce 
the complications and mortality of T2DM. In 2000, met-
formin sustained-release tablets (Gvachin) were approved 
for sale in the United States, and some metformin drugs 
were developed in combination with other drugs. After 
that, metformin has been widely used and researched and 
has acquired a certain position in hypoglycemic drugs. In 
2006, the American Diabetes Federation (ADA) and the 
European Diabetes Research Association (EASD) jointly 
issued a new consensus for the treatment of T2DM: newly 
diagnosed patients with T2DM should be treated with 
metformin—a first-line drug through the treatment pro-
cess—along with lifestyle interventions (Fig. 2). Up to 

Fig. 1   Effects of metformin. 
Metformin has some effects on 
the liver, kidney, blood vessels, 
gut, brain, heart and so on, 
which can be applied to treat 
some cancer in those organs
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now, many of metformin's special effects have yet to be 
clinically proven to play a role in disease treatment (Bailey 
2017).

Clinical efficacy

Effect of lowering blood sugar and reducing weight

Metformin, as a drug to lower blood sugar (Moses 2010), 
can reduce the production of liver glycogen without increas-
ing insulin levels in the body, inhibit the absorption of glu-
cose in the intestinal tract and increase the uptake and utili-
zation of glucose in the peripheral tissues, thereby increasing 
insulin sensitivity (Hausmann and Schubotz 1975; van Bom-
mel et al. 2020). Metformin also can reduce the synthesis 
and storage of cholesterol and the level of blood triglyceride 
(TG) and total cholesterol. It does not cause hypoglycemia 
when taken alone, but should be treated with caution in com-
bination with insulin or other oral hypoglycemic agents such 
as sulfonylureas and nateglinide (Flory and Lipska 2019). 
Studies have shown that long-term use of metformin can not 
only improve symptoms of hyperglycemia (Xu et al. 2019) 
but also contribute to weight loss in obese T2DM patients 
with a proper diet (low-glycemic diet or intermittent fasting) 
(Lee and Morley 1998; Masarwa et al. 2021). It can signifi-
cantly reduce hyperglycemia and hyperlipidemia in patients 
with T2DM, and help to reduce the risk of some tumors. 
However, metformin cannot be taken as a weight loss drug 

alone, and so far no guidelines have been found to list it as 
a weight loss drug and recommend it.

How to inhibit glycogenosis in liver

Metformin can inhibit liver glycogenosis and reduce insulin 
resistance through the adenosine monophosphate-activated 
protein kinase (AMPK) signal transduction pathway (Musi 
et al. 2002; Wen et al. 2021) and inhibition of acetyl-CoA 
carboxylase (ACC), thus improving the sensitivity of sur-
rounding tissues to insulin (Fig. 3A).

AMPK plays a key role in regulating cellular energy 
homeostasis (Zang et al. 2004; Banerjee et al. 2016). The 
liver metabolizes sugars mainly through the synthesis and 
decomposition of liver glycogen, as well as gluconeogenesis, 
to maintain the relative stability of blood glucose concen-
tration. Metformin promotes the transfer of glucose trans-
porters to the cell membranes of hepatocytes and increases 
the activity of insulin receptors in hepatocytes. Inhibition of 
fatty decomposition and TG degradation by brown fat cells 
reduced the level of free fatty acid (FFA) in blood. Experi-
ments in mice showed that metformin inhibited inflamma-
tion caused by a high-fat diet (Coll et al. 2020). Metformin 
inhibits cellular fat accumulation in the liver and bone by 
activating the AMPK phosphorylation of ACC. Studies have 
confirmed that metformin can reduce the glucose output of 
the liver by 20–30% (Foretz et al. 2019). In the human body, 
brain blood cells, kidney medullary, intestinal, skin, and 
other tissues can use glucose without the help of insulin. 
Therefore, metformin can reduce the burden of insulin and 

Fig. 2   The history of metformin. From Galega to metformin, it is a long history
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the effect of insulin resistance by increasing glucose utiliza-
tion in insulin-independent tissues.

The mechanism of inhibition of gluconeogenesis inde-
pendent of AMPK is mainly through the influence of energy, 
redox, cell membrane potential, and so on. Metformin can 
inhibit mitochondrial complex 1, reduce the production of 
ATP, and reduce the allosteric inhibition of ATP on key 
enzymes involved in glycolysis, therefore, increasing intra-
hepatic glycolysis. The decrease of ATP level in vivo will 
increase AMP's inhibition of the glucagon signaling path-
way and inhibit gluconeogenesis induced by PKA activation. 
AMP can allosterically inhibit the key enzyme of gluco-
neogenesis, fructose-1, 6-bisphosphatase, and allosterically 
activate the key enzyme of glycolysis, phosphofructokinase, 
thereby inhibiting the process of glycerol and lactic acid to 
blood sugar. Metformin can promote the chloride outflow 
of hepatocytes and lead to the depolarization of cell mem-
branes, thus reducing the uptake of gluconeogenic substrates 
(Foretz et al. 2019).

