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model development, model validation was performed with 
comparison of five pharmacokinetic studies. As a result, the 
developed PBPK model of celecoxib successfully described 
the pharmacokinetics of each CYP2C9 genotype group and 
its predicted values were within the acceptance criterion. 
Additionally, all the predicted values were within two-fold 
error range in comparison to the previous pharmacokinetic 
studies. This study demonstrates the possibility of determin-
ing the appropriate dosage of celecoxib for each individual 
through the PBPK modeling with CYP2C9 genomic infor-
mation. This approach could contribute to the reduction of 
adverse drug reactions of celecoxib and enable precision 
medicine.

Keywords Celecoxib · CYP2C9 · Dose optimization · 
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Introduction

Celecoxib is a representative cyclooxygenase (COX)-2 
selective inhibitor and a non-steroidal anti-inflammatory 
drug (NSAID) commonly prescribed for osteoarthritis, 
rheumatoid arthritis, ankylosing spondylitis, acute pain, 
and primary dysmenorrhea (Goldstein et al. 2001; Pfizer 
Inc. 2016). Like other NSAIDs, celecoxib is highly protein 
bound (> 97%), especially to albumin (Davies et al. 2000). 
Celecoxib undergoes hepatic metabolism mainly by methyl-
hydroxylation to hydroxy celecoxib and further by oxida-
tion to carboxy celecoxib, and this hepatic metabolism is the 
main pathway for elimination of celecoxib. CYP2C9 plays 
a major role in the methyl-hydroxylation of celecoxib and 
CYP3A4 is also involved in the hydroxylation process, albeit 
to a lesser extent (Davies et al. 2000; Paulson et al. 2000; 
Sandberg et al. 2002). CYP2C9 is one of the most important 
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osteoarthritis, rheumatoid arthritis, ankylosing spondy-
litis, acute pain, and primary dysmenorrhea. It is mainly 
metabolized by CYP2C9 and partly by CYP3A4 after oral 
administration. Many studies reported that CYP2C9 genetic 
polymorphism has significant effects on the pharmacokinet-
ics of celecoxib and the occurrence of adverse drug reac-
tions. The aim of this study was to develop a physiologi-
cally based pharmacokinetic (PBPK) model of celecoxib 
according to CYP2C9 genetic polymorphism for person-
alized pharmacotherapy. Initially, a clinical pharmacoki-
netic study was conducted where a single dose (200 mg) of 
celecoxib was administered to 39 healthy Korean subjects 
with CYP2C9*1/*1 or CYP2C9*1/*3 genotypes to obtain 
data for PBPK development. Based on the conducted phar-
macokinetic study and a previous pharmacokinetic study 
involving subjects with CYP2C9*1/*13 and CYP2C9*3/*3 
genotype, PBPK model for celecoxib was developed. 
A PBPK model for CYP2C9*1/*1 genotype group was 
developed and then scaled to other genotype groups 
(CYP2C9*1/*3, CYP2C9*1/*13 and CYP2C9*3/*3). After 
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metabolizing enzymes for many of the prescribed drugs 
(Rettie et al. 2005). The human CYP2C9 gene is highly poly-
morphic in its promoter and coding regions, and more than 
71 variant alleles of CYP2C9 have been reported (https:// 
www. pharm var. org/ gene/ CYP2C9). The allelic variants vary 
in frequency among different ethnic groups, and CYP2C9 *2 
and *3 are major variant alleles in most ethnic groups. The 
CYP2C9*2 and *3 variants have been reported to be signifi-
cantly prevalent in Caucasians (8.0–19.1% and 3.3–16.2%, 
respectively). However, CYP2C9*2 is absent in East Asians 
(Chinese, Japanese, and Korean), and CYP2C9*3 and *13 
occur at frequencies of 1.0–6.0% and 0.2–1.0%, respec-
tively (Kimura et al. 1998; Bae et al. 2005; Dai et al. 2014; 
Ding et al. 2015; Kim et al. 2017). CYP2C9*2, *3 and *13 
alleles are associated with significant reductions in intrinsic 
clearance of a variety of CYP2C9 substrates compared with 
CYP2C9* 1; however, the degree of these reductions appear 
to be highly substrate-dependent (Lee et al. 2002).

