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Introduction

Alcohol consumption occurs in most cultures, and alcohol 
abuse or alcoholism is found worldwide (Massey and Arteel 
2012; Griswold et al. 2018). Excessive alcohol consump-
tion leads to chronic liver disease and damages multiple 
organs, primarily brain, heart, gastrointestinal tract, and liver 
(Rehm et al. 2017; Stockwell and Zhao 2017; Evangelou 
et al. 2021). Aside from the detrimental effects of alcohol 
on personal health, excessive alcohol intake also has serious 
socioeconomic impacts at the population level (D’Angelo 
et al. 2022; Keyes 2022).

After drinking, a small amount of alcohol is quickly 
metabolized in the stomach, and most of it is absorbed 
by the gastrointestinal tract, particularly the stomach and 
upper small intestine (Jones 2019). Following absorption, 
the portal vein delivers the alcohol to the liver, which then 
contains a higher alcohol level than the peripheral blood. 
Because the liver is the primary site of ethanol metabolism, 
it sustains the greatest degree of damage from heavy drink-
ing (Osna et al. 2017). The pathogenesis of alcoholic liver 
disease (ALD) has been predominantly classified into three 
categories: (1) liver damage due to alcohol and its metabolic 
by-products, such as acetaldehyde; (2) hepatic injury induc-
ing damage-associated molecular patterns (DAMPs), which 
recruit innate and adaptive immune cells, perpetuating liver 
injury; and (3) alcohol consumption affecting gut microbiota 
and permeability, allowing bacterial compounds to enter the 
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liver and stimulate immunological responses and liver injury 
(Dunn and Shah 2016; Han et al. 2020).

Excessive alcohol consumption causes a wide range of 
liver diseases, from simple steatosis (fatty liver) to end-
stage liver cancer (hepatocellular carcinoma) (Seo and 
Jeong 2016). Simple steatosis occurs in more than 90% of 
problem drinkers who consume at least 16 g of alcohol each 
day (Osna et al. 2017). In a minority of heavy drinkers, alco-
holic steatosis progresses to steatohepatitis. The late stages 
of ALD are characterized by the development of fibrosis, 
which is accompanied by excessive deposition of extra-
cellular matrix proteins (Hyun et al. 2021). Despite many 
attempts over decades to ameliorate ALD progression, the 
only effective ALD treatment is alcohol abstinence. Liver 
transplantation is the only accepted standard of care for 
patients suffering from end-stage liver disease. However, for 
patients whose disease has progressed to hepatocellular car-
cinoma, 15% die while awaiting liver transplantation due to 
a shortage of grafts (Frazier et al. 2011; Husen et al. 2019).

Chronic alcohol consumption (15 or more drinks per 
week according to the guidelines of the National Institute 
on Alcohol Abuse and Alcoholism) can lead to a broad 
spectrum of liver diseases and has been a research focus 
for decades. However, studies on the mechanisms and det-
rimental effects of binge alcohol drinking (a heavy episodic 
alcohol intake) have not been studied intensively. Binge 
alcohol drinking is a pattern of drinking that typically brings 
a person’s blood alcohol concentration (BAC) to 0.08 g/dL 
or more (Majumdar and Tsochatzis 2022). Binge drinking-
associated BAC is defined as the consumption of 5 or more 
drinks within a few hours (about 2 h) for men or 4 or more 
drinks for women (Fillmore and Jude 2011).

Binge drinking is linked to reduced resistance to micro-
bial infection, suppression of innate immune responses, 
and increased intestinal permeability (Shukla et al. 2013; 
Szabo and Saha 2015) (Fig. 1). Interestingly, the administra-
tion of binge drinking to chronically ethanol-exposed mice 
dramatically amplifies liver injury (Ki et al. 2010; Bertola 
et al. 2013). Besides alcohol-induced liver damage, exces-
sive alcohol exposure affects interorgan crosstalk, further 

contributing to ALD progression (Dasarathy and Brown 
2017). Therefore, this review focuses on the pathophysiolog-
ical aspects of alcohol-associated liver injury (hepatotoxicity 
by oxidative/non-oxidative ethanol metabolites) as well as 
interorgan communications in the progression of ALD.