How to affect the absorption of sugar from the intestine

Studies have shown that metformin has a high concentration 
in the intestinal tract (Coll et al. 2020). By changing the 
structure and diversity of intestinal microbiota, metformin 
can restore the proportion of intestinal microbiota, increase 
the probiotics of intestinal microbiota (such as Blautia SPP 
and Faecali bacterium SPP.), enhance the ability of bacteria 
to produce special types of short-chain fatty acids, inhibit 

glucose absorption (Bybel et al. 2011; de la Cuesta-Zulu-
aga et al. 2017; Zhang et al. 2020a), thus playing a role of 
lowering blood sugar and positively regulating the immune 
system.

How does metformin reduce appetite and weight loss?

Gregory R. Steinberg's team found that metformin upraised 
the growth differentiation factor (GDF15) in the body with-
out using the AMPK pathway. Metformin can upregulate 
GDF15 in vivo without the AMPK pathway. Metformin 
over-regulates the transcription factors activating tran-
scription factor 4 (ATF4) and C/EBP-homologous protein 
(CHOP) upstream of GDF15 to increase the secretion of 
GDF15 in hepatocytes, achieve weight loss by suppress-
ing appetite, increase satiety and reduce hunger (Duan 
et al. 2013; Kim et al. 2013; Calco et al. 2021). The highly 
expressed GDF15 in the liver interacts with the glial cell-
derived neurotrophic factor (GDNF) family receptor-like 
(GFRAL) receptor in the posterior brain to inhibit appetite 
for high-fat foods and regulate body weight and energy bal-
ance. This study demonstrates the potential value of GDF-15 
in the study of metformin for weight loss (Fig. 4).

Anticancer/tumor effects

Metformin has several anticancer mechanisms and may be 
used to prevent many types of cancer, while combination 
drugs may enhance its anticancer effect (Chen et al. 2021c; 

Fig. 3   Metformin works through the AMPK pathway. A. Metformin can increase peripheral tissue sensitivity to insulin via inhibiting ACC 
through the AMPK signal transduction pathway. B. Metformin inhibits tumor angiogenesis under hypoxia via down-regulating HIF-1 α expres-
sion through the AMPK/mTOR signal pathway
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Misirkic Marjanovic et al. 2021; Xia et al. 2021). It may 
have a direct inhibitory effect on individual cancers and this 
anticancer therapeutic effect may have a significant impact 
on the quality of human life. In summary, metformin can 
reduce the risk of tumors in patients with T2DM. However, 
the specific mechanism of metformin's tumor inhibition is 
not yet clear, and most of the studies are only at the experi-
mental stage. Metformin has great potential in anticancer 
treatment.

Intermittent fasting combined with oral administration 
of metformin inhibits tumor growth and reduces the risk of 
developing tumors in patients with T2DM because tumors 
are sensitive to metformin in low-glucose conditions. Met-
formin can reduce the level of myeloid cell leukemia-1 
(MCL-1) by activating protein phosphatase 2A (PP2A) 
and glycogen synthase kinase 3β (GSK3β) and cancerous 
inhibitor of PP2A (CIP2A) [CIP2A are highly expressed in 
a variety of tumors, and inhibit the activity level of PP2A] 
to inhibit tumor growth (Elgendy et al. 2019). In addition, 
hypoxia-inducible factor-1 α (HIF-1α), which controls oxy-
gen change and regulates cell function, and is an important 
factor for tumor cells to adapt to the hypoxia environment, is 
expected to be a target for tumor therapy. Finally, the expres-
sion of HIF-1α is inhibited through the AMPK/mTOR signal 
transduction pathway, and the formation of tumor neovascu-
larization under hypoxia is inhibited, thus inhibiting tumo-
rigenesis (Fig. 3B) (Palazon et al. 2017).

Meta-analysis showed that metformin can reduce the inci-
dence of cancers and increase the survival time of T2DM 
patients with cancers (Coyle et al. 2016). The specific mech-
anism has not been determined, but there are many specula-
tions and possible tumor inhibition pathways.