Although one clinical study indicated that CYP2C9 
genotype does not affect the steady-state systemic exposure 
(area under the curve, AUC) and elimination rate (Bren-
ner et al. 2003), most of the pharmacogenetic studies for 
celecoxib have reported that subjects with CYP2C9*3 or 
CYP2C9*13 allele including CYP2C9*1/*3, CYP2C9*1/*13 
and CYP2C9*3/*3 genotype resulted in significantly 
increased AUC and maximum plasma concentration  (Cmax) 
compared to subjects with CYP2C9*1/*1 genotype (exten-
sive metabolizers, EMs) (Tang et al. 2001; Kirchheiner et al. 
2003; Stempak et al. 2005; Lundblad et al. 2006; Prieto-
Perez et al. 2013; Liu et al. 2015; Kim et al. 2017; Park et al. 
2018). Administration of celecoxib is associated with gas-
trointestinal (GI), cardiovascular, and renal adverse events 
(Mohammed et al. 1999; Moore et al. 2005; Caldwell et al. 
2006; Pfizer Inc. 2016; Kim et al. 2017). Especially, one 
study demonstrated that subjects with higher AUC and  Cmax 
resulted in more adverse events than those with lower values 
(Liu et al. 2015). Furthermore, another study reported that 
one patient identified as an intermediate metabolizer (IM) 
of CYP2C9 had gastropathy after taking celecoxib (Gupta 
et al. 2015).

Physiologically based pharmacokinetic (PBPK) mod-
eling is a tool that enables a priori simulation of drug con-
centration–time profiles through a mechanistic approach to 
the pharmacokinetics of drug by integrating biological and 
physiological information at the organism level (Kuepfer 
et al. 2016). Based on the pharmacokinetic data from a clini-
cal study, PBPK modeling can be applied to simulate the 
pharmacokinetic profile of different administration protocols 
and drug-drug interactions (Zhuang and Lu 2016). Due to 
these characteristics, utilization of PBPK modeling for drug 
development and discovery has rapidly developed (Jones 
et al. 2015). Moreover, several studies indicated that PBPK 
modeling can also be used to apply genetic polymorphism 

effects on the pharmacokinetics of drugs (Yeo et al. 2013; 
Vieira et al. 2014; Emoto et al. 2015; Djebli et al. 2015; 
Duan et al. 2017; Futatsugi et al. 2018; Gong et al. 2018).

In this study, a PBPK model of celecoxib was devel-
oped according to CYP2C9 genetic polymorphism based on 
reported in vitro metabolic rate data (Tang et al. 2001) with 
CYP2C9 and CYP3A4 enzymes. The objective of this study 
was to develop a PBPK model to obtain the optimal dosage 
of celecoxib related to CYP2C9 genetic polymorphism.

Methods

Subjects

Twenty-four healthy subjects with CYP2C9*1/*1 genotype 
and fifteen subjects with CYP2C9*1/*3 genotype were 
recruited for the  pharmacokinetic study. Subjects were 
healthy according to medical history, physical examination, 
and routine laboratory tests including urine analysis, hema-
tology, and blood chemistry. Their CYP2C9 genotypes were 
confirmed by polymerase chain reaction restriction fragment 
length polymorphism (PCR–RFLP) methods as previously 
described (Bae et al. 2005).

Study design

All subjects provided informed consent for the study. The 
study complied with the Declaration of Helsinki and was 
approved by the Institutional Review Board of Metro hos-
pital (Anyang, Republic of Korea). Pharmacokinetic study 
of celecoxib was conducted as an open-label, single-phase 
study. After overnight fasting, participants were adminis-
tered a single oral dose of 200 mg celecoxib  (CelebrexⓇ, 
Pfizer Korea, Seoul, Republic of Korea). Blood samples 
were collected in EDTA tubes before and at 0.5, 1, 1.5, 2, 
2.5, 3, 4, 6, 8, 10, 12, 24, 36, and 48 h after administra-
tion. Meals were provided at 4, 10, 24, and 30 h after drug 
administration. Collected blood samples were centrifuged at 
3000 rpm for 10 min. Then, the supernatant plasma samples 
from the EDTA tubes were stored at − 70 °C until needed.