Effects of alcohol on the liver

About 90% of alcohol is eliminated by the liver (only 
approximately 2–10% is removed by the kidneys and lungs) 
(Paton 2005; Jones 2019). Since alcohol is mostly metabo-
lized by hepatocytes, the liver is a primary target for the 
detrimental effects of alcohol (Osna and Kharbanda 2016). 
Excessive alcohol consumption causes hepatic inflamma-
tion. The Kupffer cells, macrophages that reside in the 
liver, play a role in the innate immune response by produc-
ing various cytokines, eventually becoming involved in 
ALD pathogenesis (Kawaratani et al. 2013; Robinson et al. 
2016). The production of several inflammatory cytokines 
(TNF-α, IFN-γ, and IL-17A) induces hepatic injury (Frank 
et al. 2020; Lee et al. 2020). In contrast, hepatoprotective 
and anti-inflammatory cytokines (e.g., IL-6 and IL-10) are 
also involved in ALD. IL-6 improves ALD by activating 
signal transducer and activator of transcription 3 (STAT3) 
and the subsequent induction of various hepatoprotective 
genes in hepatocytes (Giraldez et al. 2021). IL-10 inhibits 
alcoholic liver inflammation via the activation of STAT3 
in the Kupffer cells and the subsequent inhibition of liver 
inflammation (Byun et al. 2013).

In addition to cytokine-associated liver injury, exces-
sive alcohol intake accelerates liver inflammation by 
increasing the translocation of gut-derived endotox-
ins into the portal circulation, eventually activating the 
Kupffer cells. As a result, elevated levels of lipopoly-
saccharide (LPS) and proinflammatory cytokines are 
detected in serum. This finding suggests that bacterial 
toxins may be factors that accelerate ALD via LPS-Toll-
like receptor 4 (TLR4) pathways (Seki et al. 2007; Kwong 
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Fig. 1  A mechanistic distinction between the effects of acute (binge) and chronic (heavy) alcohol consumption. Acute alcohol intoxication 
(BAC ≥ 0.08 g/dL in ~ 2 h) is a clinically harmful condition that follows the ingestion of large amounts of alcohol. Acute alcohol exposure, also 
known as “binge drinking,” can alter immunological and metabolic signaling and epigenetic pathways. It also exacerbates alcoholic liver disease 
in the chronically alcohol-exposed liver
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and Puri 2021). Furthermore, alcohol-induced intercel-
lular communication between hepatic cells leads to ALD 
progression.

The liver consists of parenchymal cells (hepato-
cytes: > 70% of the total mass) and non-parenchymal 
cells (Kupffer cells, hepatic stellate cells, liver sinusoidal 
endothelial cells, and hepatic lymphocytes: < 30% of the 
total mass) (Osna et al. 2022). Hepatic stellate cells and 
Kupffer cells play roles in ALD pathogenesis by inter-
acting with hepatic immune cells (Yi and Jeong 2013). 
Signals exchanged between hepatic/non-parenchymal 
cells could affect the progression of liver disease, and 
this intercellular communication is achieved by multiple 
mechanisms, including direct cell-to-cell interactions, 
extracellular vesicles, chemokines, cytokines, and growth 
factors, all of which are recognized as mediators of inter-
cellular communication (Osna et al. 2022). Therefore, 
a better understanding of the intercellular communica-
tion between hepatic and non-parenchymal cells in ALD 
pathophysiology will provide novel insights for use in the 
search for therapeutic approaches (Seo and Jeong 2016).

Drinking patterns can be classified into three catego-
ries according to drinking frequency over the preceding 
6 month period and the amount of alcohol consumed: 
(1) continuous drinkers, (almost) daily alcohol consump-
tion without binges; (2) frequent heavy drinkers, frequent 
alcohol consumption (more than 3 days per week) with 
frequent intoxication (more than once per week); and (3) 
episodic drinkers, less frequent, irregular alcohol con-
sumption with longer sober periods (> 5 days) in between 
episodes and some binges (less than once per week) (Wet-
terling et al. 1999; Sarich et al. 2021). Alcohol consump-
tion patterns are mixed and difficult to consider sepa-
rately, though their effects are similar. For instance, acute 
alcohol intoxication not only leads to several metabolic 
alterations and hepatotoxicity, but is also associated with 
the development of ALD chronicity.

Several studies have demonstrated that chronic feeding 
plus a single ethanol feeding in mice induced more severe 
hepatic injury, inflammation, and liver steatosis than 
chronic alcohol feeding or single alcohol gavage alone 
(Bertola et al. 2013; Bertola 2020). These results imply 
that long-term alcohol drinking makes the liver more vul-
nerable to further liver injury after administration of high 
concentrations of alcohol (Torp et al. 2022). Additionally, 
a high-fat diet combined with binge alcohol administra-
tion causes acute hepatic inflammation and thus damage 
by increasing CXCL1 expression in the liver and promot-
ing hepatic neutrophil infiltration (Hwang et al. 2020). 
Therefore, the combination of binge alcohol drinking and 
aspects of metabolic syndrome (such as obesity) are criti-
cal factors in determining the degree of ALD.