Metformin may inhibit the reduction of CD8+tumor-
infiltrating lymphocytes (TILs) due to apoptosis by increas-
ing the number of CD8+TILs in tumors, thereby taking an 

anticancer effect (Fig. 5A) (Kim et al. 2020). Metformin may 
indirectly play an anti-cancer role in reducing the growth 
stimulation effect on tumor cells via lowering the levels 
of insulin/insulin-like growth factor-1 (IGF-1) and serum 
insulin (Fig. 5B) (Sarmento-Cabral et al. 2017; Chen et al. 
2021b). It is possible to induce the inhibition of mammalian 
target rapamycin complex 1 (mTORC1), thereby inhibiting 
the drug resistance and proliferation of tumor cells and acti-
vating autophagy to promote the apoptosis of tumor cells 
(Fig. 5C). This process can be achieved by either AMPK 
or non-AMPK—dependent pathways. It may also increase 
the number of memory T cells, promote the apoptosis of 
cancer cells, and enhance the antitumor function of T cells 
by inhibiting the signal transmission of mTORC1 (Moss-
mann et al. 2018). It can inhibit tumor micro-environmental 
immunosuppression, and inhibit the differentiation of mac-
rophages to prevent tumor metastasis. Programmed cell 
Death 1 Ligand 1 (PD-L1) inhibits the expression of PD-L1 
in the cancer cell. Metformin can reduce the stability and 
membrane localization of PD-L1 through the degradation of 
related proteins in cancer cells, and prevent the expression of 
PD-L1 in cancer cells (Fig. 5D) (Soliman et al. 2020). It is 
also possible to inhibit the activity of the transcription factor 
NF-KB signaling pathway by activating AMPK (killing liver 
cancer cells and inhibiting tumor growth) (Fig. 5E) (Xu et al. 
2017). The expression of Kruppel Like Factor 5 (KLF5) can 
also be down-regulated by inhibiting PKA, and the propor-
tion of rods in HCC1806 and HCC1937 cell lines and the 
number of microspheres formed by cell lines can also be 
reduced to inhibit the stem cells of cancer cells (Fig. 5F).

Triple‑negative breast cancer (TNBC)

TNBC is the most difficult of the four types of breast can-
cer to cure and the one with the worst prognosis. It is most 

Fig. 4   Metformin can up-regu-
late the growth differentiation 
factor (GDF15) in the body. The 
up-regulation of GDF15 can 
suppress appetite to lose weight
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common in young women. Although TNBC has a poor prog-
nosis and a higher risk of death, most TNBCs are treated 
with chemotherapy. The therapeutic targets of TNBC have 
always been a difficult problem in clinical treatment (Li et al. 
2021a). Triple-negative refers to the three targets mainly 
targeted in treatment: estrogen receptor (ER), progesterone 
receptor (PR), and human epidermal growth factor (HER).

The scientists were surprised to find that the combina-
tion of metformin and heme significantly inhibited TNBC 
tumor growth. BTB and CNC Homology 1 (BACH1), an 
anti-cancer target transcription factor of heme, is a key 
factor regulating mitochondrial metabolism and is essen-
tial for cancer metastasis. However, inhibition of BACH1 
expression has no significant side effects on normal cells, 
so BACH1 can be used as a therapeutic target for cancer. 
Heme can degrade the BACH1 protein in cancer cells, 
forcing them to change their metabolic pathways (from 
anaerobic respiration to aerobic respiration). BACH1 
inhibits the transcription of mitochondrial electron trans-
port chain (ETC) genes directly and regulates pyruvate 
dehydrogenase kinase (PDK) directly. BACH1 phospho-
rylates PDH Ser293 to inhibit its activity and enhance 
the tricarboxylic acid cycle metabolism, which is a key 
regulator of glycolysis and aerobic respiration metabolism. 
Metformin, as a low-toxicity ETC inhibitor, can inhibit 

the aerobic metabolism of cancer cell mitochondria, and 
the combination of the two drugs can more significantly 
inhibit the growth of TNBC tumor cells than the two alone 
(Fig. 6) (Wahdan-Alaswad et al. 2014; Shi et al. 2017; 
Strekalova et al. 2017; Liu et al. 2021).

In addition, metformin combination therapy is promising 
for breast cancer – a triple therapy of metformin + Vene-
toclax + PD-1 antibody may be available for breast cancer 
(Bayraktar et al. 2012; Lee et al. 2019; Varghese et al. 2019). 
The treatment has been approved by the Food and Drug 
Administration as a first-line treatment for TNBC. Vene-
toclax is the world's first Bcl-2 inhibitor, primarily used to 
treat leukemia. It can inactivate the Bcl-2 protein, which 
can inhibit the apoptosis of cancer cells, restart the suicide 
program of cancer cells, and destroy “the immortal legend 
of cancer cells” (Wahdan-Alaswad et al. 2016; Wang et al. 
2020a). Metformin combined with Venetoclax activates 
MCL cells, while PD-1 antibody (Tecentriq) and Abraxane 
(albumin paclitaxel) maintain MCL cells for longer periods, 
perhaps prolonging survival in cancer patients. However, it 
has been found that adding metformin to standardized breast 
cancer treatment does not significantly improve survival in 
patients without diabetes (Goodwin et al. 2022). There-
fore, whether metformin should be used in all breast cancer 
patients is controversial and needs further validation.