Determination of plasma concentration

HPLC–MS/MS (High Performance Liquid Chromatog-
raphy-tandem mass spectrometry) analysis of celecoxib 
and valdecoxib (Internal standard, IS) was determined and 
validated based on following published method (Kim et al. 
2017). HPLC was operated on an Agilent 1200 series HPLC 
system (Santa Clara, CA, USA) and mass spectrometry was 
performed by Applied Biosystems SCIEX API 3200 series 
(Toronto, ON, Canada). Phenomenex Luna phenyl hexyl 
column (100 × 2.0 mm, 3 μm, Torrance, CA, USA) was 
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selected for analyte separation. The mobile phase, a mixture 
of 10 mM ammonium formate (pH 3.5, adjusted with for-
mic acid) with HPLC grade water and acetonitrile (10: 90, 
v/v) was used for analysis and set to 0.2 mL/min in HPLC 
system. In quantitative analysis, MRM (Multiple Reaction 
Monitoring) mode with a dwell time of 250 ms was selected 
for analyzing celecoxib (m/z 380.2 → 316.1) and IS (m/z 
313.3 → 118.0). The calibration curve was linear over the 
range of 2–1000 ng/mL for celecoxib.

Data and statistical analysis

All pharmacokinetic parameter calculations for celecoxib 
analysis was based on BA calc 2007 software from MFDS 
(Ministry of Food and Drugs Safety, Republic of Korea). 
Maximum plasma concentration values of celecoxib  (Cmax) 
and the time to reach maximum plasma concentration  Cmax 
 (Tmax) were experimentally observed values. Area under 
the curve (AUC: AUC 0-t, AUC inf) parameters were assessed 
based on trapezoidal rule, and t was the last time of meas-
ured concentration. AUC 0-t was area under the plasma con-
centration time curve from time 0 to t and AUC inf was area 
under the plasma concentration time curve from time 0 to 
infinite. The clearance was calculated as CL/F = dose/AUC 
inf and half-life was calculated as  T1/2 = ln 2/ke and  ke was 
the elimination constant which was derived from terminal 
data from a concentration–time plot. All of the calculated 
pharmacokinetic data results were expressed as mean ± SD 
(standard deviation). After consideration of normality and 
equal variance, differences in pharmacokinetic parameters 
between CYP2C9 genotype groups were evaluated using 
the student t-test. All results were analyzed by  SigmaPlotⓇ 
version 12 (Systat Software Inc., Chicago, IL, USA). In 
this study, P values < 0.05 were considered statistically 
significant.

PBPK model construction and workflow

The PBPK modeling of celecoxib was developed and opti-
mized using the latest PK-SimⓇ software (Version 7.2, Bayer 
AG, Wuppertal, Germany). The pharmacokinetic data used 
for model development was based on the pharmacokinetic 
information involving subjects with CYP2C9*1/*1 and 
CYP2C9*1/*3 genotypes conducted in this study. Basic 
information for modeling population group including gen-
der, age, weight, height, and BMI was based on subjects 
who participated in the pharmacokinetic study. In the case 
of CYP2C9*1/*13 (n = 5) and CYP2C9*3/*3 (n = 2) geno-
type groups, pharmacokinetic information from a previously 
published research was applied (Kim et al. 2017).

Basic physico-chemistry data for celecoxib was col-
lected from published literature (Paulson et al. 1999; Baek 
et  al. 2015), PubChem (https:// pubch em. ncbi. nlm. nih. 
gov), and Drug Bank (https:// www. drugb ank. ca). Adjusted 
lipophilicity for celecoxib was 3.9 per data provided by 
Drug Bank. Fraction unbound  (fu) value was 3.5% based 
on literature (Paulson et al. 1999). ADME properties used 
in PK-SimⓇ were adjusted based on a latest human com-
partmental GI model including fluid secretion and absorp-
tion, which was used to simulate the absorption (Thelen 
et al. 2011, 2012).

Poulin and Theil method was used to calculate the 
organ-plasma partition coefficients. In this method, lipo-
philicity (log P), pKa, and  fu were the main input param-
eters for calculation of partition coefficients (Poulin and 
Theil 2000; Poulin et al. 2001; Kuepfer et al. 2016).