Alcohol metabolism and the involvement of alcohol 
metabolites in ALD

Oxidative alcohol metabolism

The liver, which has the highest concentration of alcohol-
metabolizing enzymes, is primarily responsible for alco-
hol metabolism. The major pathway of oxidative alcohol 
metabolism involves alcohol dehydrogenase (ADH), an 
essential enzyme that converts ethanol to acetaldehyde, a 
highly reactive and toxic by-product that contributes to cyto-
toxicity. Additionally, acetaldehyde causes various forms 
of DNA damage, including DNA adducts, single- and/or 
double-stranded breaks, and point mutations (Mizumoto 
et al. 2017) (Fig. 2). Therefore, acetaldehyde has been clas-
sified as a possible human carcinogen (Group 2B) by the 
International Agency for Research on Cancer since 1987 
(Kokkinakis et al. 2020). The ADH-catalyzed formation of 
acetaldehyde uses  NAD+ as a cofactor and is responsible 
for the majority of alcohol oxidation in the liver (Zakhari 
2006; Yang et al. 2022). Cytochrome P450 isozymes, includ-
ing CYP2E1, 1A2, and 3A4, are predominantly present in 
the microsomes. CYP2E1 is the primary hepatic enzyme 
that catalyzes the oxidation of ethanol to acetaldehyde, and 
this enzyme is inducible by chronic alcohol consumption. 
However, the catalytic efficiency of CYP2E1 is considerably 
slower than that of ADH but has a tenfold higher capacity 
for binding ethanol (Harjumaki et al. 2021).

Catalase, an enzyme found in peroxisomes, is also abun-
dant in hepatocytes. This protein detoxifies hydrogen per-
oxide by converting it into water and oxygen (Osna et al. 
2017). The catalase pathway has a relatively minor role dur-
ing alcohol metabolism in the liver, but it has a significant 
ethanol-oxidizing function in the brain (Deitrich et al. 2006). 
The oxidative conversion of acetaldehyde to acetate, the final 
product of alcohol metabolism, by aldehyde dehydrogenase 
(ALDH) is the next stage in oxidative alcohol metabolism 
(Hyun et al. 2021). Most of the acetate generated during 
alcohol metabolism escapes the liver and is converted into 
acetyl-CoA by extrahepatic tissues.

Oxidative alcohol metabolite‑mediated liver injury

Acetaldehyde is an intermediate metabolite of ethanol 
metabolism, and it induces a wide range of toxic, pharma-
cological, and behavioral responses (Guo and Ren 2010; 
Gao et al. 2019). Acetaldehyde is further metabolized into 
acetate by a mitochondrial, low-Km aldehyde dehydrogenase 
(ALDH2) enzyme (Jin et al. 2015; Jiang et al. 2020). Acet-
aldehyde stimulates the release of several signal molecules 
(e.g., epinephrine, norepinephrine, histamine, and brady-
kinin) and causes the cardiovascular symptoms of alcohol 
sensitivity, such as vasodilation and facial flushing, which 
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are associated with abnormal heart rhythms and elevation 
of blood pressure (Quertemont and Didone 2006; Mustroph 
et al. 2019). Furthermore, acetaldehyde production promotes 
glutathione depletion, free radical-mediated toxicity, lipid 
peroxidation, and immune responses via the production of 
proinflammatory cytokines, all of which contribute to oxida-
tive stress (Comporti et al. 2010; Seo et al. 2019).

Because aldehyde molecules are unstable, they react 
rapidly with cellular components to form adducts. These 
adducts can impair the functions of enzymes, DNA, struc-
tural proteins, and other macromolecules, thereby inhibiting 
cellular processes, eventually resulting in cytotoxicity. Acet-
aldehyde-derived adducts are generated in the progression of 
liver fibrosis in both alcoholic humans and murine models 
(Wang et al. 2020). ALDH2 is a key enzyme for acetalde-
hyde metabolism and is involved in the cellular mechanisms 
of alcohol-associated liver diseases. ALDH2 irrevers-
ibly metabolizes acetaldehyde to acetate in a redox reac-
tion (Cederbaum 2012). Although the liver has long been 
thought to be the primary organ for acetaldehyde metabo-
lism, the cumulative effect of ALDH2, which is found in 
various organs, is expected to contribute to systemic acetal-
dehyde clearance (Guillot et al. 2019). Additionally, a high 