Fig. 5   Antitumor mechanisms of metformin. A. Metformin may increase the number of CD8 + infiltrating lymphocytes (TILs) in tumors. B. 
Metformin lowers the levels of IGF 1 and serum insulin to reduce their stimulatory effects on the growth of tumor cells. C. Metformin inhibits 
tumor microenvironment immunosuppression and prevents tumor metastasis via inhibiting the mTORC1 signal pathway. D. Metformin reduces 
the stability and membrane localization of PD-L1 by degrading related proteins in cancer cells, thereby preventing PD-L1 expression in cancer 
cells. E. Metformin inhibits the activity of the NF-KB signaling pathway via activating AMPK. F. Metformin inhibits PKA to down-regulate the 
expression of KLF5
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Cancers that are nischarin deficient

Protein Nischarin participates in a variety of biological reac-
tions in vivo and plays an important role in inhibiting tumor 
migration and tumor cell invasion. Research by Dr. Suresh 
Alahari et al. has found that interfering with Nischarin may 
promote breast tumor growth and inhibit AMPK activation 
(Gollavilli et al. 2015). However, with metformin treat-
ment, the above conditions can be reversed under Nischa-
rin’s absence. Therefore, for cancers lacking the Nischarin 
protein, it is possible to inhibit the occurrence of cancer by 
activating the AMPK function. There is still much room 
for research on the specific mechanism of metformin act-
ing on breast cancer cells (Dong et al. 2020). Activation of 
AMPK prevents the Nischarin gene from enhancing tumor 
growth and metastasis, which can be used to treat malignant 
diseases.

Effect on hepatobiliary tumor/hepatobiliary cancer

Surgical resection is the main treatment for intrahepatic 
cholangiocarcinoma (ICC). Studies have found that in 

hepatobiliary cancer/hepatobiliary tumors, the abnormal 
FGF19-FGFR4 signaling pathway is an important fac-
tor causing cancer, and fibroblast growth factor receptor 
(FGFR) inhibitory therapy may be a new target for cancer 
treatment to resist HCC/ICC (Chen et al. 2021a).

Metformin combined with arsenic trioxide (ATO) may 
inhibit ICC through conventional chemotherapy (Ling 
et al. 2017). By promoting apoptosis, inducing G0/G1 cell 
cycle arrest, increasing intracellular reactive oxygen spe-
cies (ROS) synergistic inhibition of ICC cell proliferation, 
and so on, they effectively reduced ICC growth in the ICC 
xenograft model but failed to increase the survival rate 
(Chaiteerakij et al. 2013; Kaewpitoon et al. 2015; Yang 
et al. 2016; Trinh et al. 2017; Di Matteo et al. 2021). In 
diabetics, metformin reduced the risk of ICC by 60 per-
cent. In addition, metformin can effectively enhance the 
sensitivity of ICC cells to chemotherapy drugs such as 
sorafenib 5-fluorouracil ATO. Metformin combined with 
conventional chemotherapy can improve efficacy. It may 
be that metformin inhibits ICC by regulating the AMPK/ 
P38 MAPK ERK3/mTORC1 pathway and enhancing ATO 
sensitivity (Ling et al. 2017).

Fig. 6   Effects of metformin on mitochondrial metabolism. Metformin can inhibit the aerobic metabolism of mitochondria of cancer cells and 
heme can inhibit the regulation of BACH1 on aerobic respiration, which directly inhibits the transcription of the mitochondrial ETC (electron 
transport chain) gene. The combination of heme and metformin can significantly inhibit the growth of TNBC tumor cells
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In the liver, adiponectin secreted by fat cells is involved in 
the control of body metabolism. Perhaps adiponectin com-
bined with metformin can be used as a new treatment for 
liver cancer, whose efficacy and mechanism remain to be 
verified. Murff et al. found that T2DM patients taking met-
formin were less likely to develop liver cancer (Murff et al. 
2018). Metformin inhibits the activity of the transcription 
factor NF-KB signaling pathway by activating AMPK. This 
study revealed that metformin has great potential in the treat-
ment of hepatocellular carcinoma.