For metabolism, metabolic enzymes were primarily 
considered for the description of celecoxib metabolism. 
When considering the metabolic pathway of celecoxib, 
both CYP2C9 and CYP3A4 activities were applied to 
the model development. Input values for in vitro meta-
bolic rate in the presence of recombinant sub-enzymes 
were determined according to a previously published 
study (Tang et al. 2001). In addition, in vitro metabolic 
rate constant for recombinant CYP2C9 used for the initial 
model development was applied to the CYP2C9*1/*1 gen-
otype group. Modified in vitro metabolic rate values for 
other genotype groups (CYP2C9*1/*3, CYP2C9*1/*13, 
and CYP2C9*3/*3) were applied in sequence.

In the case of excretion, celecoxib is mainly eliminated 
by the hepatic metabolism (Davies et al. 2000). There-
fore, kidney excretion was partially applied by optimizing 
plasma clearance for kidney and  fu. Protein gene expres-
sion data used in the PBPK modeling was derived from 
published RT-PCR assay data (Nishimura et  al. 2003; 
Nishimura et al. 2005; Nishimura et al. 2006). Addition-
ally, solubility, kidney plasma clearance and 80% dissolu-
tion time were optimized by adjusting parameter identi-
fication tool in PK-SimⓇ version 7.2 for better goodness 
of fit. The optimization was performed using the Leven-
berg–Marquardt algorithm of the parameter identification 
tool in PK-SimⓇ software.

After generation of the PBPK model for CYP2C9*1/*1, 
simulation for the CYP2C9*1/*3, CYP2C9*1/*13, and 
CYP2C9*3/*3 genotype groups were generated by adjust-
ing the biometric data and in  vitro metabolic rate of 
recombinant CYP2C9 for each genotype.

In this study, a model acceptance criterion based on the 
variance of observed PK data  (Cmax, AUC 0-48, and AUC 
inf) was applied to evaluate the suitability of the devel-
oped PBPK model for celecoxib. Acceptance criterion for 
modeling was calculated by a previously reported method 
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(Abduljalil et al. 2014). Equation 1 and Eq. 2 were used to 
calculate the model assessment as follows:

where x is the mean value of the pharmacokinetic values 
from this study; CV% is the coefficient variation of the 
pharmacokinetic values from this study; N is the number of 
subjects;  Ub is the upper limit of boundary;  Lb is the lower 
limit of boundary.

In this study, the model acceptance range was calculated 
by converting the  Cmax, AUC 0-48, and AUC inf values from 
each CYP2C9 genotype group obtained from the pharma-
cokinetic study into  Ub and  Lb values, respectively. Thereby, 
all the predicted pharmacokinetic values in the model devel-
opment were used as an index to determine the suitability 
of the comparison with observed pharmacokinetic values.

Validation of the PBPK model

PBPK model validation was performed by comparing the 
predicted values with observed values from the pharmacoki-
netic studies. In this study, comparison between predicted 
value and observed value was evaluated by two-fold error 
which is widely used for acceptable prediction in PBPK 
model evaluation (Jones et al. 2012; Guo et al. 2015; Rasool 
et al. 2017; Park et al. 2017). Two-fold error was calculated 
using Eq. 3:

Celecoxib pharmacokinetic studies used for comparison 
in the validation process consisted of different ethnic groups 
including Asian (China, Korea) and Caucasian (Spain, Swe-
den, USA) population. These studies also included avail-
able celecoxib single/multiple pharmacokinetic data with 
genotype groups including CYP2C9*1/*1, CYP2C9*1/*3, 
and CYP2C9*3/*3 (Tang et al. 2001; Lundblad et al. 2006; 
Prieto-Perez et al. 2013; Liu et al. 2015; Park et al. 2018). 
Demographic data of these pharmacokinetic studies used for 
validation are summarized in Table 3.
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0.5 ≤ Ratio score = Predicted value ∕ Observed value ≤ 2

Results

Clinical pharmacokinetic study

During the pharmacokinetic study, no unexpected adverse 
symptoms and/or signs related to celecoxib administra-
tion were observed in any of the 39 subjects. There were 
no significant differences in demographic characteristics 
between the CYP2C9*1/*1 group and the CYP2C9*1/*3 
group. The pharmacokinetic parameters and plasma con-
centration–time profile of celecoxib in each genotype 
group are shown in Fig. 1 and Table 1. 