concentration of acetaldehyde can change gut permeability 
and micro-equilibrium (increasing the abundance of Gram-
negative bacteria), which causes direct hepatocyte damage 
(Malaguarnera et al. 2014). Owing to the toxic effects of 
acetaldehyde, the  ALDH2*2 polymorphism is associated 
with a high risk of various cancers, such as hepatocellular 
carcinoma, gastric carcinoma, esophageal cancer, and colon 
cancer (Amanuma et al. 2015; Seo et al. 2019; Choi et al. 
2021).

Non‑oxidative alcohol metabolism

An intermediate product of oxidative alcohol metabo-
lism, acetaldehyde, contributes to alcohol-induced liver 
injury. However, acetaldehyde-mediated cytotoxicity can-
not account for damage to other organs, such as pancreas, 
heart, or brain, where oxidative alcohol metabolism is mini-
mal or absent (Laposata and Lange 1986; Maenhout et al. 
2013). Despite the presence of oxidative alcohol-metabo-
lizing enzymes in the cardiovascular system, ethanol can 
directly harm the cardiovascular system or the hormonal 
modulation of heart function (Obad et al. 2018). Therefore, 
acetaldehyde-independent biochemical mediators (namely, 

ROS

ADH

Acetaldehyde

Altered hepatic 
function

NAD+ 

NADH+H+ 

Fatty acid ethyl esters

cytosol 

H2O2 

H2O

catalase
peroxisomes

CYP2E1 
microsomes

NADPH+H++O2 

NADP++2H2O

NAD+ 

NADH +H+

ALDH2

mitochondria

Acetate

ALDH2*1/2
ALDH2*2/2

Lipid 
peroxidation

Protein and DNA
adducts

Alcohol

Phosphatidylethanol

Ethyl glucuronide

Ethyl sulfate

+Fatty acids or
+Triglyceride or
+Fatty Acyl-CoA

+Phosphatidyl choline

+UDP-glucuronosyltransferase

+Sulfotransferase

· Cytotoxicity (tissue injury)

· Inhibition of phosphatidic acid formation
· Disruption of cell signaling

Non-Oxida�ve Ethanol 
Metabolism

Oxida�ve Ethanol
Metabolism

(ALDH2 variants)
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non-oxidative ethanol metabolites or NOEMs) may be 
involved in the pathogenesis of alcohol-induced organ dam-
age. Non-oxidative alcohol metabolism results in the enzy-
matic conjugation of ethanol with endogenous metabolites, 
such as glucuronic acid, sulfate, phospholipids, and fatty 
acids. The resultant metabolites are termed ethyl glucuron-
ide (EtG), ethyl sulfate (EtS), phosphatidylethanol (PEth), 
and fatty acid ethyl ester (FAEE), respectively (Heier et al. 
2016) (Fig. 2).

Non-oxidative alcohol metabolites are retained in body 
fluids and tissues for much longer periods than ethanol itself. 
Thus, they have been utilized as biomarkers for assessing 
ethanol intake in clinical and forensic settings (Heier et al. 
2016). Moreover, accumulating evidence suggests that for-
mation of non-oxidative alcohol metabolites interferes with 
cellular signaling pathways, disrupts organelle function, and 
contributes to ethanol toxicity in organs with limited oxida-
tive capacity (Heier et al. 2016). Therefore, non-oxidative 
alcohol metabolism, in addition to the oxidative pathway, 
may also be an essential mechanism for understanding the 
pathophysiology of alcohol-mediated diseases in humans. 
However, NOEM-mediated hepatotoxicity has not yet been 
fully elucidated.

Non‑oxidative alcohol metabolite‑associated liver injury

FAEEs are the most well-known NOEMs proposed as indi-
cators of alcohol-induced organ damage. FAEEs are a family 
of neutral lipids produced by the esterification of fatty acids 
with high concentrations of alcohol (Andresen-Streichert 
et al. 2018). Because FAEEs can be detected in the blood 
after ethanol ingestion, they have been proposed as markers 
of ethanol intake (Luginbuhl et al. 2016). Since organs that 
lack oxidative alcohol metabolism (pancreas, heart, or brain) 
exhibit cellular damage after alcohol intoxication, FAEEs 
and other NOEMs may play roles in producing alcohol-
induced injury (Laposata and Lange 1986; Andresen-Stre-
ichert et al. 2018).