Esophageal cancer

Esophageal cancer is the second largest gastrointestinal 
tumor after gastric cancer (Siegel et al. 2022). Studies have 
shown that metformin at a normal dose can selectively 
inhibit the growth of esophageal squamous cell cancer 
cells, induce apoptotic cell death, inhibit cell proliferation 
and induce autophagy (Wang et al. 2020b). The induction of 
autophagy was discovered by scientists through the estab-
lishment of a 4-Nitroquinoline N-oxide (4NQO) -induced 
mouse model of esophageal squamous cell carcinoma. Met-
formin can enhance the phagocytic function of esophageal 
squamous cell carcinoma at a low dose. Metformin changes 
the tumor microenvironment of esophageal squamous cell 
carcinoma cells and thus has the effect of inhibiting tumor 
growth. Metformin may activate STAT3 and increase AMPK 
content in immune cells by changing the cytokine secre-
tion profile of immune cells, thus inactivating the STAT3 
network signaling pathway (especially the STAT3-BCL2-
Beclin1 network signaling pathway) to promote cross-talk 
between apoptosis and autophagy and achieve the purpose of 
inhibiting tumor growth. Studies have shown that metformin 
can not only accelerate the differentiation of gastric stem 
cells into gastric acid-producing gastric wall cells, but also 
increase the number to regulate the secretion of gastric acid 
in the stomach and greatly reduce the risk of gastric cancer 
in people infected with Helicobacter pylori, but also reduce 
the risk of rectal cancer (Zell et al. 2020; Lu et al. 2021a).

Head and neck cancer

Some studies have shown that metformin may eliminate the 
stem cell characteristics of head and neck cancer cells and 
prevent cancer cells from becoming malignant (Crist et al. 
2022). It can be used to prevent high-risk cancer popula-
tions from cancer. Metformin blocks cancer cell metabo-
lism by inhibiting the mitochondrial complex of cancer 
cells to reduce the expression of cancer stem cell programs. 
And metformin triggers the differentiation of cancer cells, 
directly acting on the head and neck cancer initiation cells.

Pancreatic cancer

Diabetes mellitus can increase the risk of pancreatic can-
cer and is a high-risk factor for pancreatic cancer. Some 
research suggests that metformin may reduce the risk of pan-
creatic cancer in diabetics. Bodmer et al. found that the odds 
ratio of pancreatic cancer was 0.43 (95%CI 0.23–0.80) in 
women with diabetes who took metformin for a long period 
compared with those who did not take the drug. However, 
long-term insulin or sulfonylureas use had a ratio of 1.90 for 
pancreatic cancer compared with non-users (Bodmer et al. 
2012). Inhibition of the signaling pathway of the pancre-
atic stellate cell (PSC) used to synthesize hyaluronic acid 
and type 1 collagen also prevents the recruitment of tumor-
related macrophages. Chen et al. showed reduced pancre-
atic acinar-ductal metaplasia and pancreatic intraepithelial 
neoplasia in mice treated with metformin. Metformin can 
inhibit tumor proliferation and metastasis and inhibit the 
transformation from chronic pancreatitis to pancreatic can-
cer (Chen et al. 2017).

Lung cancer

Previous studies have suggested that metformin plays an 
anticancer role primarily by AMPK and inhibiting protein 
synthesis (Wang et al. 2013; Lu et al. 2021b). Meta-analysis 
showed that metformin could reduce the risk of lung cancer 
in patients with T2DM and improve the survival rate, and 
its protective effect on patients in Asia was clear, so it was 
promising to be used in the treatment of patients with T2DM 
complicated with lung cancer (Gupta et al. 2018). The roles 
of metformin in prolonging the life cycle of patients with 
advanced lung cancer with epidermal growth factor recep-
tor (EGFR) mutations and benefiting non-small cell cancer 
patients remain controversial (Salani et al. 2012; Ko et al. 
2020).

Effects on the brain

Repair the brain

Metformin has great potential in promoting brain-damaged 
and episodic cognitive recovery and brain repair and growth. 
A related study conducted at the University of Toronto 
involved both human patients and animal models. Metformin 
promoted the formation of new neurons in the forebrain and 
hippocampus dentate Gyrus in animals after brain injury, 
which promoted brain nerve growth and enhanced cognition 
and memory (Hwang et al. 2010; Ng et al. 2014; Zhu et al. 
2020). Previous animal studies have shown that metformin 
selectively activates neural stem cells in adult female mice 
to repair the brain and restore cognitive function (Kuan et al. 
2017; Mandwie et al. 2021). Metformin, on the other hand, 
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has been shown in clinical trials to help repair the brains 
of patients with neurological disease, saving a radiation-
induced decline in the neural stem cell pool (no gender dif-
ference, but more significant in women) (Ayoub et al. 2020; 
Yuen et al. 2021). This study provides a credible basis for the 
treatment of metformin to repair the brain. Metformin, in the 
presence of estrogen (mainly estrogen estradiol), activates 
neural stem cells in the brain and improves brain function. 
The aPKC (atypical protein kinase C)-CBP (cAMP-response 
element binding protein) pathway is an important pathway 
mediating the directional differentiation of neural stem cells 
into mature neurons. Metformin may activate the aPKC-CBP 
pathways in hepatocytes and promote neuron regeneration 
in rodents and humans (Wang et al. 2012).