Among the pharmacokinetic parameters,  Cmax, AUC 0-48, 
AUC inf, and CL/F were significantly different between the 
two genotype groups. Compared with the CYP2C9*1/*1 
group, the CYP2C9*1/*3 group had 1.3 fold higher  Cmax, 
1.8 fold higher AUC 0-48, 1.8 fold higher AUC inf, 1.8 lower 
CL/F, while  T1/2 and  Tmax were not significantly different 
between the two genotype groups.

Fig. 1  Mean plasma concentration–time profile of celecoxib 
after administration of single 200  mg oral dose of celecoxib in 
CYP2C9*1/*1 and CYP2C9*1/*3 genotype groups

Table 1  Pharmacokinetic parameters of celecoxib after 200 mg oral 
dose of celecoxib in two different CYP2C9 genotype groups

Data are expressed as mean ± SD

Parameter CYP2C9*1/*1 CYP2C9*1/*3 P value

Cmax [ng/mL] 480.0 ± 270.2 640.2 ± 269.3 0.032
AUC 0-48 [ng·hr/mL] 3656.4 ± 980.8 6458.6 ± 1115.0  < 0.0001
AUC 0-∞ [ng·hr/mL] 3781.4 ± 973.5 6646.9 ± 1103.1  < 0.0001
CL/F [L/hr/kg] 55.7 ± 11.4 31.0 ± 12.4  < 0.0001
t1/2 [hr] 7.8 ± 3.1 8.4 ± 3.0 0.580
tmax [hr] 2.7 ± 1.3 3.4 ± 1.3 0.175
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PBPK model construction for celecoxib

Based on the conducted pharmacokinetic study and a previ-
ously reported study (Kim et al. 2017), the PBPK model 
for celecoxib was developed. Predefined physico-chemical 
parameters and ADME properties used in the PBPK model 
development are shown in Table 2. Data set for model 
development included CYP2C9*1/*1, CYP2C9*1/*3, 
CYP2C9*1/*13, and CYP2C9*3/*3 genotype groups.

At first, the PBPK model for celecoxib with regards to 
the CYP2C9*1/*1 genotype was developed. Initial simu-
lation reflected celecoxib elimination only by metabolism 
of CYP enzymes including CYP2C9 and CYP3A4. This 
study assumed that celecoxib was eliminated mainly by 

hepatic metabolism with little urine excretion of unchanged 
celecoxib according to Davies et al. (2000).

Thereby, urine excretion was applied to kidney plasma 
clearance, and parameter identification tool in PK-SimⓇ 
software was utilized to perform optimization. Investigated 
dissolution rate of celecoxib capsule over 1–2 h, which 
was determined using the paddle method (described in the 
Korea Pharamacopeia), was 80% or more. Thus, dissolution 
rate was optimized within 1–2 h and was determined to be 
90 min (Baek et al. 2015).

After optimization, predicted values of  Cmax, AUC 0-48, 
and AUC inf, in the CYP2C9*1/*1 genotype group met the 
predefined acceptance criterion range (Table 3) and demon-
strated more optimal goodness of fit (Fig. 2).

Table 2  Physico-chemical parameters and ADME properties used for PBPK model development of celecoxib in the different CYP2C9 genotype 
groups

Parameter Reference value Input value References/Comment

Basic physico-chemistry
 Molecular weight 381.4 g/mol 381.4 g/mol PubChem
 Lipophilicity (logP) 3.9 3.9 Drug bank
 Fraction unbound  (fu) 1.8–3.7% 3.5% Paulson et al. (1999)
  pKa 10.7 10.7 Drug bank
 Solubility 3.9–19.1 mg/mL 7.2 mg/mL LC Laboratories Inc. (2018)

Absorption
 Specific intestinal permeability 3.07E−4 cm/min Calculated by PK-SimⓇ

Distribution
 Specific organ permeability 0.07 cm/min Calculated by PK-SimⓇ

Metabolism
 CYP2C9*1/*1
  In vitro  Vmax 8.9 μmol/min/ μmol CYP 8.9 μmol/min/μmol CYP Tang et al. (2001)
   Km 3.3 μM 3.3 μM

 CYP2C9*1/*3
  In vitro  Vmax 3.1 μmol/min/ μmol CYP 3.1 μmol/min/μmol CYP Tang et al. (2001)
   Km 2.6 μM 2.6 μM