Notably, FAEEs circulate within low-density lipoprotein 
particles in human plasma after ethanol ingestion (Piano 
2017). FAEEs are synthesized at high rates in the heart, pro-
viding a plausible link between alcohol ingestion and the 
subsequent development of alcohol-induced cardiomyopathy 
(Beckemeier and Bora 1998; Pfutzer et al. 2002). FAEE-
associated cytotoxic effects can also be observed as acute 
pancreatitis via  Ca2+-dependent mitochondrial inhibition, 
leading to a reduction in ATP, which impairs  [Ca2+] home-
ostasis (Huang et al. 2014). Furthermore, the treatment of 
human hepatoblastoma cells with FAEEs causes significant 
morphological and biochemical alterations, suggesting that 
FAEEs play important roles in mediating ethanol-induced 
liver injury (Bhopale et al. 2006).

PEth is a phospholipid formed in the cell membrane in 
the presence of ethanol. In mammalian cells, PEth forma-
tion is catalyzed by phospholipase D (PLD), an enzyme 
that normally catalyzes phospholipid hydrolysis, leading to 
phosphatidic acid formation (Viel et al. 2012; Johansson 
et al. 2020). Phosphatidic acid is a lipid messenger involved 
in various cellular functions, including membrane traffick-
ing, cytoskeletal remodeling, endocytosis, proliferation, and 
migration (Frohman 2015). A variety of tissues and cells 
contain PLD, with the highest activities reported in the 
lungs, adipose tissue, heart, and brain (Heier et al. 2016). 
PEth formation affects cellular signaling pathways by mul-
tiple mechanisms, including through competition with phos-
phatidic acid synthesis and functional disturbance of bio-
membranes and membrane-associated proteins (Heier et al. 
2016). Even 24 h after the last consumption of ethanol, PEth 
is still being produced in the neutrophils of alcoholics. This 
suggests that PEth could be a valuable marker of long-term 
ethanol ingestion (Aradottir et al. 2006; Lakso et al. 2019).

EtG and EtS have been used as biomarkers of recent etha-
nol intake and abstinence monitoring (Heier et al. 2016). 
The formation, pharmacokinetics, and elimination of EtG 
and EtS are < 0.1% of ingested ethanol (Wurst et al. 2015). 
EtG is formed by the transfer of a glucuronyl moiety from 
uridine 5′‐diphospho (UDP)‐glucuronic acid to ethanol. 
UDP-glucuronosyltransferases (UGTs), an enzyme family 
involved in phase II xenobiotic metabolism and glucuronida-
tion of endogenous metabolites, catalyze this reaction (Row-
land et al. 2013). Multiple organs, including adipose tissue, 
liver, brain, bone marrow, muscles, and hair, have detectable 
EtG levels (Schloegl et al. 2006; Wurst et al. 2015; Birkova 
et al. 2021). Blood EtG can be detected one hour after start-
ing to consume ethanol, with peak concentrations occurring 
between 3.5 and 5.5 h (Halter et al. 2008; Karacaoğlu et al. 
2019).

Like EtG, EtS is formed by the sulfonation of ethanol 
catalyzed by another class of phase II enzymes termed sul-
fotransferases (SULTs). EtS has been detected in the blood, 
urine, liver, kidneys, placenta, fetal tissues, and hair (Halter 
et al. 2008). Interestingly, inhibition of oxidative alcohol 
metabolism increases flux through the non-oxidative path-
way, suggesting that the balance between oxidative and non-
oxidative alcohol metabolisms may be important in deter-
mining the toxic effects of excessive alcohol consumption 
(Huang et al. 2014).

Interorgan crosstalk in ALD

Emerging evidence suggests that various organs, including 
the intestines, adipose tissue, and lungs, are affected by alco-
hol intoxication (Osna and Kharbanda 2016; Harris et al. 
2019; Arteel 2020; Simon et al. 2022; White et al. 2022). 
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Although the liver is responsible for most of the metabolism 
of ingested alcohol, other organs that express ethanol-metab-
olizing enzymes may be affected by oxidative or non-oxida-
tive alcohol metabolites. Furthermore, interorgan crosstalk 
between the liver and peripheral organs is closely associated 
with the pathogenesis of ALD (Fig. 3).