Reduce the risk of dementia

Metformin has the potential to reduce the risk of vascular 
events and vascular dementia (Lin et al. 2018b; Ma et al. 
2021). It may be related to metformin-reducing systemic 
inflammation (Lin et al. 2018a; Li et al. 2021b; Xiong et al. 
2021). This may be good news for many middle-aged and 
elderly patients with T2DM. Using metformin for a long 
time may help them avoid the trouble of Alzheimer's disease 
and save a lot of burden for their families.

Relieve anxiety

Anxiety disorder is one of the greatest psychological prob-
lems in today's society. Proper anxiety might make people 
work more efficiently, while excessive anxiety tends to make 
people sick, not only physically unhappy, but also makes 
them less happy in life, negatively affects the people around 
them, and so on. It has been found that metformin may be 
used to treat some forms of autism, such as fragile X syn-
drome, metabolic or psychiatric disorders, or depression. By 
reducing the content of branched-chain amino acids in the 
diet, it was speculated that the experiment also achieved the 
effect of reducing the anxious behavior of male mice (Fan 
et al. 2019). Metformin may reduce anxiety-like behavior in 
male mice by lowering the levels of circulating branched-
chain amino acids, increasing the availability of serotonin 
in the brain, and improving neurotransmission in the hip-
pocampus (Zemdegs et al. 2019).

Cardiovascular diseases

Preclinical and clinical studies have shown that metformin 
is directly anti-inflammatory through AMPK-dependent 
or independent inhibition of nuclear transcription factor B 
(NFκB) (Ba et al. 2019). Perhaps metformin can improve 
chronic inflammation by improving metabolic parameters 
such as hyperglycemia, insulin resistance, and dyslipidemia, 

which leads to atherosclerosis (Li et al. 2009; Feng et al. 
2021; Seneviratne et al. 2021). Consequently, it has a direct 
anti-inflammatory effect.

Reduce the risk of cardiovascular diseases

Studies have shown that taking metformin can reverse heart 
damage in people without diabetes (Mohan et al. 2019). 
T2DM patients taking metformin had a relatively low risk 
of cardiovascular disease, mortality from varicose veins, 
T2DM venous thromboembolism (VTE), and hospitaliza-
tion for heart failure. Therefore, we inferred that metformin 
has a cardiovascular protective effect. Metformin reduces 
the risk of heart attacks and stroke by reducing inflamma-
tion in the lungs that cause clotting caused by air pollution. 
Metformin can also prevent inflammation caused by smog, 
prevent immune cells from releasing a dangerous molecule 
into the blood, inhibit the formation of arterial thrombosis, 
and thus reduce the risk of cardiovascular disease by reduc-
ing the excessive production of dicarbonyl (Beisswenger 
et al. 1999), which may improve cardiac autonomic nerve 
function in this population.

Metformin can also intervene in all stages of the chain of 
cardiovascular events: Reduce the risk factors of cardiovas-
cular disease (weight loss, insulin resistance, blood pres-
sure reduction, blood lipid improvement, anticoagulation, 
etc.) and exert cardiovascular protective effects (He et al. 
2021). It can directly improve vascular endothelial function. 
It can reduce the formation of atherosclerosis, reduce myo-
cardial hypertrophy myocardial infarction, and heart failure; 
Long-term treatment can improve cardiovascular outcomes 
in patients with T2DM, metformin can improve endothelial 
function, and reduce the level of endothelial function mark-
ers such as von Willebrand factor (vWF) soluble vascular 
adhesion molecule-1 (SVCAM-1) and plasminogen activa-
tor inhibitor-1 (PAI-1) (Fidan et al. 2011; Ding et al. 2021). 
Metformin can reduce the size of acute myocardial infarc-
tion and improve the absence of reflow after angioplasty of 
acute myocardial infarction. A retrospective study has shown 
that long-term application of metformin can significantly 
reduce the level of creatine kinase (CK) creatine kinase iso-
enzyme (CK-MB) troponin T in patients and reduce myocar-
dial infarction area (Eppinga et al. 2017; Thein et al. 2020; 
Sardu et al. 2021). The cardiovascular effects of metformin 
also reduced the risk of stroke in patients with diabetes who 
received metformin compared to those who did not (West-
phal et al. 2020; Zemgulyte et al. 2021).