 CYP2C9*1/*13
  In vitro  Vmax – 4.13 μmol/min/μmol CYP Optimized by PK-SimⓇ

   Km – 2.15 μM
 CYP2C9*3/*3
  In vitro  Vmax 3.1 μmol/min/ μmol 3.1 μmol/min/μmol CYP Tang et al. (2001)
   Km 2.6 μM 2.6 μM

 CYP3A4
  In vitro  Vmax 1.4 μmol/min/ μmol 1.4 μmol/min/μmol CYP Tang et al. (2001)
   Km 18.0 μM 18.0 μM

 CYP2C9 abundance in liver tissue 3.84 μmol/L PK-SimⓇ default value
 CYP3A4 abundance in liver tissue 4.32 μmol/L PK-SimⓇ default value

Excretion
 Kidney plasma clearance 2.20E−3 L/h/kg Optimized by PK-SimⓇ

Formulation
 80% dissolution time  < 120 min 90 min Baek et al. (2015)
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Compared with the reported volume of distribution 
at steady state  (Vss) value following oral administration 
(approximately 400 L) for celecoxib (Pfizer Inc. 2016), pre-
dicted  Vss of oral administration from this study was 467.5 
L. Absolute bioavailability information for celecoxib is not 
known because of low solubility in aqueous media (Pfizer 
Inc. 2016). In our prediction, the oral bioavailability was 
76% and the predicted  Vss of intravenous drug administra-
tion was 354.0 L.

Then, the developed model was scaled to CYP2C9*1/*3, 
CYP2C9*1/*13, and CYP2C9*3/*3 genotype groups by 
modifying biometric data and value of in vitro metabolic 
rate of recombinant CYP2C9 (Table 2).

As a result, the predicted pharmacokinetic data of 
CYP2C9*1/*3, CYP2C9*1/*13, and CYP2C9*3/*3 geno-
type groups also met the acceptance criterion range (Table 3, 
Fig. 3).

Sensitivity analysis

A sensitivity analysis was conducted to confirm which input 
parameters had significant impact on the pharmacokinetic 
simulation of celecoxib. Sensitivity analysis was performed 
in PK-SimⓇ and target pharmacokinetic parameters were 
AUC and  Cmax. The sensitivity ratio of input parameters are 
represented in Fig. 4.

Among the input parameters for model development, 
lipophilicity (log P) showed the highest sensitivity ratio in 

all target pharmacokinetic parameters. The  fu, celecoxib 
dose, and solubility were significantly sensitive to AUC and 
 Cmax. In vitro  Vmax and  Km, which represent the enzyme 
activity of CYP2C9, also showed to be significantly sensi-
tive to AUC and  Cmax.

Model validation

After the model development, model validation was con-
ducted by comparison of data from previous celecoxib phar-
macokinetic studies, which assessed the role of CYP2C9 
polymorphism. Model validation was performed by compar-
ing the observed and predicted values of the PK parameters 
(AUC and  Cmax) of each study.

Each simulation for validation was performed considering 
the respective ethnic group, biometric data and the CYP2C9 
genotype. As a result, all the predicted pharmacokinetic val-
ues of each study laid within the two-fold error range and the 
results are shown in Table 4.

Discussion

Most drug metabolizing enzymes and transporters are genet-
ically polymorphic, and these genetic polymorphisms influ-
ence pharmacokinetics and pharmacodynamics of drugs to 
varying degrees (Byeon et al. 2019; Bae et al. 2020; Jung 
et al. 2020; Shin et al. 2020). Drug interactions also have 

Table 3  Demographic data and the observed and predicted pharmacokinetics of celecoxib with acceptance criterion range for model develop-
ment by each CYP2C9 genotype

Genotype Age [yr] BMI [kg/m2] Height [cm] Weight [kg] Cmax [ng/mL] AUC 0-48 [ng·hr/
mL]

AUC inf [ng·hr/
mL]

CYP2C9*1/*1 
(n = 24)

19–29 17.2–26.8 162–193 51–100 Observed 
(mean ± SD)

480.0 ± 270.2 3656.4 ± 980.8 3781.4 ± 973.5

Predicted 464.8 4307.0 4533.7
Acceptance 

range
304.2–757.5 2907.4–4598.3 3033.8–4713.3

CYP2C9*1/*3 
(n = 15)

19–27 21.0–25.5 164–190 59–80 Observed 
(mean ± SD)