Gastrointestinal tract and ALD

The gastrointestinal tract participates in the digestion and 
absorption of nutrients, and its mucosal barrier protects the 
body from pathogens and extrinsic antigens. About 10% 
of ingested alcohol is absorbed through the stomach, and 
most of the remaining 90% is absorbed in the small intestine 
(Rajendram and Preedy 2005). Alcohol consumption dis-
rupts the gut barrier, increases gut permeability, and induces 
bacterial translocation (Zhou and Zhong 2017). Studies have 
shown that alcohol-metabolizing enzymes located in the 
intestinal mucosa and gut microbiome also process acetal-
dehyde, an oxidative alcohol metabolite (Cederbaum 2012; 
Bishehsari et al. 2017). Additionally, it has been suggested 
that chronic alcohol consumption induces intestinal injury 
and is associated with the non-oxidative intestinal alcohol 
metabolite, PEth (Elamin et al. 2013; Heier et al. 2016).

Gut leakage is caused by excessive alcohol use, which 
leads to epithelial changes and blebbing of the lamina 
propria in the gut, allowing endotoxins to enter the portal 

and systemic circulations (Abdelmegeed et al. 2013). A 
study using chronically alcohol-fed animal models demon-
strated the downregulation of tight junction proteins, such 
as occludin and zonula occludens-1, which are associated 
with gut permeability (Wang et al. 2014). Furthermore, 
alcohol-associated intestinal barrier dysfunction increases 
the translocation of pathogen-associated molecular patterns, 
including LPS, lipoteichoic acid, CpG DNA, flagellin, and 
β-glucan, into the portal and systemic circulations (Shi and 
Pamer 2011; Shim and Jeong 2020). Ligand-binding to 
TLRs activates downstream adaptor molecules, including 
nuclear factor-κB, interferon response factors, and mitogen-
activated protein kinases, and initiates signaling cascades 
(Akira et al. 2006).

In addition to the provocation of TLR signaling pathways 
in the gut-liver axis, compelling evidence highlights alcohol 
consumption-induced compositional changes in intestinal 
microbiota in rodents and humans (Yan et al. 2011; Queipo-
Ortuno et al. 2012; Ceccarelli et al. 2014; Engen et al. 2015). 
Notably, several studies have discovered that microbial dys-
biosis, both quantitative and qualitative, are highly associ-
ated with alcohol consumption. Yan et al. (2011) reported 
that alcohol-fed mice showed bacterial overgrowth with a 
higher abundance of Bacteroidetes and Verrucomicrobia in 
comparison to mice fed isocaloric feed. Another study found 
altered intestinal microbiota compositions in sigmoidosco-
pies of alcoholic patients (Ciocan et al. 2018).

Inter-organ
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- Changes of microbiome 
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Fig. 3  The liver is the central organ affected by alcohol, but it is associated with peripheral organs. Ingested alcohol not only dysregulates 
hepatic function but also contributes to the pathogenesis of peripheral organs. Alcohol-associated liver diseases may be facilitated by interorgan 
crosstalk, which is essential for a comprehensive understanding of ALD progression
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Additionally, compared with control patients, the abun-
dance of potentially dangerous bacteria, such as Prevotel-
laceae, Enterobacteriaceae, Veillonellaceae, and Streptococ-
caceae, was significantly increased in patients with alcoholic 
cirrhosis (Chen et al. 2011). Research has shown that the 
prevalence of potentially pathogenic microbiomes in indi-
viduals with cirrhosis may be associated with hepatic disease 
prognoses (Liu et al. 2004; Woodhouse et al. 2018). Enteric 
dysbiosis leads to elevated levels of LPS, TLRs, NADPH 
oxidase homolog 4, and short-chain fatty acids, which acti-
vate the Kupffer cells and trigger liver inflammation and 
necrosis (Zeng et al. 2016; Zhang et al. 2019). Following 
alcohol intake, intestinal dysbiosis and bacterial overgrowth 
are commonly observed, resulting in intestinal barrier dys-
function, peripheral inflammation, and even liver injury 
(Kim et al. 2021). This highlights that dysregulation due to 
alcohol-induced intestinal barrier compromise and micro-
biota alterations are critical drivers of ALD progression.