Aortic aneurysm

Studies have shown that metformin is negatively corre-
lated with aortic aneurysm development, and a randomized 
double-blind trial is still needed to verify that metformin 
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may also reduce the probability of aortic disease and related 
events (Han et al. 2019; Thanigaimani et al. 2021) which 
effectively reduce the risk of atherosclerosis (ASCVD) in 
T2DM patients.

Type 1 diabetes (T1DM)

Studies have shown that metformin can also improve 
endothelial function, insulin sensitivity, and vascular 
health, and improve cardiovascular risk in patients with 
T1DM, which is expected to achieve cardiovascular ben-
efits (Liu et al. 2020). Metformin treatment independently 
increased levels of the oxidative stress marker prostaglan-
din F2 (PGF2) and improved flow-mediated dilation (FMD) 
in patients with type 1 diabetes mellitus. Metformin may 
improve atherosclerosis and reduce myocardial injury by 
improving cardiovascular risk factors, and other mechanisms 
have cardiovascular protective effects (Snell-Bergeon 2017).

Anti‑aging

Clinical trials in the United States have found that metformin 
may increase health and prolong life (Podhorecka et al. 2017; 
Kumari et al. 2021). Studies have found that the anti-aging 
effect of metformin is related to the effect of its metabolites, 
guanidine, and dietary intake on the intestinal microbiome 
through a high-throughput quadrate screening method that 
integrates the four major elements of the host microbiome, 
drug-nutrition (Piskovatska et al. 2019). There have also 
been studies using cocktails of growth hormones and dehy-
droepiandrosterone (DHEA) and metformin to regenerate 
the thymus in users, reducing biological age (Torres et al. 
2020). Metformin can directly inhibit the activity of many 
enzymes involved in ATP synthesis and decomposition by 
activating AMPK, thus reducing energy consumption. It 
is also possible to increase mitochondrial biosynthesis by 
modulating the peroxisome proliferator-activated receptor 
(PPAR) co-activator. Activation of AMPK also increases 
autophagy in the body (Ma et al. 2022). Metformin may 
inhibit mTOR. Inhibited mTORC1 increases ACAD10 tran-
scription through SKN-1/Nrf2. ACAD10 may be related to 
some proteins that affect the growth and development of the 
body and the functions of ribosomes and mitochondria. Met-
formin may regulate the IGF-1 signaling pathway to reduce 
the patient's blood glucose levels, slow down body aging, 
and extend life. Metformin may inhibit electron transport 
chain complex 1 by reducing ROS production to reduce the 
number of electron transfers and prevent electron transfer, 
reduce the production of ROS, and reduce the cumulative 
damage of DNA, to achieve the anti-aging effect. Metformin 
may regulate sirtuin (SIRT) expression to prolong life: a 
variety of SIRT may regulate mitochondrial function and 
affect lifespan (Glossmann and Lutz 2019).

The lungs

Metformin has been shown to protect against lung cancer 
(Xiao et al. 2020; Lu et al. 2021b), improve the prognosis 
of lung cancer patients, and prevent pulmonary inflam-
mation caused by haze. It can relieve allergic eosinophilic 
airway inflammation in obese mice. It reduces the risk 
of lung disease in non-smokers and increases the risk of 
lung disease in smokers. A team led by Professor Scott 
Budinger found metformin prevented inflammation caused 
by smog in mice (Soberanes et  al. 2019). It prevents 
immune cells from releasing a dangerous molecule into 
the bloodstream, which inhibits the formation of arterial 
clots and thus reduces the risk of cardiovascular disease.

Pulmonary idiopathic pulmonary fibrosis

Studies have shown that metformin can reverse pulmo-
nary fibrosis in mice. Metformin showed significant anti-
fibrosis effects (Kheirollahi et al. 2019; Gu et al. 2021). 
Metformin plays an effective anti-fibrotic role by regulat-
ing metabolic pathways and inhibiting the effect of trans-
forming growth factor 1 (TGF 1) on collagen formation, 
activating PPARγ signaling, and inducing adipogenic dif-
ferentiation in lung fibroblasts.

Asthma

The study has shown that metformin can relieve allergic 
eosinophilic airway inflammation in obese mice (Guo et al. 
2021). The study also found that metformin significantly 
reduced the incidence of asthma attacks and hospitaliza-
tions in patients with asthma, and was closely associated 
with survival benefits in patients with COPD and diabe-
tes. Metformin may relieve allergic eosinophilic airway 
inflammation and restore normal eosinophilic and tumor 
necrosis factor (TNF-A) levels in bronchoalveolar lav-
age and lung AMPK levels. Asthma can be alleviated by 
inhibiting airway smooth muscle cell proliferation through 
AMPK-dependent channels.