640.2 ± 269.3 6458.6 ± 1115.0 6646.9 ± 1103.1

Predicted 750.8 7220.4 7954.4
Acceptance 

range
481.7–850.8 5364.4–7775.9 5473.6–8071.6

CYP2C9*1/*13 
(n = 5)

21–29 18.2–24.8 164–183 49–82 Observed 
(mean ± SD)

553.8 ± 273.5 5461.6 ± 1168.6 5565.2 ± 1161.2

Predicted 564.4 6737.1 7469.1
Acceptance 

range
310.2–988.8 3649.8–8172.9 3755.6–8246.7

CYP2C9*3/*3 
(n = 2)

26–27 21.6–24.5 169–180 70 Observed 
(mean ± SD)

825.0 ± 75.0 25,736.8 ± 4309.6 27,351.1 ± 5432.7

Predicted 930.7 26,376.9 29,610.1
Acceptance 

range
627.7–1084.3 15,595.8–42,471.9 15,123.0–

49,466.7
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a significant effect on drug action (Lee et al. 2019). PBPK 
modeling may enable an optimized drug administration 
strategy for each individual patient by reflecting all of the 
characteristics such as the patient’s physical characteristics, 
genetic polymorphisms of drug metabolizing enzymes and 
transporters, drug interactions, diseases, etc. (Duan et al. 
2017; Kim et al. 2018).

Through this study, a celecoxib PBPK model was devel-
oped based on the genetic polymorphism of CYP2C9. 
Celecoxib is primarily metabolized by CYP2C9 and partly 
by CYP3A4 after oral administration. CYP2C9 is most 
abundantly expressed in the CYP2C subfamily, accounting 
for approximately 20% of total hepatic cytochrome P450 
protein (Daly et al. 2017).

Most of NSAIDs including diclofenac, ibuprofen, lor-
noxicam, tenoxicam, and meloxicam are metabolized by 
CYP2C9, and the genetic polymorphism of CYP2C9 has 
been reported to affect the metabolism of these drugs 

(Vianna et al. 2004; Choi et al. 2011; Lee et al. 2014; Zhang 
et al. 2014; Krasniqi et al. 2016; Daly et al. 2017).

Likewise, most clinical studies, including the present 
one, have reported that CYP2C9 genetic polymorphism sig-
nificantly affects the metabolism of celecoxib (Tang et al. 
2001; Kirchheiner et al. 2003; Stempak et al. 2005; Prieto-
Perez et al. 2013; Liu et al. 2015; Kim et al. 2017; Park et al. 

Fig. 2  The observed and predicted celecoxib pharmacokinetic profile 
in CYP2C9*1/*1 genotype group: (A) predicted pharmacokinetic pro-
file by initial input values which represent the physico-chemical and 
ADME properties of celecoxib, (B) predicted pharmacokinetic profile 
by applying optimized kidney plasma clearance

Fig. 3  The observed and predicted celecoxib pharmacokinetic pro-
file in (A) CYP2C9*1/*3, (B) CYP2C9*1/*13, and (C) CYP2C9*3/*3 
genotype groups
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2018). Besides, in our clinical study, AUC 0-48, AUC inf,  Cmax 
and CL/F parameters were significantly different between 
CYP2C9*1/*1 and CYP2C9*1/*3 genotype groups.

Thus, PBPK model for celecoxib in this study was 
developed with regards to the genetic polymorphism of the 
CYP2C9 enzyme. The workflow of this study was to utilize 
our clinical pharmacokinetic data for model development, 
and to validate the model with comparison studies. In the 
development of the PBPK model, input values for physico-
chemical parameter and ADME properties of celecoxib were 
adapted from previously reported studies, and these were 
calculated and optimized by PK-SimⓇ software.

Input values of in  vitro metabolic rate of recombi-
nant CYP2C9 (in vitro  Vmax and  Km) for CYP2C9*1/*1, 
CYP2C9*1/*3, and CYP2C9*3/*3 genotype were adapted 
from the literature (Tang et  al. 2001). In case of the 
CYP2C9*1/*13 group, values were optimized by PK-SimⓇ 
based on the pharmacokinetic data by Kim et al. (2017) as 
in vitro metabolic rate data for CYP2C9*1/*13 genotype 
group was not available otherwise. Through the change of 
these input parameter values, we intended to demonstrate 
pharmacokinetic differences between four genotype groups. 
As expected, sensitivity analysis indicated that in vitro 
 Vmax (CYP2C9) and  Km (CYP2C9) parameter differences 

Fig. 4  Sensitivity ratio of input 
parameters for celecoxib on the 
AUC (A) and  Cmax (B)
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between four genotype groups had a significant impact on 
the pharmacokinetics of celecoxib.