Adipose tissue and ALD

Adipose tissue is primarily composed of adipocytes and 
the stromal vascular fraction. Adipose tissue has two func-
tions: storing triglycerides as an energy source and regulat-
ing endocrine function by releasing various adipokines and 
cytokines (Guerreiro et al. 2022). Research suggests that 
alcohol is metabolized to acetaldehyde by either CYP2E1 or 
ADH in the adipose tissue. During chronic ethanol feeding 
CYP2E1 expression has been shown to increase in white 
adipose tissues (Zhang et al. 2015). Production of CYP2E1-
dependent reactive oxygen species by adipocytes has been 
demonstrated in a chronic ethanol consumption rat model 
(Parker et al. 2018). ADH expression in adipose tissue is 
much lower than in the liver, and adipocyte ADH expres-
sion does not change with chronic ethanol consumption as it 
does in the liver. Nonetheless, chronic alcohol consumption 
significantly elevates ALDH activity in epididymal white 
adipose tissue and subcutaneous white adipose tissue (Zhang 
et al. 2015).

Several studies have demonstrated that chronic alcohol 
administration increases IL-6 expression in adipose tis-
sues (He et al. 2015; Souza-Smith et al. 2017). In alcoholic 
individuals, increased IL-6 expression has been positively 
correlated with IL-18, osteopontin, α-smooth muscle actin, 
and semaphorins, emphasizing the importance of adipose 
tissue in the effects of ALD (Voican et al. 2015). Abundant 
evidence from animal experiments has demonstrated that 
chronic alcohol intake induces adipocyte lipolysis and the 
release of free fatty acids from white adipose tissue. This 
leads to ectopic fat accumulation within the liver, resulting 
in alcoholic fatty liver (Liangpunsakul et al. 2010; Zhong 
et al. 2012; Geisler and Renquist 2017). A study investigat-
ing lipolysis concluded that chronic alcohol administration 

decreased adipose tissue abundance and increased triglycer-
ide degradation in male Wistar rats compared with pair-fed 
controls (Kang et al. 2007; Steiner and Lang 2017).

In addition to lipolysis, Sebastian et al. (2011) examined 
the effects of chronic alcohol administration (Lieber-DeCarli 
liquid diet for 25 days) on mice and discovered that long-
term alcohol administration increased adipocyte death and 
inflammation via a CYP2E1/Bid/C1q-dependent pathway. 
Not surprisingly, chronic alcohol administration upregulates 
proinflammatory cytokine proliferation in adipose tissues 
(Fulham et al. 2019). A recent study has also demonstrated 
that adipocyte death can trigger infiltration and lipolysis of 
adipose tissue macrophages and subsequent liver damage 
through  CCR2+ macrophage activation, suggesting that 
lipolysis-related lipotoxicity contributes to adipocyte death-
associated liver injury (Kim et al. 2019).

Lungs and ALD

Studies on pulmonary ethanol metabolism suggest that 
ingested alcohol reaches the respiratory system via the bron-
chial circulation and is metabolized via oxidative and non-
oxidative alcohol metabolism (Liang et al. 2012; Kaphalia 
and Calhoun 2013). Like the liver, the lungs of patients with 
alcoholism may be more susceptible to inflammation-related 
damage. Chronic alcohol consumption considerably changes 
the permeability of the alveolar epithelium (Massey et al. 
2015a; Sadikot et al. 2019). Both ADH and CYP2E1 gen-
erate acetaldehyde, which is rapidly absorbed through the 
lungs (Kaphalia and Calhoun 2013). Acetaldehyde causes 
oxidative stress, lowers pulmonary macrophage phagocytic 
activity, and damages the nasal epithelium (Wyatt et al. 
2012; Hoyt et al. 2017). Interestingly, several studies have 
focused on FAEE formation, one of the end products of non-
oxidative alcohol metabolism in alcohol-induced pulmonary 
injury (Manautou and Carlson 1991; Manautou et al. 1992). 
Recently, Kaphalia et al. (2019) demonstrated exposure of 
alveolar macrophages to ethanol increased FAEE synthesis, 
endoplasmic reticulum stress, and oxidative stress. It was 
further demonstrated that ethanol-induced oxidative stress 
may occur through the formation of FAEEs.

Chronic alcohol abuse is a risk factor for acute respira-
tory distress syndrome (ARDS). Alcohol intake affects host 
systemic immunity and makes them more susceptible to lung 
infection (Liang et al. 2012). Studies have indicated that 
alcohol misuse increases the risk of lung injury secondary 
to pulmonary infection (Simet and Sisson 2015). Alcohol 
consumption disrupts mucus-facilitated clearance of bacte-
rial pathogens from the upper respiratory tract (Wyatt et al. 
2004; Chen et al. 2022), making alcoholic patients more 
susceptible to ARDS (Moss et al. 1996; Meza et al. 2022). 
Chronic ethanol administration in mice exacerbated LPS-
induced pulmonary damage, resulting in the production of 
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TNF-α responsive chemokines, macrophage inflammatory 
protein-2, and keratinocyte chemoattractant in the bron-
choalveolar lavage fluid (Massey et al. 2015b). Similarly, 
a study using an acute-on-chronic binge ethanol-fed mice 
model also demonstrated neutrophil infiltration associated 
with functional changes in the central airways (Poole et al. 
2019).