Assist in smoking cessation

The study found that long-term smoking in patients led to 
the activation of the AMPK signaling pathway, which was 
inhibited when nicotine withdrawal occurred. Therefore, 
it is speculated that activating the AMPK signaling path-
way with drugs may alleviate the withdrawal response. 
Tests on mice have found that metformin relieves nicotine 
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withdrawal symptoms in mice and may be used to quit 
smoking (Kaisar et al. 2017).

Ovary and uterus

Polycystic ovary syndrome (PCOS)

Tests in the 1990s showed that metformin restored ovulation 
function and improved PCOS (hyperandrogenism) by reduc-
ing insulin resistance (Tariq et al. 2007). AlHussain et al. 
found that metformin increases the live birth rate of clini-
cal pregnancy and reduces anxiety in patients with PCOS 
(AlHussain et al. 2020). Another meta-analysis suggests that 
metformin may be considered in combination therapy for 
women with PCOS who have undergone in vitro fertiliza-
tion or intracytoplasmic sperm injection and embryo transfer 
(IVF/ICSI-ET) cycles (Wu et al. 2020).

Gestational diabetes mellitus (GDM)

Data have shown that metformin has the same hypoglyce-
mic effect on GDM as glibenzoide, and short-term use of 
metformin is safer, while long-term use of metformin has an 
impact on offspring (Bashir et al. 2020). This may increase 
the risk of obesity in offspring. Compared with glibenzoide, 
metformin was more inefficient in the treatment of GDM 
patients, and it could not reduce maternal triglyceride levels 
(Balsells et al. 2015).

Hair

Some studies have shown that metformin topical application 
may be used to treat hair loss during remanence, which stim-
ulates the hair follicles of mice from remanence to growth 
and promotes hair growth (Araoye et al. 2020; Sun et al. 
2021). However, there has been a reported case of acute hair 
loss in a woman with PCOS who took metformin (Rezvanian 
et al. 2009).

Hepatorenal

Metformin has been shown to reduce the risk of death 
(Crowley et al. 2017) and end-stage kidney disease (ESRD) 
in patients with T2DM who have developed cirrhosis of 
the liver or chronic kidney disease (CKD) with impaired 
renal function. Improve the risk of death from renal failure 
and kidney disease but be alert to the risk of lactic acidosis 
(Borbely 2016). Large studies have shown that metformin in 
patients with T2DM with CKD is associated with a reduced 
risk of death and ESRD without an increased risk of lac-
tic acidosis, suggesting that metformin may reduce the risk 
of death from renal failure and kidney disease (Bakris and 
Molitch 2016; Gosmanov et al. 2021).

Thyroid

It has been found that metformin reduces thyroid volume 
and reduces the occurrence of goiter and thyroid nodules. In 
addition, studies have shown that metformin can treat thy-
roid nodules (Krysiak et al. 2015; He et al. 2019). Metformin 
can inhibit the growth of thyroid cells and different types of 
thyroid cancer cells by affecting the insulin/IGF1 and mTOR 
pathways. Furthermore, it is possible to enhance the role of 
thyroid hormone in the pituitary and adenosine by activating 
AMPK, thereby reducing fluctuations in thyroid stimulating 
hormone (TSH) levels in diabetic patients. Thyroid nodules 
can be treated by regulating the signal transduction pathway 
between TSH and IGF-1.

Prevention of stroke

Long-term studies have shown a sustained reduction in dia-
betes risk with metformin, showing the potential to prevent 
trends in cancer and stroke, and have expanded and updated 
the results including microvascular complications, cardio-
vascular events, cancer incidence, and the influence of age 
(Westphal et al. 2020). Age had a greater effect on the risk of 
kidney disease among all interventions. Metformin's ability 
to prevent stroke was more significant in people with higher 
baseline blood glucose levels and women with a history of 
GDM.

Thinking and perspectives

The clinical application prospect of metformin is infinite. 
Here, we summarize clinical trials involving metformin 
(Table 1). If we can prove the mechanism of its various 
curative effects, it will achieve certain breakthroughs in 
cancer treatment, anti-aging treatment, brain repair treat-
ment, and other aspects, and improve the quality of human 
life. Due to the numerous clinical effects of metformin, the 
mechanism of action of each of its therapeutic effects may be 
related. If we want to investigate the mechanism of action of 
metformin, maybe we can start from the whole, link up the 
mechanism of action of each therapeutic effect, and study a 
series of influencing factors.

The clinical efficacy of metformin in various treatments 
is still controversial and needs more clinical and experimen-
tal support. Starting from the therapeutic effect of diabetes, 
exploring the mechanism of metformin's other effects may 
be able to develop into another new field. Combined treat-
ment with metformin may be able to enhance the efficacy 
and achieve the multiplying effect. To sum up, there is a lot 
of room for research on cancer and anti-aging.
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