The evaluation criteria for model development and 
validation were separated into model acceptance criterion 
(99.998% confidence interval) and two-fold error. Model 
acceptance criterion used to evaluate model development 
was based on a previously presented literature (Abdul-
jalil et al. 2014). According to Abduljalil et al. (2014), the 
presented model acceptance criterion has a 99.998% con-
fidence interval, which can more accurately reflect all the 
inter-individual variabilities of observed pharmacokinetic 
values than the two-fold error criterion. The ranges of the 
proposed criterion were 1.58-, 1.33-, 1.79-, and 1.81-fold 
for CYP2C9*1/*1, CYP2C9*1/*3, CYP2C9*1/*13, and 
CYP2C9*3/*3 genotype groups, respectively. Moreover, all 
the predicted pharmacokinetic parameters for model devel-
opment met the two-fold error range, as well as proposed 
model acceptance criterion.

There are eight studies that have reported CYP2C9 genetic 
polymorphism affecting the pharmacokinetics of celecoxib 
(Tang et al. 2001; Kirchheiner et al. 2003; Stempak et al. 
2005; Lundblad et al. 2006; Prieto-Perez et al. 2013; Liu 
et al. 2015; Kim et al. 2017; Park et al. 2018). Among them, 
five pharmacokinetic studies were selected for comparison 
in the validation process. Kirchheiner et al. (2003) and Stem-
pak et al. (2005) were excluded because biometric infor-
mation for the subject group was not specified. Kim et al. 
(2017) was also excluded due to the use of pharmacokinetic 
data from the CYP2C9*1/*13 and CYP2C9*3/*3 genotype 
groups for model development.

In this model validation, predicted target pharmacoki-
netic values including AUC and  Cmax for Korean (Park et al. 
2018), Chinese (Liu et al. 2015), and Caucasian population 
(Tang et al. 2001; Lundblad et al. 2006; Prieto‐Pérez et al. 
2013) studies met the two-fold error criterion. These results 
indicated that the PBPK model for celecoxib according to 
CYP2C9 genetic polymorphism has successfully described 
the pharmacokinetics of celecoxib after single or multiple 
oral administration.

Of note, the observed pharmacokinetic values between 
East Asian population (Chinese and Korean) and Caucasian 
population were significantly different. These results had a 
considerable impact on the validation for model develop-
ment of celecoxib. The ratio scores (between observed and 
predicted pharmacokinetic values) in the Korean and Chi-
nese population simulation through this model were within 
0.67–0.94, and 0.72–1.18, respectively. In the Caucasian 
population, however, the ratio scores (between observed and 
predicted pharmacokinetic values) were within 0.54–0.88, 
which was significantly lower compared to Asian population 
(P < 0.01) (Table 4).

Shu et al. (2001) suggested that CYP2C9 abundance was 
not significantly related to ethnicity. However, this study 

strongly suggests that there is a limitation in simulating 
with same CYP2C9 enzyme abundance (3.84 µM in liver 
tissue) to all races. Despite these limitations, this model can 
be useful in determining optimal dosage considering the 
patient’s demographic data (age, height, weight, and BMI) 
and CYP2C9 genotype. Additionally, this model may also 
be applied to construct a drug-drug interaction model with 
celecoxib and CYP2C9 inhibitor or inducer.

In conclusion, a PBPK model for celecoxib with regard 
to CYP2C9 genetic polymorphism was developed, which 
predicted the pharmacokinetics of celecoxib, considering 
demographic data of subjects, physico-chemical parameters, 
ADME properties, and CYP2C9 genotype. Although further 
development is required, this PBPK model is the first attempt 
to demonstrate in silico prediction of celecoxib pharmacoki-
netics that reflects the pharmacogenetic effects. These results 
will be beneficial in prescribing the appropriate dosage of 
celecoxib considering inter-individual differences.
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