The lung-liver axis concept is based on clinical data from 
patients with a history of alcohol consumption who had 
increased risks of ARDS, death from ARDS, and hepatopul-
monary syndrome (Afshar et al. 2014; Yang et al. 2019). 
Importantly, the death rate for ARDS patients with end-stage 
hepatic failure is approximately 100%, demonstrating that 
lung defense systems are strongly associated with hepatic 
parenchymal detoxification (Herrero et al. 2020). Addition-
ally, crosstalk between the lungs and liver in ALD may be 
bidirectional. Mechanical ventilation generates lung-derived 
mediators (lung perfusates) and leads to inflammatory 
chemokine production in the sinusoidal endothelial cells of 
the liver (Markovic et al. 2009; Jaecklin et al. 2011). Another 
study discovered that acute and chronic alcohol consump-
tion reduces protective antioxidants, oxidizes reduced glu-
tathione, and suppresses innate and adaptive immunity in 
the lungs (Kaphalia and Calhoun 2013; Yeligar et al. 2016).

Alcohol damages the hepatic and pulmonary tissues 
through similar modes of action, which accelerates the pro-
gression of alcoholic liver and pulmonary diseases. Both 
the liver and lungs have resident macrophages that play 
significant roles in orchestrating inflammatory responses, 
including the induction of proinflammatory cytokines. Tis-
sue injury and organ dysfunction are also exacerbated by 
tissue remodeling, which results in increased deposition of 
extracellular matrix components, such as fibronectin and col-
lagen, and increased oxidative stress (Massey et al. 2015a). 
Therefore, the understanding of interdependent mechanisms 
in ALD progression is a very crucial factor to search for and 
set new therapeutic targets.

Conclusions and perspectives

Excessive alcohol consumption leads to a broad clinical-
histological spectrum, from simple steatosis to cirrhosis and 
hepatocellular carcinoma. For decades, most related research 
has focused on pathophysiological changes associated with 
chronic alcohol exposure, whereas the importance of acute 
alcohol abuse has been underestimated. Based on previous 
studies, binge alcohol drinking not only leads to acute hepa-
totoxicity, but also promotes chronic alcoholic liver damage 
(Bertola et al. 2013; Molina and Nelson 2018). Research has 
highlighted the synergistic effects of long- and short-term 
alcohol exposure on ALD progression. Because the liver 
is the primary site of alcohol metabolism, alcoholic liver 

damage is mainly caused by alcohol metabolites. Almost 
90% of the alcohol consumed is oxidatively metabolized into 
acetaldehyde by three hepatic enzymatic pathways, includ-
ing the liver ADH pathway (90%), the microsomal ethanol-
oxidizing system (8–10%), and the catalase pathway (< 2%) 
(Jiang et al. 2020).

In addition to acetaldehyde-mediated liver injury, non-
oxidative alcohol metabolism occurs in the organs most 
injured by alcohol abuse. Several non-oxidative routes of 
ethanol metabolism have been described previously; these 
result in the enzymatic conjugation of ethanol to endogenous 
metabolites. FAEEs are esterification products of ethanol 
and fatty acids and have been implicated as important media-
tors of ethanol-induced cytotoxicity, including those affect-
ing hepatocytes (Alhomsi et al. 2006). These metabolites 
represent alternative biomarkers since they can be detected 
several hours or days after ethanol exposure (Dinis-Oliveira 
2016).

Excessive alcohol consumption mainly affects the liver, 
the primary organ of its metabolism. However, it also signifi-
cantly affects other organs that contain alcohol-metabolizing 
enzymes. These extrahepatic organs (gastrointestinal tract, 
adipose tissue, and lungs) can also be damaged by oxida-
tive or non-oxidative metabolites, and interorgan crosstalk 
between the liver and extrahepatic organs contributes to 
ALD development. Therefore, it is expected that understand-
ing (1) the hepatic damage caused by the various alcohol-
mediated metabolites, and (2) the crosstalk between liver 
and extrahepatic organs will provide a novel insight into 
the underlying mechanisms behind alcohol-associated liver 
injury and its therapeutic targets.
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